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ABSTRACT
As Helicobacter pylori management has become more challenging and less efficient over the last 
decade, the interest in innovative interventions is growing by the day. Probiotic co- 
supplementation to antibiotic therapies is reported in several studies, presenting a moderate 
reduction in drug-related side effects and a promotion in positive treatment outcomes. However, 
the significance of gut microbiota involvement in the competence of probiotic co-supplementation 
is emphasized by a few researchers, indicating the alteration in the host gastrointestinal microbiota 
following probiotic and drug uptake. Due to the lack of long-term follow-up studies to determine 
the efficiency of probiotic intervention in H. pylori eradication, and the delicate interaction of the 
gut microbiota with the host wellness, this review aims to discuss the gut microbiota alteration by 
probiotic co-supplementation in H. pylori management to predict the comprehensive effectiveness 
of probiotic oral administration.
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Introduction

Gastric carcinoma, as one of the leading causes of 
cancer-associated deaths, is mainly developed as 
a result of Helicobacter pylori (H. pylori) infection. 

The prevalence of H. pylori infection exceeds half of 
the world’s population; however, the likelihood of 
affecting health or disease is not uniform and lar-
gely relies on host genetics, bacterial virulence, and 
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environmental conditions.1 By leveraging several 
virulence factors, H. pylori interferes with various 
cellular components of the host to induce prolifera-
tion, apoptosis, migration, and inflammatory 
responses.2 H. pylori has a substantial association 
with chronic gastritis, gastric ulcer, mucosa- 
associated lymphoid tissue (MALT) lymphoma, 
and gastric adenocarcinoma.3 The combination of 
up to four drugs including two or three types of 
antibiotics as well as a proton-pump inhibitor for 
two weeks is suggested as the first-line of H. pylori 
treatment.4–6 However, the ideal approach for 
H. pylori eradication remains elusive and current 
prescriptions are mostly empirical, heedless of the 
bacterial antibiotic susceptibility.7

The increased prevalence of antibiotic resistance 
and antibiotic-associated adverse effects are the pri-
mary reasons explaining the requirement for alterna-
tive approaches to manage H. pylori infection.8 The 
interaction of probiotics with the host and 

gastrointestinal microbiome through alteration in 
the gut microbiota composition, competition for 
accessible nutrients and attachment sites, and preven-
tion of bacterial colonization to mediate health bene-
fits indicates the advantage of probiotic co- 
supplementation in antibiotic treatments.9 

Intervention studies have demonstrated a reduction 
in gastrointestinal symptoms and drug-related side 
effects by probiotic oral administration.10 However, 
long-term follow-up investigations are required to 
elucidate the efficiency of adjuvant interventions on 
H. pylori treatment.

Here, we aim to highlight the great significance of 
the host gut microbiota involvement in the compe-
tence of probiotic supplementation. We will further 
discuss the bidirectional interaction of probiotic 
strains and indigenous gastrointestinal microbiota to 
predict the effectiveness of this adjuvant therapy and 
provide an outlook for future investigations within the 
nascent and promising research field.

Figure 1. The main genera and total abundance of bacteria vary along the gastrointestinal tract. The colon is characterized by low 
levels of oxygen as well as the presence of enormous numbers and species of bacteria. On the other hand, the microbial composition 
and metabolite concentration of stool samples are distinguished from gut biopsies, in which the bacteria and the fungi constitute the 
majority and minority of total fecal DNA, respectively.12–15 Fecal concentration of SCFAs are also demonstrated as they might be 
considered key regulators of the intestinal homeostasis.
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Gut microbiota

In addition to the tremendous community of 
microorganisms inside and on the human body, 
the gastrointestinal tract harbors a diverse and 
dynamic consortia of commensal or mutualistic 
microorganisms, mainly consisting of Firmicutes, 
Bacteroidetes, Actinobacteria, Proteobacteria, and 
Verrucomicrobia phyla.11 Based on the ecological 
characteristics of the gastrointestinal tract, the 
microbial load ranges from 1012 CFU/ml in the 
oral cavity and a narrow diversity of 107 CFU/ml 
in the stomach and duodenum to a vast diversity of 
1014 CFU/ml in the colon (Figure 1).12 Due to the 
reduction in oxygen concentration along the long-
itudinal axis, the upper gastrointestinal tract is the 
residence of Gram-positive cocci, such as Gemella 
and Streptococcus, whereas the intestines and colon 
are enriched with anaerobes including the 
Clostridium and Faecalibacterium genera.16 

