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Atherosclerosis is a fundamental disease of the cardiovascular system that leads to

high morbidity and mortality worldwide. The endothelium is the first protective barrier in

atherosclerosis. Endothelial cells have the potential to be transformed into mesenchymal

cells, in a process termed endothelial to mesenchymal transition (EndMT). On the

one hand, EndMT is known to contribute to atherosclerosis by inducing a number of

phenotypes ranging from endothelial cell dysfunction to plaque formation. On the other

hand, risk factors for atherosclerosis can lead to EndMT. A substantial body of evidence

has suggested that EndMT induces the development of atherosclerosis; therefore, a

deeper understanding of the molecular mechanisms underlying EndMT in atherosclerosis

might provide insights to reverse this condition.

Keywords: atherosclerosis, endothelial to mesenchymal transition, plasticity of endothelial cells, regulating

mechanisms, EndMT-associated marker

INTRODUCTION

Atherosclerosis is a common disease of the cardiovascular system characterized by plaque
formation in the artery wall (1). Although some hypothesis based on “inflammation” (2), “lipid”
(3) and “immunology” (4) have been proposed to explain the development of atherosclerosis, the
pathogenesis of this condition is still not fully understood. Recently, the concept of endothelial
to mesenchymal transition (EndMT) has also been put forward to explain the pathophysiological
process of atherosclerosis from the perspective of cell trans differentiation (5). EndMT refers to
a process in which endothelial cells can be transformed into mesenchymal cells. In this process,
endothelial cells acquire the characteristics of mesenchymal cells and feature with loss of cell–
cell contact and cell polarity under the condition of biochemical and biomechanical stimulus (6)
(Figure 1). The obvious changes involved in EndMT at the molecular level include decreased
expression of endothelial cell markers [such as platelet endothelial cell adhesion molecule-1
(CD31), CD34, vonWillebrand Factor (vWF), tyrosine kinase with immunoglobulin-like and EGF-
like domains 1 (TIE1), TEK receptor tyrosine kinase (TIE2), and vascular endothelial cadherin
(CDH5)] and the increased expression of mesenchymal cell markers [such as alpha-smooth muscle
actin (α-SMA), ferroptosis suppressor protein 1 (FSP1), Calponin, and smooth muscle 22 alpha
(SM22α) (7, 8)]. During EndMT, endothelial cells undergo morphological changes from a cuboidal
to a spindle shape. EndMT is a requirement for the formation of endocardial cushions during heart
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development; cushions resemble the early endothelium (9).
EndMT has not only been described in organogenesis, but it
has also been implicated in many diseases including pulmonary
arterial hypertension (PAH) (10), fibrosis (11), cancer (12),
pathological neovascularization (13), and atherosclerosis (14).

In this Review, we focus on the relationship between EndMT
and progression of atherosclerosis to help to communicate
relevant knowledge for atherosclerosis prevention. We discuss
the effects of EndMT and the mechanisms underlying this
process in the context of atherosclerosis.

TRIGGERING EndMT FACTORS IN
ATHEROSCLEROSIS

The endothelium plays an important role in withstanding risk
factors against atherosclerosis. Various conditions including
sustained inflammation, fluid shear stress, ox-LDL, and smoking
can facilitate EndMT (15, 16). Sustained inflammation is a
typical pathologic feature of atherosclerosis (17). Inflammatory
cytokines including interleukin-1beta (IL-1β), tumor necrosis
factor alpha (TNF-α), transforming growth factor-beta (TGF-β),
and interferon-gamma (IFN-γ) induce endothelial dysfunction
and the acquisition of mesenchymal properties, therefore
contributing to atherosclerosis (18–20). Long-term exposure
to inflammatory cytokines can induce EndMT by altering
the morphology of endothelial cells and EndMT-associated
markers (21). In addition to the alteration of expression
of endothelial/mesenchymal markers, inflammatory cytokines
can also activate the TGF-β pathway and the non-TGF-β
pathways (19).

