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We put into exercise a comparatively innovative analytical modus operandi, the homotopy decomposition method (HDM), for
solving a system of nonlinear partial differential equations arising in an attractor one-dimensional Keller-Segel dynamics system.
Numerical solutions are given and some properties show evidence of biologically practical reliance on the parameter values. The
reliability of HDM and the reduction in computations give HDM a wider applicability.

1. Introduction

In 1970, Keller and Segel have offered parabolic systems to
illustrate the aggregation process of cellular slimemold by the
chemical attraction [1].The system of a simplified form in the
one-dimensional case is written as

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑎

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
−

𝜕

𝜕𝑥
(𝑢 (𝑥, 𝑡)

𝜕𝜒 (𝜌)

𝜕𝑥
) ,

𝜕𝜌 (𝑥, 𝑡)

𝜕𝑡
= 𝑏

𝜕
2
𝜌 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑐𝑢 (𝑥, 𝑡) − 𝑑𝜌 (𝑥, 𝑡) ,

(1)

subject to the boundaries conditions

𝜕𝑢 (𝛼, 𝑡)

𝜕𝑥
=

𝜕𝑢 (𝛽, 𝑡)

𝜕𝑥
=

𝜕𝜌 (𝛼, 𝑡)

𝜕𝑥
=

𝜕𝜌 (𝛽, 𝑡)

𝜕𝑥
= 0 (2)

and initial conditions

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) , 𝜌 (𝑥, 0) = 𝜌
0

(𝑥) , 𝑥 ∈ 𝐼, (3)

where 𝐼 = (𝛼, 𝛽) is a bounded open interval and 𝑎, 𝑏, 𝑐, and
𝑑 are positive constants. The unknown functions 𝑢(𝑥, 𝑡) and
𝜌(𝑥, 𝑡) denote the concentration of amoebae and the concen-
tration of chemical substance, respectively, in 𝐼 × (0, ∞). The
chemotactic term (𝜕/𝜕𝑥)(𝑢(𝑥, 𝑡)(𝜕𝜒(𝜌)/𝜕𝑥)) indicates that

the cells are sensitive to the chemicals and are attracted by
them.𝜒(𝜌) called the sensitivity function is a smooth function
of 𝜌 ∈ (0, ∞) which describes cell’s perception and response
to the chemical stimulus 𝜌. Several normalized forms have
been suggested 𝜌, 𝜌

2, log(𝜌), 𝜌/(𝜌 + 1) and 𝜌
2
/(𝜌
2

+ 1),
and so forth (see [2, 3]). Recently, the Keller-Segel (KS)
equations attracted interests of many mathematicians. Since
the modelling of chemotaxis has developed into a large and
diverse discipline, one model which is widely used is the
Keller-Segel model of chemotaxis; it is important to recall
that chemotaxis describes the movement of single or multi-
cellular organisms when they move up or down a chemical
gradient [4]. This movement allows the organism to explore
its extracellular environment. Organisms move randomly,
away from repellents and towards attractants. Questions
have arisen on how organisms can detect small changes in
their extracellular environment [5]. Usually the organismwill
undergo a random walk, consisting of smooth swimming
and brief direction changes (tumbles). By increasing the
attractant, the tumbling is suppressed, which leads to a biased
randomwalk [4].The organismwill then accumulate in areas
of high attractant concentration. This type of movement is
referred to as runs [5]. A combination of tumbles and runs
allows the organism to explore and respond to changes in its
extracellular environment [4].
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The local solutions were studied by the second author
[6]. It was also suggested in [6] that, in the one-dimensional
case, (KS) possesses a global solution and that, in the two-
dimensional case, when 𝜒(𝜌) = 𝑘𝜌 (𝑘 being a positive
constant) is a linear function, (KS) possesses a global solution
for any sufficiently small initial function 𝑢

0
. Horstmann and

Wang [7] showed more strongly that the global solution
exists if the norm ‖𝑢

0
‖
𝐿
1 is smaller than a specific number,

which is given from the coefficients of the equations. Recently,
in the same case, the asymptotic behaviour of the global
solutions was studied in [8]. On the other hand, Herrero
and Velázquez [9] showed that when 𝜒(𝜌) is linear and the
domain is a circular disc, there exist radial local solutions
which blow up in a finite time. The blowup of nonradial
local solutions was shown recently by [10, 11]. For the study
of stationary solutions, we refer to [12–14]. In the field of
dynamical systems theory some work has been carried out
although the suggested models and algorithms are still in an
introductory platform of establishing. It is perhaps important
to notice that several analytical methods have been proposed
to deal with nonlinear equations, but there exist a lot of
nonlinear ordinary differential equations and nonlinear par-
tial differential equations for which exact analytical solution
cannot be found. There is no exact solution of (4) in the
literature. To solve these problems, some eminent scholars
have proposed some powerful iteration methods to deal with
this class of nonlinear equation.