Furthermore, the luminal to mucosal axis organizes 
the bacteria based on their ability for mucus degra-
dation. Bacteroides thetaiotaomicron, Akkermansia 
muciniphila, Ruminoccous gnavus, Bacteroides fra-
gilis, and Bifidobacterium bifidium are predominant 
bacteria within the mucus layer that utilize glycans 
as their energy source by glycosidase, sulphatase, 
and sialidase enzymes.17 Despite the dynamic colo-
nization of indigenous commensals within the 
intestinal niches created by glycans, the lack of 
dietary fiber polysaccharides potentially empha-
sizes the significance of the host intestinal mucin 
as a reliable energy source for the gut microbiota.18

The role of immune system in shaping gut 
microbiota

A distinctive characteristic of the intestinal 
immune system is its capacity to distinguish 
mutualistic microorganisms from pathogens and 
further establish active tolerance toward commen-
sal bacteria.19 Identification of microbe-associated 
molecular patterns (MAMPs) by pattern recogni-
tion receptors (PRRs), such as toll-like receptors 
(TLRs) and nucleotide-binding oligomerization 
domain receptors (NODs), leads to the activation 
of various cellular signaling pathways. 
Consequently, modulation of gene expression by 
multiple ligands, transcription factors, and kinases 

can modify the production levels of inflammatory 
cytokines, chemokines, and immunoreceptors.20 

Although pathogens and commensals share com-
mon ligands that activate the TLRs, several 
mechanisms are considered for TLR-mediated dis-
crimination of gut bacteria. Commensals can be 
simply distinguished from pathogens owing to the 
lack of virulence factors and differences in invasive-
ness. Furthermore, the cellular location of TLRs on 
the intestinal epithelium is inaccessible to commen-
sal bacteria. Different PAMP affinity for TLRs and 
activation of ligand-specific signaling pathways are 
other possible mechanisms to identify commensals 
from pathogens.21 On the other hand, NOD2 
recognizes conserved motifs of bacterial peptido-
glycan and maintains mucus layer activity; thereby, 
NOD2 deficiency or mutation might lead to patho-
gen overgrowth, inflammation, and colon cancer.22 

A recent study indicated that NOD2 knockout mice 
demonstrated an impaired recovery of gut micro-
biota composition following an antibiotic interven-
tion, suggesting the remarkable contribution of this 
receptor in shaping the gut microbial community.23 

Furthermore, NOD1 activation as a consequence of 
peptidoglycan recognition can trigger both 
immune memory and tolerance.24 Irving et al. 
demonstrated the development of peptidoglycan- 
specific immunity following H. pylori infection and 
the subsequent NOD1 activation and autophagy 
induction.25

The mucus layer of the intestinal epithelium 
intervenes between the resident microbiome and 
epithelial layer to form a static shield and narrow 
the immunogenicity of antigens by provoking den-
dritic cells (DCs) to an anti-inflammatory response. 
Moreover, the complex architecture of the intest-
inal epithelium, as well as their secretions, such as 
antimicrobial peptides (AMPs) and immunoglobu-
lins, preserve the functionality of the mucosal 
barrier.26 The most abundant AMPs are defensins 
that develop small pores in bacterial membranes to 
disrupt cellular integrity. α- and β-defensins are the 
two subfamilies of defensins, predominantly 
released by Paneth cells and colonic epithelial 
cells, respectively.27 In addition to pore formation, 
these AMPs can trap bacteria by degenerating the 
bacterial cytoplasm and developing extracellular 
net-like structures.28 Furthermore, cathelicidin is 
the primary AMP expressed during infancy 
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regardless of the bacterial presence and remarkably 
influences the early development of gut 
microbiota.29 Perturbation of the gastrointestinal 
microbiota of preterm and term infants may lead 
to persistent immune and metabolic disorders.30 

Collectively, the intestinal epithelium can establish 
an efficacious physico-chemical barrier that pre-
vents pathogen colonization on the mucosal surface 
while creating immune tolerance against commen-
sal bacteria.