Disturbed blood flow is another pathological characteristic
of atherosclerosis. Zhou et al. showed that pulsatile shear stress
(PS) exerts an atheroprotective role through the maintenance of
endothelial cell homeostasis. In contrast, oscillatory shear stress
(OS) causes endothelial cell dysfunction (22). Prior literature has
also shown that EndMT can be induced by shear stress (23, 24).
In addition, data from next-generation sequencing suggested
that PS and OS lead to opposite effects in regulating EndMT
gene regulation (25). Notably, expression of the twist family
basic helix-loop-helix transcription factor (TWIST) expression
was observed under conditions of low shear stress in regions
of adult arteries (26). (27) demonstrated that low shear stress
can result in the depletion of teneleven-translocation 2 (TET2).
Overexpression of TET2 alleviated EndMT in atherosclerosis.
Other risk factors associated with atherosclerosis can also
lead to EndMT. Oxidized low density lipoprotein (ox-LDL)
upregulates EndMT transcriptional factor Snail in human aortic
endothelial cells (HAECs), in a on ox-LDLreceptor-dependent
manner (LOX-1) (28). Moreover, ox-LDL induces accumulation
of reactive oxygen species (ROS) accumulation in cells and
synergistically promotes radiation-induced EndMT (29, 30).
The effect of ox-LDL on EndMT can be inhibited by vaccarin
(31) and naringin (32). Smoking is another known essential
risk factor of atherosclerosis. Nicotine treated ApoE−/− mice
and human aortic endothelial cells (HAECs) presented with

mesenchymal phenotypes, and blocking the nicotine receptor
alleviated nicotine-induced EndMT and lesions in mice (33).

EndMT IS RELATED TO ENDOTHELIAL
CELL PLASTICITY

EndMT is a hallmark of endothelial plasticity. A detailed
Review by William C. Aird previously discussed the phenotypic
heterogeneity of the endothelium. In the embryonic period,
endothelial cell differentiation plays an important role
in organ development (34). Endothelial cells differentiate
to meet the needs of organ development. For example,
multiple lineage hematopoietic progenitors are derived
from hemogenic endothelial cells via process endothelial-
to-hematopoietic transition (EHT) (35). EndMT is essential
for heart development. Heart endothelial cells give rise to
cardiac fibroblasts and smooth muscle cells, contributing
to the formation of the endocardial cushion formation
(36). In the adult, disease can occur when homeostasis of
endothelial cells is disrupted and these cells remain in an
EndMT state.

In atherosclerosis, endothelial cells are exposed to various
biochemical and physical stimuli derived from the circulating
blood. Low-density lipoprotein (LDL), cholesterol, and wall
shear stress may induce EndMT and disrupt endothelial
cell homeostasis, leading to endothelial dysfunction and
thereby contributing to the development of atherosclerosis.
In addition, it has been well documented that inflammatory
factors such as IL-1β, TNF-α, TGF-β, and endotoxins can
induce endothelial dysfunction via EndMT. In inflammation
conditions, activation of endothelial cells occurs, leading to
phenotypic and molecular changes (16, 37–39). Endothelial
cells are heterogeneous and show a high degree of plasticity
in both normal and atheromatous conditions. (40) defined
eight endothelial cell clusters in the heart and aorta of patients
with diabetic atherosclerosis at single cell level, three of
which expressed mesenchymal markers, indicating EndMT
markers. Further analysis suggested that the proportion
of EndMT-derived fibroblast like cells was higher in
atherosclerosis group compared to the normal group, with
alterations in extracellular-matrix organization, adhesion,
and apoptosis.

EndMT INVOLVES ATHEROSCLEROTIC
PLAQUE FORMATION AND INSTABILITY

The presence of endothelial cell-derived mesenchymal like
cells in plaques provides robust evidence of the involvement of
EndMT in atherosclerosis. Previous studies demonstrated
that atherosclerotic plaques contain mesenchymal cells
(including fibroblasts and smooth muscle cells), which
regulate inflammation, extra-cellular matrix and collagen
production, and plaque structural integrity and play a key
functional role in atherosclerosis (41, 42). To investigate
the origins of atherosclerosis-associated fibroblasts, (43)
examined and confirmed the presence of EndMT-derived
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FIGURE 1 | Processes inducing EndMT in atherosclerosis. Factors that can lead to EndMT include several inflammatory cytokines, ox-LDL, nicotine, and shear

stress. The transition from endothelial cells to mesenchymal cells (e.g., fibroblasts and smooth muscle cells) is accompanied by downregulation of endothelial markers

and upregulation of mesenchymal markers.

