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ABSTRACT DNA methylation is a dynamic epigenetic modification found in most eukaryotic genomes. It is
known to lead to a high CpG to TpG mutation rate. However, the relationship between the methylation
dynamics in germline development and the germline mutation rate remains unexplored. In this study, we
used whole genome bisulfite sequencing (WGBS) data of cells at 13 stages of human germline development
and rare variants from the 1000 Genome Project as proxies for germline mutations to investigate the
correlation between dynamicmethylation levels and germlinemutation rates at different scales. At the single-
site level, we found a significant correlation between methylation and the germline point mutation rate at
CpG sites during germline developmental stages. Then we explored the mutability of methylation dynamics
in all stages. Our results also showed a broad correlation between the regional methylation level and the rate
of C . T mutation at CpG sites in all genomic regions, especially in intronic regions; a similar link was also
seen at all chromosomal levels. Our findings indicate that the dynamic DNA methylome during human
germline development has a broader mutational impact than is commonly assumed.
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Germline mutations, the random genetic errors that occur in germ
cells (Campbell and Eichler 2013), are the source of heritable diseases
and evolutionary adaptations (Ségurel et al. 2014). Understanding the
rate of germline mutation occurrence and the mechanisms that
control it, particularly in humans, is of great importance to finding
causes of heritable diseases and evidence for evolution (Chen et al.
2017). The mutation rate is a reflection of the dynamics of organisms.
Recent studies of germline mutations have identified several factors
that influence point mutation rates, including expression level, rep-
lication timing, GC content (Hodgkinson and Eyre-Walker 2011;

Michaelson et al. 2012; Park et al. 2012; Francioli et al. 2015;
Besenbacher et al. 2016; Goldmann et al. 2016) and CpGmethylation
(Kong et al. 2012). However, the origin of many mutations during
human germline development remains unknown.

CpG dinucleotides are frequently methylated in the human
genome. When a methylated CpG is changed into a TpG through
spontaneous deamination and is not corrected by the repair system,
the result is a mutation (Kong et al. 2012). The spontaneous de-
amination rate of a methylated cytosine is usually 2.0 to 3.2 times
higher than that of an unmethylated cytosine (Ehrlich et al. 1986;
Zhao and Jiang 2007; Xia et al. 2012). Next-generation sequencing
technology and in vitro culturing technology are quickly developing,
and whole-genome bisulfite sequencing enables researchers to obtain
the dynamic DNA methylome in cells at different stages (Guo et al.
2015; Poulos et al. 2017; Prada-Arismendy et al. 2017; Li et al. 2018).
In many genomics studies of cancer, the methylation-mutation
association is studied across cancer types and at different disease
stage checkpoints, including screening, diagnosis, prognosis and
monitoring (Poulos et al. 2017; Prada-Arismendy et al. 2017; Takane
et al. 2017; Chakravarthy et al. 2018). TheDNAmethylome undergoes
extensive reprogramming during human germ cell development,
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especially in primordial germ cells (PGC) (von Meyenn and Reik
2015). However, how the dynamic DNA methylome during human
germ cell development causes a different germline mutation rate
remains poorly understood.

The methods used in researching somatic mutations have proven
difficult to apply to the germline (Agarwal and Przeworski 2019). Part
of the difficulty is that germline mutations occur very rarely; there are
approximately 70 de novo mutations per generation (Jónsson et al.
2017). Until recently, the most direct approach for estimating germ-
line point mutations is based on resequencing whole genomes from
blood samples of human pedigrees and identifying germline muta-
tions through comparisons of parents and offspring (Conrad et al.
2011; Michaelson et al. 2012; Campbell and Eichler 2013; Ségurel
et al. 2014; Shendure and Akey 2015; Goldmann et al. 2016).
However, the analysis of this method is technically challenging
and is poor for identifying determinants of rate mutation factors
(Chen et al. 2017; Agarwal and Przeworski 2019). For instance, the
correlation analysis between genome features and mutation patterns
combining the three largest de novo mutation studies produced
inconsistent patterns, but the cause for this was unknown (Chen
et al. 2017; Smith et al. 2018). Another way to estimate the mutation
rate utilizes the divergence among species indirectly. By comparing
the genomes of humans, chimpanzees, and gorillas, humanmutations
that differ from the most recent ancestor could be identified. This
method meets the needs of large-scale analysis, but the result is highly
affected by natural selection (Hodgkinson and Eyre-Walker 2011;
Scally et al. 2012; Xia et al. 2012). A previous study applied human-
chimpanzee divergence as germline mutations to investigate meth-
ylation-mutation association, but the authors applied the methylome
only from human embryonic stem cells instead of from human germ
cells. The authors claimed a high mutation rate in 20–60% DNA
methylation level while highly methylated CpGs leads to a low
mutation rate (Xia et al. 2012).