In addition to the innate immune system, recent 
studies exhibited a mutualistic interaction of the 
adaptive immune system in shaping gut microbial 
composition. B cells are critical modulators of 
intestinal homeostasis, mainly through expressing 
secretory immunoglobulin A (SIgA) in response to 
commensal recognition.31 The pivotal and often 
oversimplified role of SIgA depends on the gut 
microbial community. Chaotic or excessive reac-
tion to alteration in the richness or pro- 
inflammatory behavior of particular strains by 
SIgA influences not only the specific bacteria but 
probably the whole microbiota.32 SIgA predomi-
nantly prevents the translocation of microorgan-
isms from lamina propria to the bloodstream, 
interferes with conjugative plasmid transfer, and 
facilitates the colonization of commensal 
bacteria.33 On the other hand, T follicular helper 
cells are specialized to cooperate with B cells and 
modify humoral immunity.34 Although several stu-
dies began to elucidate the mechanistic interaction 
of cellular immunity with gut microbiota through 
inflammatory signaling pathways, we have yet to 
fully understand the aspects of the adaptive 
immune system in shaping the gut microbiota.

Gut microbial metabolites in preserving 
homeostasis

The gut microbiota plays a critical role in preser-
ving the normal bioactivity of the host through gut 
microbiota-derived metabolites, especially bile 
acids (BAs), short-chain fatty acids (SCFAs), 
branched-chain amino acids (BCAAs), trimethyla-
mine N-oxide (TMAO), tryptophan, and indole 
derivatives.35 Nevertheless, the knowledge concern-
ing the direct effect of the gut microbiota on the 
host metabolism remains scarce; however, the gas-
trointestinal microbiota has a particular interaction 

with mitochondria owing to their common 
origin.36 It has been recently indicated that delta- 
valerobetaine production by the gut microbiome 
reduces cellular carnitine and mitochondrial long- 
chain acyl-coenzyme A (acyl-CoA); consequently, 
this obesogenic metabolite prevents mitochondrial 
fatty acid oxidation and leads to diet-dependent 
obesity.37

SCFAs are saturated fatty acids acquired from 
microbiota-accessible carbohydrates and mainly 
include acetate (C2), propionate (C3), butyrate 
(C4), and valeric acid (C5) in the human 
body.38,39 Nevertheless, the abundance of each 
SCFA depends on substrate availability, gut micro-
biota composition, and gastrointestinal transit 
time. SCFAs exhibit several local effects, such as 
preserving the intestinal barrier integrity and pH 
reduction as their concentration increase from the 
distal ileum (6.5–7.5) to the proximal colon (5.5– 
7.5).40,41 Moreover, SCFAs promote the induction 
and expansion of intestinal regulatory T cells,42 

DCs, and macrophages,43 exert an anti- 
carcinogenic and anti-oxidative effect in the 
intestine,44 and suppress pathogen-induced inflam-
mation (Figure 2).45

Hepatocytes synthesize primary bile acids from 
cholesterol, conjugate them to taurine or glycine, 
and then release them into the gall bladder to form 
bile in combination with cholesterol, phospholi-
pids, minerals, electrolytes, bilirubin, biliverdin, 
and protein.46 Intestinal bacteria will deconjugate 
primary BAs that fail reabsorption in the terminal 
ileum and thereby convert them to secondary BAs 
by microbial biotransformation, including dehy-
droxylation, epimerization, and oxidation of 
hydroxyl groups.47 Secondary BAs are involved in 
the modulation of cell signaling, microbial compo-
sition, intestinal metabolism, and the host immune 
response. Reduced BA deconjugation is associated 
with inflammatory bowel diseases (IBD) including 
ulcerative colitis (UC) and Crohn’s disease (CD), as 
well as irritable bowel syndrome (IBS).48 Free BAs, 
such as cholic acid, deoxycholic acid, and cheno-
deoxycholic acid, can stimulate apoptosis and 
reduce interleukin 6 (IL-6) production, while con-
jugated BAs such as glycolic acid, glycodeoxycholic 
acid, and glycochenodeoxycholic acid promote cell 
growth and induce IL-6 production.49 However, 
excessive production of the secondary BA 
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Figure 2. The interplay between the gut metabolome, H. pylori, and the host immune system. H. pylori induces chronic gastric 
inflammation through the activation of transcriptional factors such as NF-κB. By stimulating the production of BCAA from the gut 
microbiota, H. pylori activates the mTORC1 complex and ultimately inhibits autophagic response. H. pylori further disrupts the integrity 
of the gastric epithelial barrier by suppressing the expression of tight junction proteins. On the other hand, microbiota production of 
SCFAs and secondary bile acids modulate gastric inflammation and immune system activation by reducing NF-κB activation, 
promoting the secretion of anti-inflammatory cytokines, AMPs, and IgA, and preserving the integrity of the gut barrier.
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deoxycholic acid triggers the expression of inflam-
matory and tumorigenic factors in hepatic stellate 
cells (HSCs), contributing to hepatocellular carci-
noma development.50 Secondary BAs might also 
activate farnesoid X receptor (FXR) and elevate 
the risk of developing colorectal cancer and hepa-
tocellular carcinoma.51

