
Frontiers in Immunology | www.frontiersin.

Edited by:
Peizeng Yang,

First Affiliated Hospital of Chongqing
Medical University, China

Reviewed by:
Heping Xu,

Queen’s University Belfast,
United Kingdom

John Vincent Forrester,
University of Western Australia,

Australia

*Correspondence:
Roxane L. Degroote
r.degroote@lmu.de

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 24 September 2020
Accepted: 30 November 2020
Published: 08 January 2021

Citation:
Degroote RL and Deeg CA (2021)

Immunological Insights in
Equine Recurrent Uveitis.

Front. Immunol. 11:609855.
doi: 10.3389/fimmu.2020.609855

REVIEW
published: 08 January 2021

doi: 10.3389/fimmu.2020.609855
Immunological Insights in Equine
Recurrent Uveitis
Roxane L. Degroote* and Cornelia A. Deeg

Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany

Horses worldwide suffer from equine recurrent uveitis (ERU), an organ-specific, immune-
mediated disease with painful, remitting-relapsing inflammatory attacks alternating with
periods of quiescence, which ultimately leads to blindness. In course of disease, both eyes
can eventually be affected and since blind horses pose a threat to themselves and their
surroundings, these animals have to be killed. Therefore, this disease is highly relevant for
veterinary medicine. Additionally, ERU shows strong clinical and pathological
resemblance to autoimmune uveitis in man. The exact cause for the onset of ERU is
unclear to date. T cells are believed to be the main effector cells in this disease, as they
overcome the blood retinal barrier to invade the eye, an organ physiologically devoid of
peripheral immune cells. These cells cause severe intraocular inflammation, especially in
their primary target, the retina. With every inflammatory episode, retinal degeneration
increases until eyesight is completely lost. In ERU, T cells show an activated phenotype,
with enhanced deformability and migration ability, which is reflected in the composition of
their proteome and downstream interaction pathways even in quiescent stage of disease.
Besides the dysregulation of adaptive immune cells, emerging evidence suggests that
cells of the innate immune system may also directly contribute to ERU pathogenesis. As
investigations in both the target organ and the periphery have rapidly evolved in recent
years, giving new insights on pathogenesis-associated processes on cellular and
molecular level, this review summarizes latest developments in ERU research.
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INTRODUCTION

Insights in the pathogenesis of equine recurrent uveitis (ERU) have grown in recent years, especially
on cellular and molecular level in periphery and in the eye itself. ERU is an organ-specific, immune-
mediated disease, which is predominantly driven by CD4+ T cells (1–3). These are somehow
activated in periphery and then manage to overcome the blood retinal barrier (BRB), entering the
eye and causing intraocular inflammation (4). Since ERU has a remitting-relapsing character (2),
increasing numbers of immune cells invade and accumulate in the eye with every inflammatory
attack, gradually destroying their main target, the retina. These acute phases alternate with periods
of quiescence and increase in severity as the disease progresses (5). Factors associating to ERU onset
are still discussed and an exact cause is elusive to date. A genome-wide association study suggested a
correlation of genetic variants influencing the expression of IL-17A and IL-17F with the
development of ERU (6). This study also substantiated previous reports linking ERU to MHC
org January 2021 | Volume 11 | Article 6098551
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class I haplotype ELA-A9 in warmblood horses (7). Direct
evidence for a genetic component in ERU of warmblood
horses, however, is still lacking. Disease prevalence among the
horse population is high, ranging from 2%–25% in the US and
8%–10% in Europe (5, 8). ERU often affects both eyes and
eventually leads to blindness if left untreated (9). These two
factors, high prevalence and loss of sight, explain its importance
for veterinary medicine, since blind horses have to be killed due
to the threat they pose to their surroundings and themselves,
which has a great personal but also economic impact on horse
owners. Moreover, ERU has great potential to serve as a valuable
spontaneous model for autoimmune uveitis in man, due to
strong clinical and pathological similarities (3, 4, 10, 11).