A good method for overcoming the limitation of the small density
of germline mutation variants is to use polymorphisms on behalf of de
novo mutations (Agarwal and Przeworski 2019; Kusmartsev et al.
2020). In large-scale mutation datasets, polymorphisms with low
frequency variants are rare, so these mutations can be regarded as
neutral mutations that minimize the effects of indirect selection and
biased gene conversion (Schaibley et al. 1984; Rahbari et al. 2016;
Carlson et al. 2018; Agarwal and Przeworski 2019). Thus, rare
variants across large-scale populations can then be applied to in-
vestigate their associations with genomic features. Using this strategy,
a recent study of low frequency variants in gnomAD (Lek et al. 2016)
on the human X chromosome and autosomes ascribed specific
mutation signatures to recombination and replication timing. They
also identified differences in mutation types resulting from sex effects
(Agarwal and Przeworski 2019). Another recent study of human
autosomal variants identified types of mutations and genomic con-
texts that were strongly associated with numerous genomic features,
including GC content, DNase hypersensitivity, and histone modifi-
cation (Carlson et al. 2018). However, neither study considered the
DNA methylation level.

Here, we used the whole genome bisulfite sequencing methylome
of cells at 13 stages during human germline development and rare
variants from the 1000 Genome Project as germline mutations to
investigate the correlation between dynamic methylation level and
germline mutation rate. We found a significant correlation between
the methylation level and the germline mutation rate at CpG sites
using a single-site resolution. We also explored the mutability of
methylation dynamics in all stages at single-site resolution and found

the sperm stage may be of great importance. Our results also showed a
high correlation between the regional methylation level and the
mutation rate of C . T at CpG sites in intronic regions during
the early developmental stage. We observed indirect evidence that
correlation of methylation andmutation wasmore significant in germ
tissues than in somatic tissues. Our study provides evidence that DNA
methylation in germline relevant cells has a more significant impact
on CpG mutation rate than is commonly assumed.

MATERIALS AND METHODS

Selection of SNPs
All SNPs were from the 1000 Genomes Project phase 3 (http://
hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/phase3/). We de-
fined autosomal SNPs with allele frequencies of less than 0.1% as rare
variants, which were recognized as germline mutations. To assess the
quality of variants, we only included variants with a variant quality
score of 100. After removing the structural variants, indels, multi-
allelic SNPs and non-autosomal SNPs, we were left with 51,739,442
SNPs. We classified mutations into 9 types: CpG C . T (a C . T or
G.Amutation at a CpG site), CpGC.A (C.A or G. T at CpG),
CpG C. G (C.G or G. C at a CpG site), non-CpG C. T (a C.
T or G . A mutation at a non-CpG site (CHH or CHG)), non-CpG
C.A (C.A or G. T at a non-CpG site), non-CpG C.G (C.G
or G. C at a non-CpG site), non-CpG T. C (T. C or A. G at a
non-CpG site), non-CpG T.G (T. G or A. C at a non-CpG site)
and non-CpG T . A (T . A or A . T at a non-CpG site). The
distribution of each SNP type in the human genome is shown in
Figure S1. The proportion of each SNP type is calculated as the ratio
of the number of the specific type of SNP out of the total number of
SNPs. The distribution of all types of mutations in different genomic
regions is shown in Figure S1B.

Estimation of mutation rate
We estimated the mutation rate using SNP density for different
mutation types at both site-level and regional-level analyses.