As an essential amino acid in the human body, 
tryptophan must be obtained by diet and further 
metabolized through host or microbial pathways. 
The indole pathway for tryptophan metabolism is 
mediated by the gut microbiome leading to 
a variety of indole metabolites, some of which are 
involved in mucosal homeostasis, gastrointestinal 
motility, and the host immune response.52 

However, BCAAs valine, leucine, and isoleucine 
are possible biomarkers in human carcinogens 
owing to their requirement in cancer cell growth 
and tumor progression.53 Although BCAAs are 
involved in carcinogenesis and metabolic disorders, 
such as obesity, insulin resistance, and type 2 dia-
betes (T2D), sports supplements with these amino 
acids might improve strenuous training.54

Gut bacteria produces TMA, which is transferred 
to the liver through the bloodstream and further 
converted to TMAO by hepatic flavin monooxy-
genases (FMOs). Animal products such as meat, 
fish, and eggs are rich in TMA precursors.55 

TMAO is a major risk factor for cardiovascular 
disease, renal fibrosis and functional impairment, 
atherosclerosis, and colorectal cancer.56,57 It is 
further indicated that a precursor to TMAO, tri-
methyllysine (TML), alone and combined with 
TAMO, is involved in cardiovascular events for 
patients with the acute coronary syndrome.58

Gut microbial dysbiosis

Defining the gut microbiota composition and 
function of metabolically healthy individuals is 
a prerequisite for claiming gut dysbiosis and 
identifying disease-related biomarkers. The 
efforts in this field are encountered with an 
intimidating complexity in the host–microbiota 
interaction, which needs comprehensive, multi-
disciplinary approaches for further elucidation.59 

Although a healthy microbiome composition is 
yet to be determined, the relative alteration of 
gastrointestinal microorganisms in disease 

conditions can be mainly classified as pathobiont 
enrichment, commensal depletion, or diversity 
reduction.60 Pathobionts are among the host 
indigenous microbiome that can trigger or accel-
erate diseases in particular genetic or environ-
mental conditions.61 An increased proportion of 
Enterobacteriaceae, including Escherichia coli, 
Klebsiella spp., and Proteus spp., is a typical 
example of pathobionts enrichment. This family 
of Gram-negative symbionts is commonly over-
grown in multiple inflammatory situations 
including intestinal bowel disease, obesity, celiac 
disease, colon cancer, and antibiotic therapies.62 

In contrast to the overgrowth of pathobionts, the 
gut microbial community frequently suffers 
a tremendous depletion or total loss of some 
commensal bacteria following microbial elimina-
tion or reduced bacterial proliferation.60 