In the past, several studies could show that the dysregulated
immune response in ERU is directed against retinal autoantigens
such as interphotoreceptor retinoid-binding protein (IRBP) and
cellular retinaldehyde-binding protein (CRALBP) (4, 12), which,
along with other factors, suggests presence of autoimmune
reactions in ERU. These autoantigens not only remain stably
expressed in advanced stages of ERU, when retinal architecture is
drastically destructed (13), IRBP can also induce experimental
uveitis in the horse itself, which shows close similarity to the
spontaneous disease on clinical, cellular and molecular level (4,
14). Moreover, studies on ERU horses firstly provided CRALBP
as novel autoantigen (12), which was subsequently proven to also
have high prevalence in human patients with autoimmune
uveitis (15). As shown in previous studies, the recognition of
these autoantigens and the subsequent spreading of epitope
recognition to a new determinant may be the cause for the
relapsing character of ERU (12, 16). This process known as
epitope spreading describes the reaction of immune cells against
the initial epitope of an ERU autoantigen, which then redirects
against a different, but structurally similar epitope, re-initializing
an inflammatory response after the initial inflammation has
subsided (17, 18).

In addition to the retinal-autoantigen specific T cells driving
ERU from periphery, further studies suggested that the retina
itself promotes the intraocular inflammatory processes through
active abundance downscaling of proteins which protect the
maintenance of the blood-retina-barrier (19) and through
secretion of the pro inflammatory cytokine interferon gamma
(IFNg) by retinal Mueller glial cells (20). Since then, research has
advanced on the target organ of ERU as well as the cellular and
molecular components in periphery. This review summarizes the
latest immunological insights in ERU pathogenesis.
PERIPHERY

Adaptive Immune System
Although the concept of immune privilege is increasingly
discussed since its initial description (21, 22), the eye is
considered to be an immune privileged organ (23, 24), and is
therefore usually devoid of immune cells form peripheral blood
stream. In ERU, however, we find major cell infiltrates in the eye
(2, 3, 25–27), which mainly consist of CD4+ lymphocytes (2, 27).
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To date, the exact mechanisms enabling these autoreactive cells
to overcome the BRB in ERU are still elusive. Experimental
autoimmune uveitis (EAU) is a valuable tool to investigate these
mechanisms, not only in common rodent models (28–31), but to
a certain extent also in the horse (4). Immunization of healthy
horses with the retinal autoantigen IRBP mimics the
spontaneous disease through the formation of auto-aggressive,
IRBP specific T cells, which leave the peripheral blood stream to
invade the eye directly prior to a uveitic attack (4). These cells
show distinct protein changes before immunization, during the
inflammatory phase and in quiescent episodes (14), which points
to a highly dynamic functional phenotype depending on the
stage of disease. During quiescence of this IRBP induced equine
EAU, protein abundance changes in immune cells show many
similarities to those observed in freshly obtained cells from
horses in quiescent stage of ERU (14), underlining the close
resemblance of the spontaneous and the induced disease in the
horse. Although this type of induced horse model may allow
more in depth investigations on ERU pathomechanisms, which
is especially interesting for assessment of protein and cellular
dynamics throughout the different stages of ERU, it is less
suitable for large-scale experiments comparable to those
performed on the several existing rodent models for
autoimmune uveitis.