Site-level analysis
For mutation rates at single CpG sites, we used SNP density to
represent the possibility of SNP occurrence. For each cell stage, the
SNP density was estimated as the ratio of the total number of CpG
C. T, CpG C. G and CpG C. A SNPs out of the total number of
covered sites within a specific range of methylation levels.

Pattern-level analysis
We also applied SNP density to estimate mutability of certain
dynamic methylation pattern at a single site. For each pattern, the
SNP density was computed as the ratio of total number of CpG SNPs
out of the total number of that methylation pattern. Only patterns
with CpG SNP number $10 are included in the ranking.

Regional-level analysis
We used 2 measurements to test the effect of the methylation level on
mutation at CpG or non-CpG sites: CpG C. T density and non-CpG
C . T density. The calculation of these 2 measurements and their
representation were performed as follows:

1. CpG C . T density was quantified by the ratio of the number of
CpG C. T SNPs in a window to the total number of C and G on
CpG sites in the window, which revealed the C. T mutation rate
on CpG sites.
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2. Non-CpG C. T density was calculated by the ratio of the number
of C. T and G. A mutations on non-CpG sites in a window to
the number of C and G on non-CpG sites in the window, which
revealed the mutation rate for the C . T SNP on non-CpG sites.

For different genomic regions, we chose 1 kb as the window size.
For chromosomal calculations, we chose a 1 MB window size.
For promoter regional CpG mutation rate, CpG density was

quantified by the ratio of the number of CpG SNPs in a promoter
region to the total number of C and G on CpG sites in the promoter
region.

All analyses were performed by applying customized python, R
statistical packages and bedtools (https://bedtools.readthedocs.io/en/
latest/).

Analysis of DNA methylation data during
germline development
The processed whole-genome bisulfite sequencing (WGBS) DNA
methylation data from sperms, oocytes, 8-cell stage embryos, morulae
and ICM cells were kindly provided by Li et al. (2018) (Li et al. 2018).
The processedWGBSDNAmethylation data of primordial germ cells
from 7-week-old males, 10-week-old males and females, 11-week-old
males and females, 13-week-old males, 17-week-old females and
19-week-old males, were downloaded from Guo et al. (2015) (Guo
et al. 2015).

Site-level analysis
The methylation level for single sites was calculated as the ratio of
methylated reads (i.e., reads with a C at this site) out of the total
number of covered reads (i.e., reads with a C or T at this site) at the
same reference position. Each site covering at least 5 reads was taken
into calculation. In addition, we used a binomial test to identify the
methylated sites. According to the single-site methylation level,
methylated CpG sites were further categorized into five groups:
methylation levels of 80–100%, 60–80%, 40–60%, 20–40% and
0–20%.

To avoid bias caused by the different coverage of different cell
stage samples, we selected all common sites covering at least 5 reads
from all cell stages. In total, we identified 561,800 sites covered in all
cell samples. Apart from methylated CpG sites and unmethylated
CpG sites, the single-site methylation level was also categorized
into five groups: methylation levels of 80–100%, 60–80%, 40–60%,
20–40% and 0–20%.

Pattern-level analysis
We would like to explore the relationship of methylation dynamics
with mutation rate at one single site. To illustrate the dynamic
methylation patterns for single sites in 13 stages, we classified
methylation level into three groups: highly methylated (methyl-
ation level $70%), Methylated (70% . methylation level $20%)
and unmethylated (methylation level , 20%). In total, we found
27,735 unique patterns for single sites.

Regional-level analysis
For different genomic region analyses, we binned all the genomic regions
into 1-kb tiles. Only tiles containing at least 5 CpGs were considered for
further calculation. The DNA methylation level of each tile was quan-
tified by the weighted methylation level as the fraction of methylated C
reads divided by the total number of C and T reads in this tile.

For chromosomal calculation, we chose a 1-MB window size. The
average DNA methylation level for chromosomes was also estimated

as C: (C+T) ratios. All analyses were performed by applying cus-
tomized python, R statistical packages and bedtools. Note that all the
DNA methylation levels mentioned in this study are specifically
referred to as the DNA methylation levels at CpG sites.