Commensal bacteria are responsible for provid-
ing energy resources for the host enterocytes,63 

inhibiting pathogen colonization,64 preserving 
lymphoid tissue architecture, and regulating the 
immune response.26 Bio-engineered commensal 
supplementation is an innovative strategy, 
recently used for delivering tailored substances 
to target particular metabolic pathways.65 On the 
other hand, a common and recurrent feature of 
disease-related dysbiosis is reduced microbial 
diversity. Although reduced alpha diversity 
might be the effect rather than the cause of 
disorders, this characteristic is correlated to gas-
trointestinal and extra-gastrointestinal diseases, 
such as CD, IBS, colorectal cancer, and 
autism.66 Furthermore, the development of 
a mature microbiome through lifespan highly 
relies on alpha diversity. Interestingly, specific 
bacteria can be used as markers for the develop-
ment and maturation of the microbiota such as 
R. gnavus, which is inversely correlated to 
microbial richness at all ages and reduces from 
childhood toward adulthood.67 Accordingly, 
there is a delicate interaction between gut home-
ostasis and the host biological function. 
Disruption of the intricate equilibrium of meta-
bolic interactions by pathogen colonization or 
microbiota modifying interventions can damage 
the integrity of the gut barrier, change the host 
indigenous bacteria, and further lead to meta-
bolic disorders.
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H. pylori and gut microbiota

The clinical implications of H. pylori infection 
are not limited to gastrointestinal disorders but 
also include H. pylori association with obesity, 
diabetes, IBD, allergic disorders, as well as car-
diovascular, hepatobiliary, skin, kidney, autoim-
mune, neurologic, and psychiatric diseases.68 

This might indicate the importance of 
H. pylori and gut microbiota crosstalk, as sev-
eral mechanisms are reported for this pathogen 
influencing the host microbiome.69 Modulation 
of the host immune response, manipulation of 
the cellular signaling, impairment of the epithe-
lial cell polarity, and alteration of gastric acidity 
are the primary mechanisms contributing to gut 
microbiota alteration during H. pylori 
infection.70 Below, we discuss several aspects 
of H. pylori infection interacting with gastric 
and intestinal microbiome, as well as gut 
microbial metabolites (Figure 3).

Gastric microbiota

In the last decade, several studies have compared the 
gut microbiota composition of H. pylori-infected and 
non-infected individuals, reporting controversial data 
even regarding the diversity and richness of the micro-
bial community.74 It is possibly due to the remarkable 
dependence of microbiota composition on individual 
and environmental factors, such as host genetics, eth-
nicity, geography, socioeconomic status, and diet.75,76 

Furthermore, the microbial community is highly vari-
able along the longitudinal axis of gastrointestinal 
tract. Hence, in a recent study, corpus and antrum 
bacteria were reported to significantly differ between 
individuals positive or negative for H. pylori, while the 
bacterial community from the lower gastrointestinal 
tract and stool samples were comparable.77

Although H. pylori antigen load exhibited a reverse 
relationship with Fusicatenibacter, Alistipes, 
Bacteroides, and Barnesiella genera, gut microbiota 
composition is mainly dominated by the same phyla 

Figure 3. The progression of chronic gastritis toward gastric carcinoma has been characterized by the reduction in the Helicobacter 
genus, overgrowth of opportunistic bacteria, increased apoptosis, necrosis, and collagen production, changes in the cytoskeleton and 
polarity of the gastric epithelium, and gradual suppression of gastric acidity. The main mechanisms of action through which H. pylori 
virulence factors promote the risk of developing gastric cancer are further depicted.71–73
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yet different richness in H. pylori-infected and non- 
infected individuals.72 Streptococcus, Neisseriae, 
Prevotella, Rothia, Fusobacterium, Veillonella, and 
Haemophilus are considered the main gastric bacterial 
genera enriched in H. pylori-positive individuals, 
compared to H. pylori-negative subjects.78,79 

Likewise, the overgrowth of Candida species in the 
stomach has been reported during H. pylori infection, 
which might result in synergistic effects on the 
H. pylori pathogenesis.80 However, H. pylori-induced 
gastric microbiota alteration is strain-specific and 
independent of the host-microbial colonization bur-
den. A recent in vivo study demonstrated the sub-
stantial reduction of Akkermansia, Bacteroides, and 
Lachnospiraceae genera in gerbils infected with 
a cytotoxin-associated gene A (CagA)-positive 
H. pylori strain compared to a CagA-negative strain. 
Yet, comparable alpha diversity for the gastric micro-
biota has been reported for the investigated groups.81 

Furthermore, allelic variation in the H. pylori vacuo-
lating toxin A (VacA) is associated with distinct mod-
ification of the gastric microbiota.82