As V. M. Alexandrov wrote in the introduction of a
well-liked science book Asymtotology: Ideas, Methods, and
Applications [15, 16], asymptotic methods belong to the,
perhaps, most romantic area of modern mathematics [15–
19]. Though computer science is growing very fast and
numerical simulation is applied everywhere, nonnumerical
issues will still play a large role [16, 20–22]. There exist
some alternative analytical asymptotic approaches such as
the nonperturbative method, modified Lindstedt-Poincare
method [21], variational iteration method [22], Adomian
decompositionmethod [23], homotopy perturbationmethod
[17, 24], and bookkeeping artificial parameter perturbation
method [18].

The purpose of this paper is to derive analytical solutions
of attractor one-dimensional Keller-Segel equations (1) via
the relatively new analytical method the modified homotopy
perturbationmethod.TheHDMwas recently used in [19, 25–
27]. This method displays some advantages over existing
methods.

The paper is prearranged as follows: in Section 2, we
present the basic idea of the HDM for solving high orders
differential equations. We present the application of the
HDM for attractor one-dimensional Keller-Segel equations
and numerical results in Section 3. In Section 4 we present
the discussions. The conclusions are then given in Section 5.

2. Basic Properties of Homotopy
Decomposition Method

With the purpose of making the fundamental possessions
of the homotopy decomposition method [28] clear, we

think about a universal nonlinear nonhomogeneous partial
differential equation with initial conditions of the following
form:

𝜕
𝑚

𝑈 (𝑥, 𝑡)

𝜕𝑡𝑚
= 𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) ,

𝑚 = 1, 2, 3 . . . .

(4)

Subject to the initial condition

𝜕
𝑖
𝑈 (𝑥, 0)

𝜕𝑡𝑖
= 𝑦
𝑖
(𝑥) ,

𝜕
𝑚−1

𝑈 (𝑥, 0)

𝜕𝑡𝑚−1
= 0,

𝑖 = 0, 1, 2 . . . 𝑚 − 2,

(5)

𝑚 is the order of the derivative.
Where 𝑓 is a known function, 𝑁 is the general nonlinear

differential operator and 𝐿 represents a linear differential
operator, and 𝑚 is the order of the derivative. The method’s
first step is to apply the inverse operator of 𝜕

𝑚
/𝜕𝑡
𝑚 on both

sides of (4) to obtain

𝑈 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!

𝑑
𝑘
𝑢 (𝑥, 0)

𝑑𝑡𝑘

+ ∫

𝑡

0

∫

𝑡
1

0

⋅ ⋅ ⋅ ∫

𝑡
𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡.

(6)

The multi-integral in (4) can be transformed to

∫

𝑡

0

∫

𝑡
1

0

⋅ ⋅ ⋅ ∫

𝑡
𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡

=
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏,

(7)

so that (4) can be reformulated as

𝑈 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑦
𝑖
(𝑥) +

1

(𝑚 − 1)!

× ∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏.

(8)

Using the homotopy scheme the solution of the above integral
equation is given in series form as

𝑈 (𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛

(𝑥, 𝑡) ,

𝑈 (𝑥, 𝑡) = lim
𝑝→1

𝑈 (𝑥, 𝑡, 𝑝)

(9)

and the nonlinear term can be decomposed as

𝑁𝑈 (𝑟, 𝑡) =

∞

∑

𝑛=1

𝑝
𝑛
H
𝑛

(𝑈) , (10)
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where 𝑝 ∈ (0, 1] is an embedding parameter. H
𝑛
(𝑈) is the

He’s polynomials that can be generated by

H
𝑛

(𝑈
0
, . . . , 𝑈

𝑛
) =

1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁 (

𝑛

∑

𝑗=0

𝑝
𝑗
𝑈
𝑗

(𝑥, 𝑡))]

]

,

𝑛 = 0, 1, 2 . . . .

(11)

The modified homotopy perturbation method is obtained by
the coupling of decompositionmethodwithAbel integral and
is given by

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛

(𝑥, 𝑡)

= 𝑇 (𝑥, 𝑡) + 𝑝
1

(𝑚 − 1)!

× ∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

[𝑓 (𝑥, 𝜏) + 𝐿 (

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛

(𝑥, 𝜏))

+

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛

(𝑈) ] 𝑑𝜏

(12)

with

𝑇 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑦
𝑖
(𝑥) . (13)

Comparing the terms of same powers of 𝑝 produces solutions
of various orders. The initial guess of the approximation is
𝑇(𝑥, 𝑡) [26, 27]. This is actually the Taylor series of the exact
solution of order 𝑚. Note that this initial guess insures the
uniqueness of the series decompositions [26, 27].

3. Application

In this section we apply this method for solving coupled
attractor one-dimensional Keller-Segel equations.

Example 1. Consider the following Keller Segel equationwith
the sensitivity function 𝜒(𝜌) = 1.

Then the chemotactic term

𝜕

𝜕𝑥
(𝑢 (𝑥, 𝑡)

𝜕𝜒 (𝜌)

𝜕𝑥
) = 0,

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑎

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
,

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑏

𝜕
2
𝜌 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑐𝑢 (𝑥, 𝑡) − 𝑑𝜌 (𝑥, 𝑡) .

(14)

Subject to the initial conditions

𝑢 (𝑥, 0) = 𝑚𝑒
−𝑥
2

, 𝜌 (𝑥, 0) = 𝑛𝑒
−𝑥
2

, 𝑥 ∈ 𝐼. (15)

In the view of the HDM, we obtain the following equation:

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛

(𝑥, 𝑡) − 𝑢 (𝑥, 0) = 𝑝 ∫

𝑡

0

𝑎
𝜕
2

𝜕𝑥2
(

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛

(𝑥, 𝜏)) 𝑑𝜏,

∞

∑

𝑛=0

𝑝
𝑛
𝜌
𝑛

(𝑥, 𝑡) + 𝜌 (𝑥, 0)

= 𝑝 ∫

𝑡

0

𝑏
𝜕
2

𝜕𝑥2
(

∞

∑

𝑛=0

𝑝
𝑛
𝜌
𝑛

(𝑥, 𝜏))

+ 𝑐

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛

(𝑥, 𝜏) − 𝑑

∞

∑

𝑛=0

𝑝
𝑛
𝜌
𝑛

(𝑥, 𝜏) 𝑑𝜏.

(16)

Now comparing the terms of same power of 𝑝, we obtained
the following integral equations:

𝑝
0

: 𝑢
0

(𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝑚𝑒
−𝑥
2

, 𝑢
0

(𝑥, 0) = 𝑢 (𝑥, 0) ,

𝑝
0

: 𝜌
0

(𝑥, 𝑡) = 𝜌 (𝑥, 0) = 𝑛𝑒
−𝑥
2

, 𝜌
0

(𝑥, 0) = 𝜌 (𝑥, 0) ,

𝑝
1

: 𝑢
1

(𝑥, 𝑡) = 𝑎 ∫

𝑡

0

𝜕
2
𝑢
0

𝜕𝑥2
𝑑𝜏, 𝑢

1
(𝑥, 0) = 0,

𝑝
1

: 𝜌
1

(𝑥, 𝑡) = ∫

𝑡

0

𝑏
𝜕
2
𝜌
0

𝜕𝑥2
+ 𝑐𝑢
0

− 𝑑𝜌
0
𝑑𝜏, 𝜌

1
(𝑥, 0) = 0,

...

𝑝
𝑛

: 𝑢
𝑛

(𝑥, 𝑡) = 𝑎 ∫

𝑡

0

𝜕
2
𝑢
𝑛−1

𝜕𝑥2
𝑑𝜏, 𝑢

𝑛
(𝑥, 0) = 0,

𝑝
𝑛

: 𝜌
𝑛

(𝑥, 𝑡) = ∫

𝑡

0

𝑏
𝜕
2
𝜌
𝑛−1

𝜕𝑥2
+ 𝑐𝑢
𝑛−1

− 𝑑𝜌
𝑛−1

𝑑𝜏,

𝜌
𝑛

(𝑥, 0) = 0.