Multiple linear regression
We performed multiple linear regression to estimate the impact of
methylation dynamics in each stage on CpG mutation. We normal-
ized the mutation for each single site as 0 for unmutated and 1 for
mutated. The methylation level of each site in all stages is derived
from single-site methylation level. The linear model was based on the
common sites covered in all samples (details see Table S3). We then
constructed the linear model in a stepwise fashion using R statistical
packages to explore the most important stages.

Analysis of human gene expression data
We used the processed expression data from 409 microarray exper-
iments in our previous study (Su et al. 2011b), which were obtained
from Graham McVicker et al. (McVicker and Green 2010). Graham
McVicker collected 409 samples of expression data from several
studies (Sato et al. 2003; Su et al. 2004; Barberi et al. 2005; Ge
et al. 2005; Skottman et al. 2005; Looijenga et al. 2006; Korkola et al.
2006; Kocabas et al. 2006; Houmard et al. 2009; Wu et al. 2009),
representing a wide range of germ and somatic tissues. The methods
to process the raw data were described in Graham McVicker et al.
(McVicker and Green 2010). We also included expression data of
15 primordial germ cell stages and 10 somatic cell stages during early
development, which were published by Guo et al. (2015) (Guo et al.
2015). The expression data of 6 cell stages during spermatogenesis
were obtained from Jingtao Guo et al. (Jan et al. 2017). The single cell
expression data from 2 spermatogonial stem cells were obtained from
GSE92276 (Guo et al. 2017). The source and classification of all the
expression data are described in detail in Table S5. In total, we
assigned an expression intensity to 7707 genes in 442 tissues for SNP
density analysis and 7794 genes for CpGO/E ratio analysis. Among the
442 tissues, 79 contained germ cells and were considered germline
tissues.

Calculation of the observed over expected CpG
ratio (CpGO/E)
The observed over expected CpG ratio was calculated as the ratio of
the frequency of CpG over the frequency of C and G (Elango et al.
2009). We used CpGO/E to infer the germline mutation rate at CpG
sites in the promoter region (in a range of -1000 to +200 bp from the
transcription start site). CpGO/E is a robust measure of the germline
mutation rate on CpGs on an evolutionary time scale. The accumu-
lation of inheritable mutations on CpGs over evolutionary time is
somewhat reflective of CpGO/E. Consequently, genomic regions with
a high cytosine germline mutation rate have lower-than-expected
CpGO/E. In contrast, regions with low mutation rates maintain a
high CpGO/E. CpGO/E is an indirect measure of the historical CpG
mutation rate.

Genome sequence annotation
All the datasets were based on the hg19 (GRch37) reference. Genomic
annotations, including the start and end positions of genes, exons,
enhancers, CpG islands (CGIs), introns and repeat regions, were
derived from UCSC Genome Browser tracks (http://genome.ucsc.edu).
The promoter was defined as an interval of -1000 to +200 bp around the
transcription start site (TSS), as previously described (Su et al. 2011b).
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An intergenic region was defined as a region not defined by other
regions. An intragenic region here was referred to as the gene region.
All kinds of repeated regions were excluded from other regions. We
also eliminated the common region of the promoter-enhancer and
CGI-enhancer from the enhancer region.

Data availability
Table S1 shows the correlation between the mutation rate of
methylated and unmethylated CpG sites in all stages for all sites
and Table S2 for common sites. Table S3 shows the methylation
level and SNP state for common sites in all stages. Table S4
displays the mutability of dynamic methylation patterns for single
sites. Table S5 shows the type and source of expression data for
442 samples.

Figure S1 shows the distribution of SNPs for each type of mutation
in the human genome. Figure S2 illustrates the mutation rates for
all CpG sites during developmental stages. Figure S3 displays the
Spearman correlations between gene expression and the CpGO/E

ratio in the promoter regions for 7 tissue types. Figure S4 shows the
distribution of methylation level and CpG C . T density of 1-kb
windows in different genomic regions. Figure S5 illustrates the Spear-
man correlation between methylation and C . T mutation rates on
CpG and Non-CpG sites in different chromosomes during germline
development.

Other sources of public data we applied were described in the
corresponding section of Materials and Methods in detail. Supple-
mental material available at figshare: https://doi.org/10.25387/
g3.12652865.