fibroblast-like cells present in atherosclerotic lesions through
lineage-tracking, suggesting a role of EndMT atherosclerosis
development. Matrix metalloproteinases (MMPs) are associated
with unstable atherosclerotic lesions (44, 45), and EndMT-
derived fibroblast-like cells express higher levels of MMP1,
MMP9, and MMP10 compared with normal fibroblasts.
In addition, TGF-β signaling, oxidative stress, and hypoxia
facilitate endothelial cells conversion to mesenchymal cells and
are all hallmarks of atherosclerosis. During EndMT process,
active endothelial cells express adhesion molecules, such as
intercellular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1), which enhance monocyte,
leukocyte, and macrophage recruitment and infiltration (46).
Interestingly, (47) found evidence for a crosstalk between
macrophages and EndMT: macrophages in atherosclerotic
lesions in vivo upregulate the expression of mesothelial
markers, promoting EndMT, and, conversely, EndMT cells
impact the function, such as the capacity of lipid uptake,
and phenotypes of macrophages. In addition to in vivo and
in vitro studies, single cell sequencing technology has been
helpful to further our understanding of the landscape and
pathophysiology of human atherosclerotic plaques. Recently,
a study identified 14 cell populations including endothelial
cells, smooth muscle cells, mast cells, B cells, myeloid cells,
and T cells and identified multiple cellular activation states in
plaques (48). One of the identified subclasses of endothelial
cells expressed the smooth muscle cell markers such as alpha-
actin 2 (ACTA2), notch receptor 3 (NOTCH3), and myosin
heavy chain 11 (MYH11), suggesting that this subtype was
undergoing EndMT and providing additional evidence on
plasticity of endothelial cell plasticity. Altogether, these findings
confirm that EndMT is closely associated with plaque initiation
and development.

MECHANISMS REGULATING EndMT IN
ATHEROSCLEROSIS

A substantial body of research pinpoints to several features of
atherosclerosis that can lead to EndMT via several signaling
pathways (49, 50). The TGF-β signaling pathway is a canonical
pathway modulating EndMT, which has been shown to crosstalk
with other pathways including the fibroblast growth factor
(FGF), Notch, and bone morphogenetic protein (BMP) pathways
(Figure 2). In addition, non-coding RNAs also paly an essential
role in EndMT. We next discuss the mechanisms underlying
EndMT in the context of atherosclerosis.

TGF-β SIGNALING PATHWAY

The role of TGF-β signaling pathway on EndMT has been
extensively studied. In brief, the TGF-β family ligands bind
to type I receptors and type II receptors, phosphorylating
and thereby activating the transducer small mother against
decapentaplegic (SMAD). Nuclear import of active SMAD
transmits regulates gene transcription (51). In addition,
TGF-β receptors can also activate other signaling pathways.
Specifically, TGF-β signaling can be divided into SMAD-
dependent and non-SMAD-dependent pathway (52). Growing
evidence demonstrated the role of TGF-β signaling pathway in
regulating cell proliferation, differentiation, adhesion, migration,
and apoptosis not only in both embryonic development
and the pathology of human disease (53). (14) showed that
risk factors of atherosclerosis such as oscillatory shear stress
and inflammation-induced loss of fibroblast growth factor
receptor 1 (FGFR1) expression can activate TGF-β signaling
and contribute to EndMT. FGFR1 depletion induces EndMT
by upregulation of smooth muscle markers and mesenchymal
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FIGURE 2 | Signaling pathways involved in EndMT in atherosclerosis. EndMT related transcription factors such as Snail, Slug, ZEB, TWIST, and FoxC2 are governed

by upstream signalings including BMP, TGF-β, FGF, and Notch, which in turn regulate endothelial and mesenchymal gene expression, ultimately inducing EndMT.

markers which are also targets of TGF-β (54). Although the
crucial role of TGF-β in EndMT has been well established,
the different roles of the various isoforms of TGF-β are less
known. To this aim, Sabbineni et al. (55) compared the effect
of three isoforms of TGF-β (TGF-β1–3) on EndMT and found
that TGFβ2 was the one most associated with EndMT. In
addition, TGFβ2 is required for epithelial-to-mesenchymal cell
transformation during endocardial cushion (56). Experiments
treating human microvascular endothelial cells (HMECs)
with different TGFβ isoforms indicated that only TGF-β2
substantially increased Smad2/3, p38 mitogen-activated protein
kinase (MAPK), and mesenchymal transcription factors Snail
and forkhead box protein C2 (Foxc2). Furthermore, TGF-β2 and
IL-1β co-stimulate EndMT to activate nuclear factor-kappaB
(NF-κB) (19).