(17)

The following solutions are obtained straightforwardly:

𝑢 (𝑥, 0) = 𝑚𝑒
−𝑥
2

, 𝑛𝑒
−𝑥
2

,

𝑢
1

(𝑥, 𝑡) = 2𝑎𝑒
−𝑥
2

𝑚𝑡 (−1 + 2𝑥
2
) ,

𝜌
1

(𝑥, 𝑡) = 𝑒
−𝑥
2

𝑡 (𝑐𝑚 − 𝑛 (𝑑 + 𝑏 (2 − 4𝑥
2
))) ,

𝑢
2

(𝑥, 𝑡) = 2𝑎
2
𝑒
−𝑥
2

𝑚𝑡
2

(3 − 12𝑥
2

+ 4𝑥
4
) ,

𝜌
2

(𝑥, 𝑡)

=
1

2
𝑒
−𝑥
2

𝑡
2

(𝑑 (−𝑐𝑚 + 𝑛𝑑) + 2𝑎𝑐𝑚 (−1 + 2𝑥
2
)

+ 2𝑏 (𝑐𝑚 − 2𝑑𝑛) (−1 + 2𝑥
2
)

+ 4𝑏
2
𝑛 (3 − 12𝑥

2
+ 4𝑥
4
)) ,
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𝑢
3

(𝑥, 𝑡)

=
4

3
𝑎
3
𝑒
−𝑥
2

𝑚𝑡
3

(−15 + 90𝑥
2

− 60𝑥
4

+ 8𝑥
6
) 𝜌
3

(𝑥, 𝑡)

=
1

6
𝑒
−𝑥
2

𝑡
3

(𝑑
2

(𝑐𝑚 − 𝑑𝑛) + 2𝑏𝑑 (−2𝑐𝑚 + 3𝑑𝑛)

× (−1 + 2𝑥
2
) + 4𝑎

2
𝑐𝑚 (3 − 12𝑥

2
+ 4𝑥
2
)

+ 4𝑏
2

(𝑐𝑚 − 3𝑑𝑛) (3 − 12𝑥
2

+ 4𝑥
4
)

+ 8𝑏
3
𝑛 (−15 + 90𝑥

2
− 60𝑥

4
+ 8𝑥
6
)

+ 2𝑎𝑐𝑚 (𝑑 − 2𝑑𝑥
2

+ 𝑏 (6 − 24𝑥
2

+ 8𝑥
4
))) .

(18)

Using the iterative formula, the remaining terms can be
obtained. But here, only few terms of the series solutions are
considered and the asymptotic solution is given as

𝑢 (𝑥, 𝑡) = 𝑢
0

(𝑥, 𝑡) + 𝑢
1

(𝑥, 𝑡) + 𝑢
2

(𝑥, 𝑡) + 𝑢
3

(𝑥, 𝑡) + ⋅ ⋅ ⋅ ,

𝜌 (𝑥, 𝑡) = 𝜌
0

(𝑥, 𝑡) + 𝜌
1

(𝑥, 𝑡) + 𝜌
2

(𝑥, 𝑡) + 𝜌
3

(𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(19)

The following figures show the biological behaviour of the
coupled solutions for the following set of theoretical param-
eters: 𝑚 = 120, 𝑛 = 160, 𝑎 = 0.5, 𝑏 = 3, 𝑐 = 1, and 𝑑 = 2, first
for a fixed time 𝑡 = 5 and secondly for a fixed distance 𝑥 = 1.

Figures 1, 2, and 3 show the behaviour of the solution
of the system of (15) describing the concentrations of the
chemical substance and the amoebae in the human body.
While on one hand, Figure 1 shows the behaviour as function
of space, Figures 2 and 3 show the behaviour of these solutions
as function of time. From the above figures, one can see
that the concentration of amoebae reduces in space as the
concentration of the chemical substance reduces.This simply
implies that if the concentration of the chemical substance
introduced in the human system to combat the spread of
the disease is not sufficient enough, the amoebae will spread
all over and the patient will certainly die. However, if this
concentration is sufficient enough, the amoebae will decrease
in space. It is observed from the graphical representation
that the approximate solutions obtained here display the
behaviour of the real world problem.

Example 2. Consider the following Keller-Segel equation
with the sensitivity function 𝜒(𝜌) = 𝜌.

With the chemotactic term (𝜕/𝜕𝑥)(𝑢(𝑥, 𝑡)(𝜕𝜒(𝜌)/𝜕𝑥)) =
(𝜕𝑢(𝑥, 𝑡)/𝜕𝑥)(𝜕𝜌(𝑥, 𝑡)/𝜕𝑥) + 𝑢(𝑥, 𝑡)(𝜕

2
𝜌(𝑥)/𝜕𝑥

2
),

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑎

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
−

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

𝜕𝜌 (𝑥, 𝑡)

𝜕𝑥
+ 𝑢 (𝑥, 𝑡)

𝜕
2
𝜌 (𝑥)