RESULTS

Single-site methylation levels are positively associated
with mutation rates at CpG sites during different
developmental stages
To investigate methylation-mutation correlation at the single site
level, we measured the mutation rate using the SNP density on CpG
sites within different methylation levels during different develop-
mental stages. We would like to compare mutation rates at
methylated or unmethylated sites, as well as sites with different
methylation levels. To explore large-scale germline variants in humans,
we chose 51,739,442 singleton autosomal SNPs (allele frequency ,
0.1%) filtered from the 1000 Genomes Project as a proxy (Figure S1).
For each cell stage, we estimated the mutation rate at CpG sites by
computing the number of CpG C . T, CpG C . G and CpG C . A
SNPs over the number of covered sites within the same methylation
level group. For each cell stage, all the covered CpG sites were classified
into three groups, total CpGs, methylated CpGs and unmethylated
CpGs. As for methylated CpG sites, we further equally divided them
into 5 groups according to their methylation levels.

As expected, we found that methylated CpGs were more likely to
mutate compared with the unmethylated (Figure S2). Taking the
sperm stage as an example, unmethylated CpGs had a much lower
mutation rate (4.92%) than methylated CpGs (17.73%) (chi-squared
test, P, 2.2E-16). Among the five DNA methylation level categories
in sperm, we found a trend that when the CpG methylation level
increased, the mutation rate increased as well (Pearson’s r = 0.985). A
high correlation between methylation level and mutation rate was
also observed in the other 12 stages of cells (Figure S2, Table S1).

To avoid sequencing coverage bias of different cell samples, we
chose common CpG sites in all cell stages covered at least 5 reads,
including 56,100 CpG sites in total (Table S3). We could observe

subtle differences in the relationship of methylation with mutation
rate within stages based on common sites. We found CpG methyl-
ation levels positively correlates with mutation rates in all cell stages
(Figure 1). At the sperm stage, Methylated CpGs had a significantly
high mutation rate (18.50%) than the unmethylated (5.44%) (chi-
squared test, P , 2.2E-16). We also observed a positive correlation
between CpG mutation rate and the 5 methylation levels in sperm
stage (Pearson’s r = 0.989, P = 0.001), as well as in other 12 stages
(Figure 1, Table S2). Among 13 cell stages, we found subtle difference
in correlation between methylation and mutation. For example, the
correlation rho of sperm and PGC stages are a little higher than that
of early embryo stages (Table S2). This phenomenon suggests that
methylation in all the stage may be the source of some CpGmutation,
but their contributions may differ.

On the other hand, we observed that unmethylated CpGs had a
slightly higher mutation rate than the least methylated CpGs (0–20%)
in oocyte, 8-cell embryo, morula, PGC10wf (primordial germ cells
from 10-week-old females), PGC11wm (primordial germ cells from
11-week-old males), PGC13wm and PGC19wm stages. We assume
this was because we filtered methylated CpGs with a strict binomial
test, as mentioned in the Materials and Methods section. Many CpG
sites with extremely low methylation levels and low quality were
characterized as unmethylated sites, which in turn increased the
mutation rate of unmethylated CpG sites.

Interestingly, our results are obviously different from the results of
another study by Junfeng Xia et al. (2012) (Xia et al. 2012). They
found a high mutation rate on 40–60% and 20–40% CpGmethylation
levels instead of highly methylated CpG sites using the methylome
of 1H embryonic stem cells and human-chimpanzee divergence to
identify germline mutations. We think that the different results
partly stem from the differences in germline mutation sources.
Another reason lies in that the methylome of 1H embryonic stem
cell represents methylation level for somatic cells instead of germ-
line cells at the same stage.

Mutability of methylation dynamics during
germline development
Since we found subtle differences among stages (Figure 1), we would
like to investigate in which stage methylation contributes more to
mutations. Methylation level at a certain site may change dramatically
during early fetal development (Guo et al. 2014, 2015). To illustrate
the methylation dynamics across stages, we classified methylation
level into three groups, highly methylated (methylation level$70%),
unmethylated (methylation level , 20%) and methylated (methyl-
ation level in between) (Kusmartsev et al. 2020). We then calculated
the mutation rates for different combinations of methylation level
groups on a certain site in all the stages. The combinations of highly
methylated/methylated/unmethylated groups in all stages are named
dynamic methylation patterns in this manuscript. The mutability of a
certain dynamic methylation pattern is estimated by the CpG SNP
density (SNP number $ 10).