Given the critical role of TGF-β in regulating
EndMT, TGF-β inhibition may be an approach to
reverse EndMT. Knockout of endothelium-specific TGF-
β receptor relieved EndMT and kidney fibrosis (57).
However, TGF-β exhibits potent regulatory functions, and
inhibition of this pathway might also result in unwanted
side effects.

Altogether, this evidence suggests that TGF-β may also be
a promising therapeutic target for atherosclerosis, and further
studies to confirm this hypothesis and assess safety are needed.

BMP Signaling Pathway
Bone morphogenetic proteins (BMPs) belong to TGF-β signaling
pathway superfamily. The crosstalk of TGF-β/BMP signaling
is well understood (58). More than 20 BMPs with different
functions have been identified so far (59). The BMP ligand-
receptor interaction induces SMAD1/5/8 phosphorylation to
mediate downstream signaling (60). BMPs bind to two different
receptors to mediate signal transduction through SMAD-
dependent and SMAD-independent pathways (61). (62) showed
down regulation of BMP type II receptor BMPR2 in pro-
inflammatory-induced EndMT, with enhanced BMP-9-induced
osteogenic differentiation, which leads to a decrease in c-
Jun N-terminal kinase (JNK) signaling, thus contributing to
calcification. Similarly, another study suggested a protective role
for BMPR2 in endothelial cell homeostasis, in particular by
balancing BMP/TGF-β signaling to protect cells from increased
responses toward TGF-β (63). In addition to BMPR2, BMP6
also has the ability to induce osteogenic differentiation and
mineralization consistent with EndMT. Activation of reactive
oxygen species (ROS) is required for BMP6 to regulate
osteogenic genes, osteogenic differentiation, and calcification
(64). Furthermore, (29) found that brain and muscle ARNT-
like protein-1 (BMAL1) suppressed ROS-induced EndMT
through BMP signaling, therefore inhibiting atherosclerosis
plaque progression.
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TABLE 1 | Non-coding RNAs regulating EndMT in atherosclerosis.

Non-coding RNAs Targets Regulation Models Year Reference

miR-449a AdipoR2 upregulation ApoE−/− diabetic

mice

Human carotid

atherosclerotic

plaque

HUVECs

2019 (76)

miR-374b MAPK7 upregulation Human coronary

arteries

Pigs

HUVECs

2019 (77)

miR-122 NPAS3 upregulation ApoE−/− mice

HAECs

HUVECs

2021 (78)

H19 TET1/TGFβR2/TSP1 upregulation H19 KO mice

Primary mouse

pulmonary

endothelial cells

HAECs

HUVECs

2010 (83)

MALAT1 Wnt/β-catein upregulation ApoE−/− mice

HUVECs

2019
(85)

LIC00657 miR-30c-5p/Wnt7b/β-catenin upregulation Atherosclerosis

patients serum

HUVECs

2020 (86)

LncRNA ZFAS1 miR-150-5P/Notch3 upregulation ApoE−/− mice

HUVECs

2021 (89)

List of non-coding RNAs regulating EndMT associated with atherosclerosis including miRNA and lncRNAs. AdipoR2, Adiponectin receptor 2; MAPK7, Mitogen-activated protein kinase

7; NPAS3, Neuronal PAS Domain Protein 3; TET1, Tet Methylcytosine Dioxygenase 1; TGFβR2, TGF-βreceptor 2; TSP1, Thrombospondin 1; MALAT1, Metastasis-associated lung

adenocarcinoma transcript 1; HUVECs, Human umbilical vein endothelial cells; HAECs, Human Aortic Endothelial Cells.