Analysis of primary T cells from horses with spontaneously
occurring ERU revealed distinct proteome changes, mainly of
proteins with a role in cell adhesion, cell migration and regulation
of cell shape (32–34). In transmigration experiments, CD4+ T cells
from ERU horses showed increased migration rates, which was
linked to increased expression of the protein formin-like 1
(FMNL1) in the membranes of these cells (33). As shown in a
new FMNL1 knock-out mouse model, FMNL1 deficiency impedes
extravasation and trafficking of T cells to sites of inflammation
(35), further undermining the importance of this protein and its
functional effects in ERU pathogenesis. Furthermore, lymphocytes
from ERU horses displayed significantly higher cell motility, cell
speed and directness toward selected chemoattractants, especially
IFNg, and toward the ERU autoantigen CRALBP, in live-cell
imaging experiments (36), which was associated to lower
abundance of the protein septin 7 in these cells (32, 36).
Previous studies on septin 7-depleted murine CD4+ T cells
(clone D10.G4, as well as primary T cells from DO11.10 TCR
transgenic mice), showed less rigidity and aberrant cell
morphology in these depleted cells, resulting in the ability to
migrate through narrow pores (37), which was also hypothesized
for ERU (32), but never directly proven. Identification of
interactors of septin 7, most importantly dedicator of
cytokinesis 8 (DOCK8), which was decreased in ERU (34),
pointed to impaired immunity and increased risk for recurrent
inflammation, as suggested in studies on human cells from
patients with DOCK8 deficiency (38). Furthermore, increased
expression of DOCK8 interacting protein integrin-linked kinase
(ILK) was functionally associated to a decreased apoptosis rate in
ERU cells (34). Combined results from these in vitro experiments -
increased life span, increased migratory reactivity toward
chemokines and autoantigens and enhanced migration ability of
January 2021 | Volume 11 | Article 609855
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ERU lymphocytes - underlines the dysregulated nature of these
cells in ERU. Although the transfer of these interpretations from in
vitro experiments to in vivomechanisms needs to be assessed with
care, these insights further support the role of CD4+ T cells as key
players in ERU pathogenesis.

Recent studies showed that, although percentage of CD3+,
CD8+, and CD4+ lymphocytes does not differ between healthy
horses and those with ERU, only the disease-driving CD4+ T
cells have an activated phenotype in ERU horses (39). These cells
show significantly increased expression levels of IFNg and
decreased expression of IL‐10, indicating Th1 immune
response (39). This supports previous findings of increased
levels of IFNg as well as cytokine Interferon gamma-induced
protein 10 (IP-10) in serum of ERU horses (40). A further known
immune response in autoimmune uveitis in man as well as EAU
in rodents is mediated through Th17 cells (41). In ERU, the exact
role of Th17 cells has not been established to date, however,
detection of cytokines IL‐6, IL‐17, and IL‐23 via crossreactive
anti-human antibodies in histological sections of the iris and the
ciliary body of ERU horses provide first indications pointing
toward a contribution of these cells to ERU pathogenesis (42).
Similar conclusions could be drawn from M. tuberculosis (strain
H37Ra) induced experimental uveitis in horses, where high levels
of IL-17 were detected in aqueous humor and vitreous via
Enzyme-linked Immunosorbent Assay (ELISA) (43).

Contrary to the Th1 and/or Th17 immune response inducing
and maintaining inflammation in the uveitic eye, remission of
each inflammatory bout in autoimmune uveitis and EAU can be
associated to T regulatory cells (Treg) (44–46). During an acute
inflammatory uveitic attack, these cells show decreased
abundance in peripheral blood as opposed to phases of
quiescence, suggesting a crucial role in the remitting-relapsing
character of autoimmune uveitis (47, 48). These differences,
however, could not be detected in peripheral blood of ERU
horses compared to healthy controls (39). To date, no direct
evidence for Tregs in the equine eye could be found.
Nevertheless, the role of Treg in periodic remission of ERU is
highly probable and thus merits further investigations.

Although an autoreactive Th1 response against retinal antigens is
widely supported as the key process in ERU pathogenesis, one
pivotal question remains: how can peripheral T cells be primed
against tissue specific self-antigens which are “hidden” in an immune
privileged organ? Emerging investigations on autoimmune uveitis
suggest that commensal microbiota, if dysregulated (dysbiosis), may
show sequence similarities with self-antigens (49, 50). This in turn
may induce T cell cross-activation and priming against retina-
specific antigens, triggering autoimmune reactions (49, 50). Other
studies suggest, that a healthy gut microbiome is needed for
prevention of autoimmunity through Treg homeostasis and that
dysbiosis leads to changed or insufficiently effective Treg populations
(51, 52). In ERU, the involvement of commensal microbiota has not
been proven to date, however it is highly likely to play a possible role.