We showed the dynamic methylation patterns with top 20 muta-
tion rates (Figure 2). Among the top 20 mutated patterns, we
observed that the sperm stage was all highly methylated. We assume
it not only results from that sperm stage stays over 80% methylation
level in the whole genome scale, but also reveals a higher correlation
of methylation in sperm stage with mutation. Other mutation rates of
dynamic methylation patterns see Table S4.

The dynamic methylation patterns illustrated the methylation
state of one certain site in all the stages, but the number of patterns is
so big that we could hardly estimate the impact of methylation in each
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stage on CpG mutation rate. We next performed multiple linear
regression using raw methylation level in common sites during all
stages (Table S3). The SNP on the corresponding site was stated as “1”
and non-SNP as “0”. As shown in left part of Table 1, the methylation
of each stage influences CpG mutation differently. The methylation
level of sperm, oocyte, PGC7wm, PGC11wm, PGC11wf, PGc17wf
and PGC19wm stages positively correlation with CpG mutations
while that of ICM stage negatively related. The remaining stages’
methylome had little correlation with mutation. We further used
stepwise regression to disentangle which stage might be the most
important in determining the CpG mutation rate. Most coefficients
in the stepwise model were similar as the normal regression model

(Table 1). As expected, we found the sperm stage had the highest
coefficient in the regression model. This result corresponded with
what we observed in dynamic methylation patterns. The methylation
in sperm stage may be of greater importance to the germline CpG
mutation than other stages.

Correlation of dynamic regional methylation and C > T
mutation rates during germline development
We then would like to explore the differential effect of regional
methylation level on mutation rate for different types of mutations
among different genomic regions. We divided the genome into
7 regions: promoter, CGI, enhancer, intergenic region, intragenic

Figure 1 The mutation rates for all CpG sites, unmethylated CpG sites and methylated CpG sites during developmental stages. The single-site
methylatedCpG levels are further classified into five different DNAmethylation level categories (80–100%, 60–80%, 40–60%, 20–40%, and 0–20%).
The Y-axis shows the mutation rate computed by the SNP density at CpG sites.
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region, exon, intron. The regions were organized into several 1-kb
windows and then analyzed for Spearman correlation and mutation
rate for different regions in different developmental stages. Here, we
compared the relationship of dynamic methylation with C . T
mutation rate on CpG sites and non-CpG sites. The detailed calcu-
lation used to determine the methylation level and mutation rate are
described in the Materials and Methods section.

Correlation of methylation and CpG C . T mutation rate was
more significant compared with that of methylation and non-CpG
C. T mutation rate in all the genomic regions and stages (Figure 3).
This result was expected, since methylated regions are more likely to
have CpG C . T occurrence.

Among the different stages of cells, sperm tended to have a higher
correlation of methylation and CpG C . T mutation rate in most
regions. One possible explanation is that methylation levels is higher
in sperm stage (greater than 80%). In addition, oocytes, the 8-cell
stage embryos, morulae, ICM cells, PGC7wm cells and PGC10wm
cells had more significant correlations between methylation and the
CpG C . T mutation rate in most regions than the other stages.

We found that all the regions showed some amount of correlation
between methylation and the CpG C. T mutation rate. The intronic
region has the highest Spearman correlation of 0.63 in the sperm stage
in the CpG C . T section, as well as high correlation values in other
germline developmental stages. This is likely due to there being
less selective pressure in the intronic region than there is in the
exonic region. We expected another region with little selection, the
intergenic region, to exhibit high correlation. However, we observed a

relatively low correlation in this region compared with other regions.
We further examined the methylation-mutation distribution of those
1-kb windows in different regions (Figure S4). A dot plot for 1-kb
windows of the intergenic region showed that a high methylation
level (. 0.5) had no correlation with the CpG C. Tmutation rate in
most cell stages (Figure S4D).