𝜕𝑥
2

,

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑏

𝜕
2
𝜌 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑐𝑢 (𝑥, 𝑡) + 𝑐𝑢 (𝑥, 𝑡) − 𝑑𝜌 (𝑥, 𝑡) ,

(20)

subject to the initial conditions

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) , 𝜌 (𝑥, 0) = 𝜌
0

(𝑥) , 𝑥 ∈ 𝐼. (21)

In the view of the homotopy decomposition method, we
arrive at the following set of integral equations that are very
easy to handle:

𝑝
0

: 𝑢
0

(𝑥, 𝑡) = 𝑢
0

(𝑥) , 𝑢
0

(𝑥, 0) = 𝑢 (𝑥, 0) ,

𝑝
0

: 𝜌
0

(𝑥, 𝑡) = 𝜌
0

(𝑥) , 𝜌
0

(𝑥, 0) = 𝜌
0

(𝑥) ,

𝑝
1

: 𝑢
1

(𝑥, 𝑡) = ∫

𝑡

0

𝑎
𝜕
2
𝑢
0

𝜕𝑥2
−

𝜕𝑢
0

𝜕𝑥

𝜕𝜌
0

𝜕𝑥
+ 𝑢
0

𝜕
2
𝜌
0

𝜕𝑥
2

𝑑𝜏,

𝑝
1

: 𝜌
1

(𝑥, 𝑡) = ∫

𝑡

0

𝑏
𝜕
2
𝜌
0

𝜕𝑥2
+ 𝑐𝑢
0

− 𝑑𝜌
0
𝑑𝜏, 𝜌

1
(𝑥, 0) = 0,

...

𝑝
𝑛

: 𝑢
𝑛

(𝑥, 𝑡) = ∫

𝑡

0

(𝑎
𝜕
2
𝑢
𝑛−1

𝜕𝑥2
−

𝑛−1

∑

𝑗=0

𝜕𝑢
𝑗

𝜕𝑥

𝜕𝜌
𝑛−𝑗−1

𝜕𝑥

+

𝑛−1

∑

𝑗=0

𝑢
𝑗

𝜕
2
𝜌
𝑛−𝑗−1

𝜕𝑥
2

) 𝑑𝜏,

𝑢
𝑛

(𝑥, 0) = 0,

𝑝
𝑛

: 𝜌
𝑛

(𝑥, 𝑡) = ∫

𝑡

0

𝑏
𝜕
2
𝜌
𝑛−1

𝜕𝑥2
+ 𝑐𝑢
𝑛−1

− 𝑑𝜌
𝑛−1

𝑑𝜏,

𝜌
𝑛

(𝑥, 0) = 0.

(22)

Here we will consider two cases. Case one: we suppose that
𝑢(𝑥, 0) = 𝑚𝑒

−𝑥 and 𝜌(𝑥, 0) = 𝑛𝑒
−𝑥. The following series

solutions are obtained:

𝑢
0

(𝑥, 𝑡) = 𝑚𝑒
−𝑥

, 𝜌
0

(𝑥, 𝑡) = 𝑛𝑒
−𝑥

,

𝑢
1

(𝑥, 𝑡) = 𝑎𝑒
−𝑥

𝑚𝑡, 𝜌
1

(𝑥, 𝑡) = 𝑒
−𝑥

(𝑐𝑚 + (𝑏 − 𝑑) 𝑛) 𝑡,

𝑢
2

(𝑥, 𝑡) =
1

2
𝑎
2
𝑒
−𝑥

𝑚𝑡
2
,

𝜌
2

(𝑥, 𝑡) =
1

2
𝑒
−𝑥

(𝑎𝑐𝑚 + (𝑏 − 𝑑) (𝑐𝑚 + (𝑏 − 𝑑) 𝑛)) 𝑡
2
,

𝑢
3

(𝑥, 𝑡) =
1

3!
𝑒
−𝑥

𝑚(𝑎𝑡)
3
,

𝜌
3

(𝑥, 𝑡)

=
1

3!
𝑒
−𝑥

𝑡
3

(𝑎
2
𝑐𝑚 + 𝑎𝑐 (𝑏 − 𝑑) 𝑚

+ (𝑏 − 𝑑)
2

(𝑐𝑚 + (𝑏 − 𝑑) 𝑛)) ,
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Figure 1: Biological behaviour of concentrations of the chemical substance and amoebae as function of space.