Equine T cell activation can be markedly reduced by co-
incubation with adipose‐derived equine mesenchymal stem cells
(MSC) in vitro, resulting in downscaling of CD25 as well as
intracellular IFNg, IL-10, and FoxP3 (39). This feature of MSC
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might be useful for the development of new therapeutic
approaches in ERU (53), as suggested by in equine immune-
mediated keratitis, where subconjunctival injection of autologous
MSCs improved clinical signs of disease (54). Although clinical
application of this therapeutic strategy needs more in-depth
validation, it might have the potential of broadening the
currently applied methods of medical and surgical therapy,
which classically comprise the systemical and topical
application of immunosuppressive and anti-inflammatory
medication, placement of a suprachoroidal cyclosporine
sustainded-release device or pars plana vitrectomy (9, 55, 56).
Innate Immune System
The role of innate immune cells in autoimmune uveitis has been
intensely investigated in the eyes of rodent EAU models (57–60)
and infiltration of these cells in eyes of ERU horses, although to a
lesser extent, has also been observed (3). The involvement of
monocytes, which might promote pro-inflammatory behavior, as
well as destruction of the targeted retinal cells in ERU could be
shown by expression of CD68 on infiltrating peripheral immune
cells in the diseased retina (61). Monocytes are major mediators
of tissue damage in EAU (62, 63) and are potent antigen-
presenting cells (64), which makes their role in ERU especially
interesting, particularly in regard to their interaction with
specific retinal cells (65). Further indication of participation of
innate immune cells in ERU was proven by identification of
decreased talin 1 abundance, a key integrin regulator in
leukocytes, and its interacting proteins in low-density-
neutrophils which were obtained as byproduct of lymphocyte
isolation (25, 66). Targeted investigations of pure granulocyte
fractions of healthy and ERU horses revealed significant
proteome changes in diseased state, which associated to MHC-
I-mediated antigen presentation, RAF/MAP kinase cascade, and
neutrophil degranulation (67). Interestingly, increased
neutrophil degranulation was also described in other T-cell
driven autoimmune diseases, such as multiple sclerosis, where
it is linked to a generally pre-activated state of these cells (68).
Moreover, neutrophil degranulation relates to deviant equine
granulocyte proteome after in vitro stimulation (69), underlining
a latent state of activation of granulocytes in ERU, even in
quiescent stage of disease (67). The fact that neutrophils from
ERU horses more readily perform NETosis supports these
findings (70). The exact role of innate immune cells and
their timing in and impact on ERU pathogenesis, however, is
still not completely understood to date and needs more in-
depth investigation.

Implication of a role of the complement system was shown by
the identification of several complement factors and split factors
and their increased expression in ERU sera and eyes (19, 61, 71).
Namely complement factor B, as well as C3 derived split
products C3d and iC3b showed highly increased abundance,
indicating strong activation of the complement system not only
in the peripheral blood stream but also locally in the eye itself
(61, 71). Although the exact source of these complement
components in ERU eyes is still unclear, they might be
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macrophage-derived, as suggested by studies on human retinas
from patients with age-related macular degeneration (AMD) and
in vivo retina analyses of rodent models for AMD (72). Other
studies on C57BL/6 mice showed that complement factor B is
constitutively expressed by RPE cells and this expression is
positively regulated by inflammatory cytokines in the human
RPE cell line ARPE19 (73), a process which might also apply to
the increased occurrence in ERU eyes. Deviant regulation of the
complement system is involved in the pathogenesis of various
ocular diseases, including autoimmune uveitis (74, 75) and the
severity of experimental autoimmune uveitis drastically
decreases in complement-receptor deficient rodent models
(76–78). Moreover, EAU can be effectively suppressed in
C57BL/6 mice when activation of complement via the
alternative pathway is blocked through complement receptor
CRIg-Fc. Since complement factor B is exclusive to the
alternative pathway, increased intraocular levels in EAU
suggest a role of this pathway in disease pathogenesis (79).
Despite the high abundance of complement factor B in uveitic
horse eyes, indicating a possible contribution of the alternative
pathway to ERU pathogenesis, this correlation has not yet
been assessed.
Serum Proteins
In the last decade, proteomic studies on sera of ERU diseased
horses revealed substantial differences compared to sera of
healthy horses (80). Due to breakdown of the BRB in course of
multiple uveitic attacks, several of these proteins can also be
detected inside the eye (3, 71, 81, 82).