We further examined the correlation between the methylation
level and the mutation rates among chromosomes. We chose a 1-Mb

Figure 2 The most mutable methylation dy-
namic patterns during germline development.
The top histogram shows the top 20 mutation
rate of all methylation patterns at a single site,
computed by SNP density. The bottom plot
shows the methylation dynamics of one com-
mon site in 13 stages. The black dot represents
that the site is highly methylated (methylation
level $ 70%), the white dot represents unme-
thylated (methylation level, 20%) and the gray
dot represents methylation level in between.

n■ Table 1 Summary of multiple linear regression models

Stages Estimate S.E. P value
Stepwise
regression

sperm 0.1386 0.001562 , 2.2e-16 a 0.1387 a

oocyte 0.0076 0.001741 1.24e-05 a 0.0078 a

8cell 0.0039 0.002454 0.1146
morula 20.0035 0.00283 0.2141
ICM 20.0086 0.002997 0.0040 b 20.0085 b

PGC7wm 0.0127 0.003719 0.0006 a 0.0138 a

PGC10wm 0.0045 0.004829 0.3491
PGC10wf 0.0030 0.005214 0.5597
PGC11wm 0.0169 0.006556 0.0099 b 0.0192 b

PGC11wf 0.0221 0.005125 1.60e-05 a 0.0237 a

PGC13wm 0.0012 0.005549 0.8330
PGC17wf 0.0136 0.004822 0.0046 b 0.0151 b

PGC19wm 0.0216 0.005493 8.39e-05 a 0.0231 a

b
P , 0.01.

a
P , 0.001.

3342 | Y. Zhou et al.



window and the same 2 mutation rate measurements that were
used to analyze genomic regions. Compared with non-CpG C .
Tmutations, the CpG C. Tmutation rate and methylation level had
the highest correlation, as expected (Figure S5). The correlation
between methylation and the C . T mutation rate was significant
in all stages, except for oocytes. Sperm and all primordial germ cells
exhibited a higher correlation of methylation and the CpG C . T
mutation rate than the other stages. Among all the chromosomes, we
observed a significant correlation between the methylation level and
both 2 mutation rates on chromosome 9. In addition, chromosomes
11, 14, and 17 also showed a high correlation in the CpG C . T
mutation rate. Chromosomes 6 and 20 exhibited a significant cor-
relation between the CpG C . T mutation rate and the primordial
germ cell stages. Meanwhile, chromosomes 16 and 21 showed weak
correlations with the CpG C. T mutation rate. We also found that
the highest correlation was on chromosome 22 between the CpG
C . T mutation rate and methylation during the sperm stage.

Indirect evidence indicates correlation between the
methylation level and the CpG mutation rate in
promoter regions among germline tissues
We tried to reveal methylation-mutation relationship in a life cycle
for human, from one generation to the next. However, some human
germ cells and tissue samples are not available because of restrictions
in technology and ethics. For lack of methylome in several cell stages,
especially gamete genesis stages, we tried to find a proxy for DNA
methylation. Methylation of the gene promoter region has long been
studied and recognized as a suppressor of gene expression (Su et al.
2011a; Guo et al. 2015). The promoter region is always one of the
focus regions in methylation studies. Using expression data, we could
explore to what extent methylation correlated with mutation in more
embryonic tissues. Here, we used gene expression data from 442 em-
bryonic tissues to negatively represent the corresponding methylation

level of the promoter region. The 442 embryonic tissues were classified
into 7 groups, including germline tissues and somatic tissues. The
CpG mutation rate in promoter region is calculated as the re-
gional SNP density (see Materials and Methods). We calculated the
Spearman correlaton between CpG mutation rate and gene expres-
sion for all tissues.

As can be seen in Figure 4, 18 out of the lowest 20 significant
correlation of expression and mutation are of germline (bottom
histogram). This indicated a more significant correlation of methyl-
ation and CpG mutation rate since methylation negatively correlates
with expression. At a broader scale in the top figure, we observed the
expression of germ tissues, including primordial germ, male germ and
female germ, negatively correlated with mutation rate while expres-
sion of other somatic tissues barely correlated with mutation rate.