𝑢
4

(𝑥, 𝑡) =
1

4!
𝑒
−𝑥

𝑚(𝑎𝑡)
4
,

𝜌
4

(𝑥, 𝑡) =
1

4!
𝑒
−𝑥

𝑡
4

(𝑎
3
𝑐𝑚 + 𝑎

2
𝑐 (𝑏 − 𝑑) 𝑚 + 𝑎𝑐(𝑏 − 𝑑)

2
𝑚

+ (𝑏 − 𝑑)
3

(𝑐𝑚 + (𝑏 − 𝑑) 𝑛))

...
(23)

The remaining terms can be obtained by using the iteration
formula. But here, only few terms of the series solutions are
considered and the asymptotic solution is given as

𝑢
𝑁

(𝑥, 𝑡) =

𝑁

∑

𝑛=0

𝑚𝑒
−𝑥 (𝑎𝑡)

𝑛

𝑛!
,

𝜌 (𝑥, 𝑡) = 𝜌
0

(𝑥, 𝑡) + 𝜌
1

(𝑥, 𝑡) + 𝜌
2

(𝑥, 𝑡) + 𝜌
3

(𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(24)

Therefore when 𝑁 tends to infinity the concentration of
amoebae converges to

𝑢 (𝑥, 𝑡) = 𝑚𝑒
(𝑎𝑡−𝑥)

. (25)

The following figures show the biological behaviour of the
coupled solution for the following set of theoretical param-
eters: 𝑚 = 120, 𝑛 = 160, 𝑎 = 0.5, 𝑏 = 0.001, 𝑐 = 1, and 𝑑 = 2,
first for a fixed time 𝑡 = 5 and secondly for a fixed distance
𝑥 = 5.

Second case, we suppose that

𝑢 (𝑥, 0) = 𝑚𝑒
−𝑥
2

, 𝜌 (𝑥, 0) = 𝑛𝑒
−𝑥
2

. (26)

Following the homotopy decomposition steps, we arrived at
the following series solutions:

𝑢 (𝑥, 0) = 𝑚𝑒
−𝑥
2

, 𝜌 (𝑥, 0) = 𝑛𝑒
−𝑥
2

,

𝑢
1

(𝑥, 𝑡) = 2𝑒
−2𝑥
2

𝑚𝑡 (−𝑛 + 𝑎𝑒
𝑥
2

(−1 + 2𝑥
2
)) ,

𝜌
1

(𝑥, 𝑡) = 𝑒
−𝑥
2

𝑡 (𝑐𝑚 − 𝑛 (𝑑 + 𝑏 (2 − 4𝑥
2
))) ,

𝑢
2

(𝑥, 𝑡) = 𝑒
−3𝑥
2

𝑚𝑡
2

× ( − 𝑐𝑒
𝑥
2

𝑚 − 6𝑎𝑒
𝑥
2

𝑛 (−1 + 2𝑥
2
)

+ 2𝑎
2
𝑒
2𝑥
2

(3 − 12𝑥
2

+ 4𝑥
4
)

+ 𝑛 (𝑑𝑒
𝑥
2

+ 2𝑛 + 4𝑛𝑥
2

− 6𝑏𝑒
𝑥
2

(−1 + 2𝑥
2
))) ,

𝜌
2

(𝑥, 𝑡) =
1

2
𝑒
−2𝑥
2

𝑡
2

× ( − 𝑐𝑑𝑒
𝑥
2

𝑚 + 𝑑
2
𝑒
𝑥
2

𝑛 − 2𝑐𝑚𝑛

+ 2𝑎𝑐𝑒
𝑥
2

𝑚 (−1 + 2𝑥
2
)

+ 2𝑏𝑒
𝑥
2

(𝑐𝑚 − 2𝑑𝑛) (−1 + 2𝑥
2
)

+4𝑏
2
𝑒
𝑥
2

𝑛 (3 − 12𝑥
2

+ 4𝑥
4
)) .

(27)
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Figure 2: Biological behaviour of concentrations as function of time.
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Figure 3: The behaviour of the coupled solutions.

Using the iteration formulas, the remaining terms can be
obtained. But here, only few terms of the series solutions are
considered and the asymptotic solution is given as

𝑢 (𝑥, 𝑡) = 𝑢
0

(𝑥, 𝑡) + 𝑢
1

(𝑥, 𝑡) + 𝑢
2

(𝑥, 𝑡) + 𝑢
3

(𝑥, 𝑡) + ⋅ ⋅ ⋅ ,

𝜌 (𝑥, 𝑡) = 𝜌
0

(𝑥, 𝑡) + 𝜌
1

(𝑥, 𝑡) + 𝜌
2

(𝑥, 𝑡) + 𝜌
3

(𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(28)

The following figures show the biological behaviour of the
coupled solutions for the following set of theoretical param-
eters: 𝑚 = 120, 𝑛 = 160, 𝑎 = 0.5, 𝑏 = 0.001, 𝑐 = 1, and 𝑑 = 2,
first for a fixed time 𝑡 = 5 and secondly for a fixed distance
𝑥 = 5.