Among these differentially expressed proteins, kininogen was
identified with decreased abundance in sera of ERU horses (71).
Contrary to this, kininogen showed increased levels in vitreous
and retina in ERU, whereas it was not detectable in healthy eyes
(71). Kininogen promotes angiogenesis and neovascularization
(83), a process that plays a significant role in the pathogenesis of
autoimmune uveitis (71). It is also a part of the kallikrein-kinin
system, which promotes integrity loss of barrier systems, such as
the blood-brain-barrier in a mouse model of multiple sclerosis
(84). Increased vitreal and retinal kininogen levels combined
with a decrease in serum of ERU horses therefore points to
disruption of the BRB in course of disease. IgM levels were also
increased in ERU sera compared to healthy horses, suggesting a
recent immune response pattern prior to blood sampling (71).

Decreased levels of pigment epithelium derived factor (PEDF)
could be shown in sera of ERU horses (82), which was also
observed in the retina and the vitreous of these animals in earlier
studies (19, 20). PEDF was also decreased in plasma and retina
from rats with endotoxin-induced uveitis, describing PEDF as a
negative acute-phase protein (85). Furthermore, PEDF plays an
important role in the viability of rat and mouse retinal cells (86,
87), the protection of human retinal pigment epithelium cells
(ARPE-19 cell line) against oxidative stress (88) and the
protection of tight junction proteins in rat eyes (85). Therefore,
the decrease of PEDF in periphery as well as the target organ
suggests increased permeability of the blood retinal-barrier.
Frontiers in Immunology | www.frontiersin.org 4
TARGET ORGAN

Retinal Pigment Epithelium
Increased BRB permeability in ERU is supported by studies on
the outer BRB, which physiologically maintains ocular immune
privilege through disconnection of the inner eye from peripheral
blood-derived immune cells (24). The outer BRB is formed by
retinal pigment epithelium (RPE) cells, which play a crucial role
in the mainly avascular retina of the horse, since they maintain
homeostasis of retinal cells (89). This is also reflected in the RPE
surface proteome, which strongly associates to transport
processes (90). Furthermore, horses with ERU display a
distinctly changed RPE membrane protein repertoire in ERU
(91). A significant decrease of peripherin 2, a protein that is
associated with membrane fusion processes, in RPE cells of ERU
horses is thought to provoke disruption of the cell-to-cell
junctions which are physiolocically maintained through these
cells (92), which in turn points to increased permeability of the
outer BRB. As also hypothesized for PEDF (19, 20, 82), this
might promote integrity loss of the BRB. Although loss of barrier
function of the BRB and leukocyte infiltration in course of ERU
is evident (4, 27, 91, 92), the exact chronological order of these
events is still not completely clear. Integrity loss of the BRB may
occur either as an initial process which subsequently facilitates
migration of peripheral immune cells into the eye, or as a
secondary effect in response to leukocyte recruitment. The
latter could be shown in an IRBP-induced B10.RIII mouse
EAU model, where Evans blue dye, which was injected shortly
before killing of the mice, could be observed leaking into the
retinal parenchyma only after intravascular sticking and
extravasation of blood-derived leukocytes from retinal venules
took place (93). Further studies on murine EAU models implied
that BRB breakdown might be a result of several consecutive
steps, actively triggered by intravascular adherence of primed
lymphocytes, followed by changed expression of adhesion
molecules and chemokine receptors in the vascular epithelium
and reduced shear stress in retinal veins prior to infiltration (93–
97). Interestingly, adoptive transfer of EAU in lewis rats could
show that antigen specificity for retinal antigens is not a
prerequisite for migration of activated T cells through the BRB,
however, for the induction of actual intraocular inflammation, it
is indispensable (98).