The microbiome alteration further relies on the 
stages of gastric tumorigenesis along with substantial 
enrichment of oral microbial species including 
Peptostreptococcus stomatis, Streptococcus anginosus, 
Parvimonas micra, Slackia exigua, and Dialister 
pneumosintes toward carcinogenesis.83 Some studies 
reported an increased colonization burden and 
microbial diversity, as well as the overgrowth of 
cancer promoting bacteria in the gastric mucosa of 
patients with gastric cancer compared to 
gastritis.84,85 However, a metagenomics study indi-
cated that the microbiota tends to be gradually 
depleted in the gastric mucosa from non-atrophic 
gastritis toward intestinal metaplasia and gastric 
cancer. In this regard, a significant reduction in 
TM7, Porphyromonas sp, Neisseria sp, and 
Streptococcus sinensis, as well as a substantial enrich-
ment in Lactobacillus coleohominis and 
Lachnospiraceae have been further reported.86

Even though Helicobacter is the most abundant 
genus in chronic gastritis, gastric carcinoma is reported 
with a significant reduction in the proportion of this 
genus. Meanwhile, certain commensals but potentially 
opportunistic pathogenic taxa such as Citrobacter, 
Clostridium, Lactobacillus, Achromobacter, and 
Rhodococcus were found to be enriched among gastric 
microbiota in gastric cancer.87 Another study further 

reported Streptococcus, Lactobacillus, Veillonella, 
Prevotella, Neisseria, and Haemophilus as the highly 
prevalent gastric microbial genera in patients with gas-
tric carcinoma.88 Consistent with the foregoing data, an 
enriched proportion of Fusobacterium, Neisseria, 
Prevotella, Veillonella, and Rothia genera have been 
characterized in patients with advanced gastric lesion 
compared to the healthy/superficial gastritis group.89

Lactic acid bacteria are mainly reported as 
protective bacteria in gastric carcinoma, while 
their increased abundance during cancer pro-
gression might indicate otherwise. Reactive 
oxygen species (ROS), N-nitroso compounds 
(NOC), and lactate production, as well as 
induction of epithelial–mesenchymal transition 
(EMT) and immune tolerance, are among car-
cinogenic factors promoted by lactic acid 
bacteria.90 On the other hand, the destruction 
of stomach hydrochloric acid-producing glands 
by H. pylori infection increases the stomach pH 
and eventually promotes the colonization of 
NOC-producing bacteria.91,92 Veillonella, 
Clostridium, Haemophilus, Staphylococcus, 
Neisseria, Lactobacillus, and Nitrospirae are 
involved in gastric carcinogenesis by NOC pro-
duction and further induction of mutagenesis, 
angiogenesis, and proto-oncogenes expression 
as well as apoptosis prevention.90

Intestinal microbiota

Compared to studies exploring the influence of 
H. pylori on the gastric microbiota, a limited num-
ber of studies investigated the effect of H. pylori on 
the intestinal microbiota. Considering the intestinal 
microbiota at the phylum level, Firmicutes, 
Proteobacteria, Actinobacteria, and Acidobacteria 
have been elevated, while Bacteroidetes has been 
reduced following H. pylori infection.93,94 At the 
genus level, Bacteroides, Barnesiella, Alistipes, and 
Fusicatenibacter have been negatively associated 
with H. pylori stool antigen load.95 Lapidot et al. 
also demonstrated a strong association between 
H. pylori infection and Prevotella copri and 
Eubacterium biforme in school-age children.96 

Additionally, long-term H. pylori infection of 
Mongolian gerbils has been characterized by 
Akkermansia enrichment in the colon.97 

Moreover, Candida glabrata and other unclassified 
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fungi have been reported to be increased in stool 
samples following H. pylori infection in adults.98 