Notch Signaling Pathway
Notch signaling pathway includes 4 receptors (Notch1–4) and 5
ligands (Delta-like-1, 3, 4, and Jagged1–2) (65). Notch receptor-
ligand binding generates Notch intracellular domain (NICD)
which is translocated to the nucleus where NICD binds to
the transcription factor RBPJK/CSL to regulate target gene
expression and thus cell fate specification (66). Within the
cardiovascular system, Notch signaling is implicated in both
development, such as cardiac valve formation, and pathological
process, such as response to vascular injury (67, 68). It
was observed that Notch receptors and ligands are expressed
in the vasculature (69). Notch activated endothelial cells
show the characteristics of EndMT including downregulation
of endothelial markers and upregulation of mesenchymal
markers (70). In addition, Notch activation induces Slug
overexpression in endothelial cells which is associated with
a loss of the endothelial phenotype (71). Notch signaling
contributes to EndMT independently of or synergistically
with TGF-β. TGF-β1 induces upregulation of several Notch
components including Jagged-1, the receptor Notch-1, N1ICD,
recombination signal binding protein J kappa (RBPJK), as
well as target genes hairy enhancer of split-1 (Hes-1) and
Hes-5(72). Activation of Notch signaling pathway in vitro
induced EndMT by increasing the expression of vascular
endothelial (VE)-cadherin and overexpression of α-SMA,

whereas inhibition of Notch signaling pathway with gamma-
secretase inhibitors (GSI) attenuated the development of
atherosclerotic lesions (73).

Non-coding RNAs
Non-coding RNAs including microRNAs (miRNAs), long non-
coding RNAs (lncRNAs), and circular RNAs (circRNAs) are
involved in the regulation the process of EndMT. (74) have
provided a comprehensive description of the non-coding
RNAs known to be involved in EndMT regulation. In this
Review, we focus on non-coding RNAs influencing EndMT
and atherosclerosis progression (Table 1). MiRNAs are a class
of non-coding RNAs with a length of 20–40 nucleotides,
which suppress target mRNAs by binding to their 3’-UTR
(75). miR-449a was highly expressed in ApoE−/− diabetic
mice and modulated EndMT by increasing the expression
of mesenchymal cell markers and reducing E-cadherin which
interacts with adiponectin receptor 2 (AdipoR2) in lipid rafts.
ApoE-/- diabetic mice treated with an antagonist of miR-
449a showed reduction of atherosclerotic lesions (76). miR-
374b induces EndMT by targeting mitogen-activated protein
kinase 7 (MAPK7), which is decreased in the atheroprone
hyperplastic regions and is known to be inhibit EndMT. In
the TGF-β treated endothelial cells, the increased level of miR-
374b was counteracted by an inhibitor of ALK5 (SB431542).
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In addition, silencing miR-374b targets by means of short
hairpin RNAs (shRNAs) specifically decreased MAPK7 signaling
members, and increased expression of endothelial markers VE-
cadherin and endothelial nitric oxide synthase (eNOS), and
of the mesenchymal markers SM22α and Calponin (77). In
a recent study, high expression of miR-122 was observed in
both ApoE−/− mice and in vitro EndMT models, and miR-
122 inhibition in ApoE-/- mice reduced the progression of
plaque formation. Similarly, inhibiting miR-122 could reverse
the EndMT phenotype induced by H2O2, whereas, silencing
of the miR-122 target neuronal PAS domain protein 3
(NPAS3) gene abolished EndMT reversal. Therefore, this study
suggests that miR-122 promotes plaque formation via NPAS3
mediated EndMT and could be a new therapeutic target in
atherosclerosis (78).

LncRNAs are non-coding RNAs with a length of more
than 200 nucleotides that have recently emerged as important
regulators in development and disease (79). So far, although
more than 5000 lncRNAs have been identified (80), few of them
have been implicated in EndMT. LncRNA H19 is increased in
aortic tissues and is associated to the extent of cardiovascular
disease in a model of atherosclerosis (81, 82). H19 upregulates
TGF-β receptor 2 (TGFβR2) and thrombospondin 1 (TSP1) via
let-7/TET1, and therefore has the potential to model EndMT
markers including Slug, SM22-α, Vimentin, and fibronectin1
(FN1) (83). LncRNAmetastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) has been shown to play a critical
role in cardiovascular disease (84). Li et al. (85) observed an
increasing expression of MALAT1 in atherosclerotic mice and
human umbilical vein endothelial cells (HUVECs) treated with
ox-LDL which also showed CD31 and vWF downregulation
and α-SMA and vimentin overexpression. MALAT1 promotes
β-catenin translocation to nuclear translocation and enhances
EndMT induced by ox-LDL in a MALAT1/Wnt/β-catenin
dependent manner. Interestingly, LINC00657 was found to be
overexpressed in the serum of atherosclerosis patients and in
HUVECs treated with ox-LDL. LINC00657 has a similar effect
on inducing EndMT. LINC00657 promotes EndMT by acting as a
sponge for miRNA-30c-5p and by positively regulatingWnt7b/β-
catenin activation (86). LncRNA ZFAS1 is another contributor
of atherosclerosis (87, 88). Results from in vivo and in vitro
atherosclerosis models suggested that ZFAS1 triggered EndMT
via inhibition of miR-150-5p, hence increasing the expression
of Notch3, an active regulator of EndMT (89). Currently,
the function of lncRNAs and circRNAs in regulating EndMT
in atherosclerosis is largely unknown. CircRNAs associated
with EndMT have been reported in many diseases including
neuro inflammatory disorders (90), bladder carcinoma (91),
pulmonary disease (92), and ischaemic stroke (93). Additional
research to clarify the role of lncRNAs and circRNAs in disease
is needed.