Retina and Vitreous
After infiltrating the eye, peripheral immune cells accumulate in
the iris, ciliary body and retina of horses with ERU (4, 27).
Although the vast majority of the infiltrating cells were identified
as CD4+ T cells (2, 27), pure granulocyte infiltrates can be
observed in few spontaneous ERU and IRBP induced cases (3, 4).
This is in stark contrast to the composition of the cellular
infiltrate in IRBP-induced murine EAU models, where a more
heterogeneous cell infiltrate can be observed, containing around
30% CD4+ T cells and a high percentage of macrophages (99,
100). This points to different molecular pathways and cellular
processes in EAU and ERU, underlining the great variability of
disease pathogenesis between species, which needs to be kept in
January 2021 | Volume 11 | Article 609855
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mind while interpreting associated data. In the base of the ciliary
body and the iris of ERU horses, the infiltrated cells organize into
lymphoid follicle nodules, which predominantly comprise CD3+
T cells (26, 27). In the retina, we mostly see scattered areas of T
cell infiltration, especially near the ora ciliaris retinae and the
optic disc, but occasional lymphoid follicle formation is also
observed (27). Interestingly, the majority of infiltrated CD4+
lymphocytes in the ERU retina also show surface expression of
CD166, a molecule associated with activation and transmigration
of T cells into inflamed tissues (26). Presence of phosphorylated
signal transducer and activator of transcription (STAT) proteins
1 and 5 in these cells underline the role of activated Th1 cells in
ERU but also indirectly point toward inhibition of the Th17
pathway (26). Detection of IL‐6, IL‐17, and IL‐23 in cell
infiltrates of the ciliary body and iris, on the other hand,
indirectly suggests that a Th17 mediated immune reaction
might also present in ERU eyes (42). In rodent models, EAU
can develop either as a Th1 or a Th17 response depending on the
model and the antigen used for induction, showing the
importance of both T cell subpopulations in disease
pathogenesis (41, 101–104). In ERU, on the other hand, the
important role of Th1 lymphocytes as effector cells is well known
(2, 3, 36), the exact impact of Th17 cells on disease pathogenesis,
however, merits further investigations.

Through membrane proteome analyses of equine retinae,
numerous differentially expressed proteins were identified in
ERU, several of which were associated to retinal Mueller glia cell
derived proteins (105). Retinal Mueller glia cells, the main macroglial
cells of the retina, are indispensable for the maintenance of retinal
function and integrity (106). Apart from their proinflammatory role
in ERU (20) and in murine EAU (65), these cells display a gliotic
phenotype, which presents with morphological changes and
impaired functionality in diseased retinae (12, 20, 105, 107). One
of the important functions of these cells is the regulation of
potassium and water homeostasis in the retina (108, 109), which
shows severe misbalance in ERU (105, 107). This is mirrored in
changed abundance and distribution pattern of potassium channels
Kir4.1 and Kir2.1 as well as water channels AQP4, AQP5, and
AQP11 which is hypothesized to contribute to impaired Mueller cell
function and intracellular fluid regulation and, subsequently, retinal
edema (105, 107, 110), a severe complication of ERU (27).
Furthermore, in ERU, dysfunctional RMG are connected to
decreased secretion of Wnt signaling inhibitors DKK3 and SFRP2,
which point to a regulatory role of Wnt signaling in ERU (111),
similar to other autoimmune diseases (112, 113). These insights on
RMG support the role of these cells as prime responders to
autoimmune triggers in ERU, promoting inflammatory processes
and increasing severity of disease pathogenesis.