The above figures show the behaviour of the solution
of the system of (20) with initial conditions in (21) and
(26). These solutions are describing the concentrations of

the chemical substance and the amoebae in the human body
for a given set of theoretical parameters chosen according
to the literatures. While on one hand, Figure 4 shows the
behaviour as function of space, Figures 5, 6, and 7 show
the behaviour of these solutions as function of time. From
the above figures, one can deduce that the concentration
of amoebae reduces in space as the concentration of the
chemical substance reduces. It is observed from the graph-
ical representation that the approximate solutions obtained
display the behaviour of the real world problem.

Example 3. Consider the following Keller-Segel equation
with the sensitivity function 𝜒(𝜌) = 𝜌

2.
With the chemotactic term (𝜕/𝜕𝑥)(𝑢(𝑥, 𝑡)(𝜕𝜒(𝜌)/𝜕𝑥)) =

(𝜕𝑢(𝑥, 𝑡)/𝜕𝑥)(𝜕𝜌
2
(𝑥, 𝑡)/𝜕𝑥) + 𝑢(𝑥, 𝑡)(𝜕

2
𝜌
2
(𝑥, 𝑡)/𝜕𝑥

2
),

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

= 𝑎
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
−

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

𝜕𝜌
2

(𝑥, 𝑡)

𝜕𝑥
+ 𝑢 (𝑥, 𝑡)

𝜕
2
𝜌
2

(𝑥)

𝜕𝑥
2

,

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑏

𝜕
2
𝜌 (𝑥, 𝑡)

𝜕𝑥2
+ 𝑐𝑢 (𝑥, 𝑡) + 𝑐𝑢 (𝑥, 𝑡) − 𝑑𝜌 (𝑥, 𝑡)

(29)

subject to the initial conditions

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) , 𝜌 (𝑥, 0) = 𝜌
0

(𝑥) , 𝑥 ∈ 𝐼. (30)
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Figure 4: Coupled solutions.

C
on

ce
nt

ra
tio

n

Time

175

150

125

100

75

50

25

2 4 6 8 10

Figure 5: Coupled solutions.

Following the homotopy decomposition steps, we arrive at
the following integral equations that are very easy to solve:

𝑝
0

: 𝑢
0

(𝑥, 𝑡) = 𝑢
0

(𝑥) , 𝑢
0

(𝑥, 0) = 𝑢 (𝑥, 0) ,

𝑝
0

: 𝜌
0

(𝑥, 𝑡) = 𝜌
0

(𝑥) , 𝜌
0

(𝑥, 0) = 𝜌
0

(𝑥) ,

𝑝
1

: 𝑢
1

(𝑥, 𝑡) = ∫

𝑡

0

(𝑎
𝜕
2
𝑢
0

𝜕𝑥2
−

2𝜕𝑢
0

𝜕𝑥

𝜕𝜌
0

𝜕𝑥
𝜌
0

+2𝑢
0
𝜌
0

𝜕
2
𝜌
0

𝜕𝑥2
+ 2𝑢
0
(

𝜕𝜌
0

𝜕𝑥
)

2

) 𝑑𝜏,

𝑝
1

: 𝜌
1

(𝑥, 𝑡) = ∫

𝑡

0

𝑏
𝜕
2
𝜌
0

𝜕𝑥2
+ 𝑐𝑢
0

− 𝑑𝜌
0
𝑑𝜏,

𝜌
1

(𝑥, 0) = 0,

𝑝
𝑛

: 𝑢
𝑛

(𝑥, 𝑡)