Preventing EndMT as a Potential Approach
to Treat Atherosclerosis
Given the role of EndMT in modulating atherosclerosis,
disruption of the EndMT might be a therapeutic option for

treating atherosclerosis. Indeed, some compounds and clinical
drugs may have protective effect on atherosclerosis by inhibiting
EndMT. RGFP966 is an inhibitor of histone deacetylase 3
(HDAC3), an important regulator of cardiovascular diseases
which was found to be upregulated in atherosclerotic lesions
(94), and can reduce atherosclerotic lesions by inhibiting
EndMT in the aortic root (95). Icariin, a compound derived
from Epimedium, inhibited ox-LDL-induced EndMT via
H19/miR-148b-3p/ELF5 (E74-like factor 5). Icariin induced H19
overexpression and led to an attenuation of the EndMT process,
exerting a protective effect in atherosclerosis (96). Recently,
simvastatin, a clinical lipid-lowering drug, was shown to inhibit
EndMT (25). A study by (25) has shown that simvastatin can
inhibit EndMT via upregulation of KLF4/miR-483 axis in
HUVECs. Additionally, simvastatin attenuated 1-Palmitoyl-2-
(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVC) inducing
EndMT, by suppressing oxidative stress and TGF-β/SMAD
signaling, suggesting that simvastatin could potentially be
used in treating atherosclerosis (97). Altogether, these findings
suggest the therapeutic potential of EndMT disruption in
atherosclerosis. EndMT is a complex process resulting from
the action of many factors, ranging from signaling pathways
to non-coding RNAs. However, effective drugs to reverse
EndMT are still lacking. Moving forward, single-cell/high-
throughput sequencing technology might provide helpful
insights to uncover EndMT associated targets for the treatment
of atherosclerosis.

HIGHLIGHTING THE PROGRESSION OF
EndMT IN ATHEROSCLEROSIS

The studies by Chen et al. (14) and Evrard et al. (43)
provide strong evidence for the involvement of EndMT in
atherosclerosis. EndMT drives the initiation of atherosclerosis
by accelerating plaque growth and instability of plaque.
Previous research has shown that EndMT is regulated in a
number of signaling pathways, in particular the canonical
TGF-β signaling, and several atherosclerosis risk factors,
e.g., inflammation, shear stress, ox-LDL, and smoking.
Conversely, FGF signaling plays a protective role on EndMT.
Remarkably, several non-coding RNAs were reported to
modulating EndMT, offering therapeutic application to treat
atherosclerosis (74). Epigenetic mechanisms involved in
EndMT regulation are poorly understood. Histone deacetylases
(HDACs) play a role in EndMT, in particular HDAC3 and
HDAC9, and promoted atherosclerosis progression (98).
Overall, the molecular mechanisms underlying EndMT
remain largely unknown, and additional research is
needed to discover new targets that can be explored in
reverse atherosclerosis.

CONCLUSIONS

EndMT is associated with the formation of atherosclerotic
lesions. Therefore, reversing or inhibiting EndMT might help
to prevent the development or progression of atherosclerosis.
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In vivo, suppression of EndMT shows promising effects in
alleviating atherosclerosis. However, animal and cell models
of atherosclerosis present many limitations, and the study
and detection of EndMT in humans offer great challenges.
More research is needed to understand the role of EndMT in
atherosclerosis to ultimately offer new insights for the treatment
of atherosclerosis.
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