We also used CpGO/E in the promoter region as a measure of
mutation rates, which reflected the accumulation of heritable CpG
mutations over evolutionary time and negatively correlated with the
germline mutation rate at CpG sites. The Spearman correlation
between CpGO/E and the gene expression level was computed for
all tissues. As shown in Figure S3, gene expression correlated more
significantly with CpGO/E in most germline tissues than it did in other
tissues. Remarkably, we found that the correlation was strongest in
primordial germ tissues and was followed by the male germline and
female germline. We barely observed correlation among most so-
matic tissues in Figure S3. The significant correlation between
expression and CpGO/E is indirect evidence of the strong positive
correlation between the methylation level and the germline CpG
mutation rate in the promoter region of primordial germ tissues.

These two results indicated that CpG mutation in promoter region
correlated more with methylation in germline tissues than somatic
tissues. One possible explanation is that the mutations in germ relevant
tissues are more likely to accumulate in generations. The methylome of
gamete genesis may have an impact on germline mutations, but now

Figure 3 Heatmap of Spearman correlation
between methylation and C . T mutation
rates on CpG and Non-CpG sites in different
genomic regions during germline develop-
ment. The window size was 1 kb.
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methylome data for these stages is not available. Obtaining methyl-
ome data of these stages in the future may expand our vision in the
methylation impact on germline mutation.

DISCUSSION
In this paper, we investigated the relationship between dynamic
methylation levels and germline CpG mutation rates across 13 de-
velopmental stages. At the single-site level, we discovered a significant
correlation between the DNA methylation level and the rate of point
mutations at CpG sites. The regional methylation level was signif-
icantly correlated with the CpG C . T mutation rate among most
genomic regions and chromosomes.

The impact of methylation on germline mutation has long been a
focus topic for scientists. Interestingly, our result is different from
2 previous researches (Xia et al. 2012; Kusmartsev et al. 2020) which
reported few correlation between methylation and mutation. These
two researches applied methylome of the 1H embryonic stem cell
which is somatic instead of germline-relevant. Xia et al. used human-
chimpanzee divergence as a proxy for germline mutations. We
suppose the differences in results stem from the different data choices.

We expected to identify a high level of correlation between the
methylation level and C . T CpG mutation rate in the intergenic
region, which is under neutral evolution. Regional analysis of 1 kb

windows in intergenic regions showed a low correlation between
methylation and the CpG C . T mutation rate in most cell stages
(Figure 4D). We think that there are many repeat elements in the
intergenic region, leading to difficulty in alignment. The SNP calling
process was then affected by low-quality alignment, which in turn
resulted in an inaccurate mutation rate in the intergenic region.

Although we have illustrated dynamic correlations for 13 stages,
one limitation of our research is lacking DNA methylome in other
germline development stages. Because of restrictions in technology
and ethics for human samples, we could hardly obtain whole-genome
methylome during spermatogenesis or oogenesis stages. With the
rapid development in single-cell sequencing technology, we believe
methylome in those missing stages would be available soon. Meth-
ylome in more germline development stages could help us reveal a
broader impact of methylation on germline development and germ-
line mutations.

Another limitation is that we only focused on changes in auto-
somes and differences caused by sex effect has not been taken into
consideration. The processes of male and female germline develop-
ment vary a lot, so the researches for two sexes should be separately
designed. The male germline development involves spermatogenesis
where paternal age should be considered. Our manuscript applied
rare polymorphisms from large scale population analysis, so fathers’

Figure 4 Spearman correlations between
gene expression and the CpGO/E ratio in
the promoter regions with high tissue differ-
entiation. Each of the 442 tissue samples is
represented by a single dot. The color indi-
cates a specific tissue type. ESC: embryonic
stem cells. GCT: germ cell tumors. Dots are
ordered from left to right by the correlation
(rho value).
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age is hardly estimated. On the other hand, female germline devel-
opment involves the X-chromosome inactivation. The X chromo-
some inactivation is scarcely studied under current bisulfite
sequencing technology.

To understand the mechanism of methylation-associated muta-
bility, further investigations of the functions of DNA repair systems
need to be considered. However, regardless of the precise mechanism,
our study provides strong evidence that site-level methylation plays
an important role in CpG mutations in the germline across human
developmental stages. Our study might help unravel the contribution
of DNAmethylation in shaping the emergence of germline variants at
different genomic scales and different developmental stages, which
will also provide information regarding the inheritance of epigenetic
features and inherited diseases.
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