= ∫

𝑡

0

(𝑎
𝜕
2
𝑢
𝑛−1

𝜕𝑥2
− 2

𝑛−1

∑

𝑗=0

𝑗

∑

𝑘=0

𝜌
𝑘

𝜕𝑢
𝑗−𝑘

𝜕𝑥

𝜕𝜌
𝑛−𝑗−1

𝜕𝑥

+ 2

𝑛−1

∑

𝑗=0

𝑗

∑

𝑘=0

𝑢
𝑘
𝜌
𝑗−𝑘

𝜕
2
𝜌
𝑛−𝑗−1

𝜕𝑥
2

+2

𝑛−1

∑

𝑗=0

𝑗

∑

𝑘=0

𝑢
𝑘

𝜕𝜌
𝑗−𝑘

𝜕𝑥

𝜕𝜌
𝑛−𝑗−1

𝜕𝑥
) 𝑑𝜏,

𝑢
𝑛

(𝑥, 0) = 0,

𝑝
𝑛

: 𝜌
𝑛

(𝑥, 𝑡) = ∫

𝑡

0

𝑏
𝜕
2
𝜌
𝑛−1

𝜕𝑥2
+ 𝑐𝑢
𝑛−1

− 𝑑𝜌
𝑛−1

𝑑𝜏,

𝜌
𝑛

(𝑥, 0) = 0.

(31)

We will suppose that 𝑢
0
(𝑥, 0) = 𝑚 sin(𝑥) and 𝜌(𝑥, 0) =

𝑛 sin(𝑥). The following series solutions are obtained:

𝑢
0

(𝑥, 𝑡) = 𝑚 sin (𝑥) , 𝜌
0

(𝑥, 𝑡) = 𝑛 sin (𝑥) ,

𝑢
1

(𝑥, 𝑡) = −𝑚𝑡 (𝑎 + 2𝑛
2
(cos (𝑥))

2
) sin (𝑥) ,

𝜌
1

(𝑥, 𝑡) = 𝑡 sin (𝑥) (𝑐𝑚 − (𝑏 + 𝑑) 𝑛) ,

𝑢
2

(𝑥, 𝑡)

= −𝑚𝑡 sin (𝑥) (𝑎 + 𝑛𝑡 (2𝑐𝑚 − 𝑎𝑛 − 2𝑏𝑛

−2𝑑𝑛 + 𝑛
3

+ 𝑛
3 cos (2𝑥)) (sin (𝑥))

2
) ,

𝜌
2

(𝑥, 𝑡)

= −
1

2
𝑡
2

(𝑎𝑐𝑚 + 𝑏𝑐𝑚 + 𝑐𝑑𝑚 − 𝑏
2
𝑛 − 2𝑑𝑏𝑛

−𝑑
2
𝑛 + 𝑐𝑛𝑚

2
+ 𝑐𝑚𝑛

2 cos (2𝑥)) sin (𝑥) .

(32)

Using the iteration formulas, the remaining terms can be
obtained. But here, only few terms of the series solutions are
considered and the asymptotic solution is given as

𝑢 (𝑥, 𝑡) = 𝑢
0

(𝑥, 𝑡) + 𝑢
1

(𝑥, 𝑡) + 𝑢
2

(𝑥, 𝑡) + 𝑢
3

(𝑥, 𝑡) + ⋅ ⋅ ⋅

𝜌 (𝑥, 𝑡) = 𝜌
0

(𝑥, 𝑡) + 𝜌
1

(𝑥, 𝑡) + 𝜌
2

(𝑥, 𝑡) + 𝜌
3

(𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(33)

4. Discussion

The homotopy decomposition method is chosen to solve
this kind of nonlinear problem. Because of the following
advantages that, the HDM has over the exiting methods. The
method does not require the linearization or assumptions of
weak nonlinearity [29, 30]. The solutions are not generated
in the form of general solution as in Adomian decomposition
method [29, 31, 32]. No Lagrange multiplier and correction
functional are required as in the case of the variational
iterationmethod [22, 30, 31, 34]. It is more realistic compared
to the method of simplifying the physical problems. If the
exact solution of the partial differential equation exists, the
approximated solution via the method converges to the exact
solution [26]. A construction of a homotopy V(𝑟, 𝑝) : Ω×[0, 1]

is not needed as in the case of the homotopy perturbation
method, because in this case one needs first to continuously
deform a difficult problem into another one, which is easy to
solve [17, 18, 24, 33]. HDM provides us with a convenient way
to control the convergence of approximation series without
adapting ℎ, as in the case of [24] which is a fundamental
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Figure 6: Coupled solutions.
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Figure 7: Coupled solutions.

qualitative difference in analysis between HDM and other
methods [29–32, 34–38].

5. Conclusion

An interesting biological problem describing theaggregation
process of cellular slime mold by the chemical attraction
was investigated in this paper. We made use of the efficient
method called homotopy decomposition method to derive
the solution of the mathematical equation underpinning
this problem. Analysis and results of nonlinear system of
attractor one-dimensional Keller-Segel equation indicate that
the model matches the regular biological diffusion behaviour
observed in the field.
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