Additionally, severe extracellular matrix (ECM) remodeling
in ERU was suggested through the identification of the proteins
fibronectin and osteopontin (OPN) (105, 114). Fibronectin is an
important constituent of the vertebrate ECM, mediates cell-ECM
interactions (115) and also plays a role in adhesion and
migration of cultured rat Mueller cells (116). Since fibronectin
expression in Mueller cell endfeet might contribute to the
attachment of the retina to the vitreous body, the changed
Frontiers in Immunology | www.frontiersin.org 5
distribution of fibronectin in ERU retinae points to impaired
Mueller cell adhesion (114). OPN is a multifunctional protein
with pro-inflammatory as well as neuroprotective properties
(117, 118). In EAU mice, an increased abundance of OPN
correlates with severity of inflammation (119), whereas Mueller
glia-derived OPN promotes photoreceptor survival in the
Pde6brd1 mouse model of retinal degeneration (120). OPN
also shows neuroprotective properties in porcine Mueller glia
cells in vitro (121). Decreased expression of OPN in vitreous and
retina might therefore point to reduced neuroprotection in ERU
retinae (114). ERU-associated lack of neuroprotection in the
retina was underlined by the identification of decreased levels
and decreased activity of tissue inhibitor of metalloproteinases
(TIMP)-2 in retina and vitreous (122). TIMP2 influences the
activity of metalloproteinases (MMP) (123), which modulate
cell-cell and cell-ECM interactions (124). It also has
neuroprotective properties (125) and can inhibit migration of
cells over physiological barriers (126). Hence, decrease in TIMP2
activity might promote the inflammatory responses in ERU. It
has been shown that migrating immune cells, especially Th1
cells, increase their MMP2 and MMP9 expression to overcome
blood-tissue barriers (127) and that inhibition of these MMPs
ameliorates experimental autoimmune uveitis in rodent models
(128, 129). Interestingly, infiltrating cells in ERU retinae stained
highly positive for MMP9 (122).

Apart from high levels of IgG in eyes of ERU horses (3), ERU
vitreous also contains various immunoglobulins of the subclass
M (IgM), which show a broad reaction pattern against retinal
proteins (81), whereas healthy eyes contain no IgM (or IgG).
Since IgM is an activator of the complement system and
complement has been proven to be highly present in the inner
eye of ERU horses (61, 111), the presence of IgM in the ERU
vitreous further implies involvement of innate immune system
components in this T cell driven autoimmune disease. Further
screening of retinal protein with vitreous from ERU horses
provided potential retinal autoantigens which are targeted by
IgM autoantibodies (81). One of these IgM targets was identified
as neurofilament medium (NF-M) (81, 130). Interestingly, IgG
response to NF-M was merely detectable, supporting the presence
of a thymus-independent immune reaction with prolonged
persistence of IgM response toward NF-M and lack of IgM/IgG
switch (130). In the retina, on the other hand, NF-M showed
decreased expression (130). The combination of active downscaling
in damaged RMG and release of NF-M fragments into the adjacent
vitreous might cause this combination of high vitreal occurrence
and low retinal levels of NF-M (130). A further novel membrane-
bound autoantigen, synaptotagmin-1, was identified with decreased
expression in ERU (131), which might be a result of active
downscaling of this protein in the retina through impaired
neurotransmitter release in ERU. Since Synaptotagmin-1 is also
expressed in the pineal gland, and pinealitis is known to
concurrently develop in ERU horses (132), synaptotagmin-1
might play a role in pineal immunopathology in ERU (131).
Whether these IgM-targeted retinal antigens qualify as
autoantigen targets for ERU, however, remains to be proven in
further studies.
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CONCLUSIONS

Overall, these novel immunological insights in ERU pathogenesis
point to a complex interplay of several dysregulated mechanisms,
which, on the one hand, can be linked to changes in cellular and
humoral components of the immune system, such as a deviant
functional phenotype of T cells with increased migratory ability
and a decreased apoptosis rate, latently activated granulocytes
and involvement of the alternative pathway of the complement
system. On the other hand, this dysregulation points to a pivotal
pro-inflammatory role of retinal cells with critically impaired
function in the target organ itself. Although these findings shed
more light on disease mechanisms, the interaction of these
dysfunctional molecular mechanisms driving ERU as well as
their exact individual role and timing in ERU pathogenesis needs
further assessment. Establishment of a Mueller glia cell line (133)
and characterization of cultured RPE cells (90) provide valuable
tools for more in depth functional examinations of ERU
Frontiers in Immunology | www.frontiersin.org 6
pathology. Additionally, the possibility of commensal microbiota
involvement in ERU onset needs to be addressed.
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