However, regarding the alpha diversity of the 
intestinal microbiota, contradictory reports indi-
cated microbial enrichment,98–100 microbial 
depletion101 or no significant alteration102–104 in 
H. pylori-infected patients. Except for one study, 
no significant alteration has been indicated for 
microbial alpha diversity following H. pylori infec-
tion. This might suggest that H. pylori promotes the 
host’s resilience against microbial depletion, 
reflecting the co-evolution of H. pylori and humans 
over tens of thousands of years.95,105 Furthermore, 
the geological and cultural differences among the 
investigated population might be responsible for 
the inconsistency in the aforementioned 
studies.106 Several aspects of H. pylori-induced 
alteration of intestinal microbiota remain to be 
further investigated. However, H. pylori-induced 
gastric immunopathogenesis including hypochlor-
hydria and hypergastrinemia is held responsible for 
H. pylori-associated intestinal dysbiosis.107,108

Gut metabolome

H. pylori interactions with epithelial cells results in 
disruption of tight junctions and activation of the 
host inflammatory responses (Figure 2).109 This 
recalcitrant pathogen provokes the activity of the 
nuclear factor kappa B (NF-κB) transcription fac-
tor, stimulates the expression of monocyte che-
moattractant protein-1 (MCP-1) from epithelial 
cells to induce monocyte infiltration, and activates 
monocytes through LPS interaction with TLR4. 
Consequently, H. pylori infection leads to the over-
expression of pro-inflammatory cytokines includ-
ing induced nitric oxide synthase (iNOS), tumor 
necrosis factor-α (TNF-α), interferon-gamma 
(IFN-γ), IL-8, IL-6, IL-4, and IL-1β.110

The interaction between H. pylori infection 
and SCFA is far from being fully elucidated, 
yet the reduction of SCFA has been reported in 
the feces of H. pylori-infected mice.111 

Specifically, butyrate promotes intestinal barrier 
function via activating AMP-activated protein 
kinase (AMPK) or inhibiting claudin-2 produc-
tion to stimulate the expression of tight junction 
proteins.40 Through the G protein-coupled 
receptor 4 (GPR4) and mammalian target of 

rapamycin (mTOR)/signal transducer and acti-
vator of transcription 3 (STAT3) signaling path-
way, butyrate promotes AMPs expression in 
epithelial cells. SCFAs might lead to NLR family 
pyrin domain containing 3 (NLRP3) inflamma-
some activation by GPR4 receptor inducing IL- 
18 secretion from the epithelium. GPR109A is 
a surface receptor on DCs and macrophages that 
detects butyrate and further induces the devel-
opment of regulatory T cells (Treg) and prevents 
the proliferation of T helper 17 (Th17) cells.112 

Moreover, butyrate can suppress the production 
of iNOS, TNF-α, IL-6, MCP-1, and IFN-γ by 
inhibiting NF-κB activation.113 On the other 
hand, propionate downregulates the production 
of pro-inflammatory cytokines including IL-4, 
IL-5, and IL-17A, and stimulates Treg cells to 
release the anti-inflammatory cytokine IL-10. In 
LPS-activated monocytes, propionate is reported 
to inhibit TNF-α and iNOS expression.45 It is 
also suggested that the interaction of SCFAs with 
DCs elevates retinoic acid (RA) production and 
consequently increases IgA secretion by B cells 
in lamina propria.114

BAs interaction with bile acid receptor (BAR) in 
LPS-activated macrophages inhibits NF-κB tran-
scription; therefore, downregulates the overexpres-
sion of pro-inflammatory cytokines. Furthermore, 
G-protein-coupled bile acid receptor 1 (GPBAR1) 
activation by BAs stimulates cyclic adenosine 
monophosphate (cAMP) production; therefore, 
BAs interfere with the NF-κB signaling pathway 
either directly or through competition of cAMP 
for the transcription region.115

VacA, as a major virulence factor in H. pylori 
bacteria, induces cellular autophagy to promote the 
growth and colonization of this pathogen in the 
mucosal layer.116 Thereafter, H. pylori may provoke 
the gut microbiome to produce BCAAs isoleucine, 
leucine, and valine, and thereby activates the 
mTORC1 complex to inhibit autophagy within 
the gut epithelium and further induces chronic 
inflammation.117 Another inflammatory metabolite 
in the intestine is TAMO, which induces NF-κB 
activation and promotes the expression of pro- 
inflammatory cytokines; consequently, a positive 
correlation has been reported between TAMO cir-
cular concentration and serum levels of IL-8 and 
TNF-α.118,119
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Microbiome modifying interventions

Antibiotic therapy

Clinical studies have used innovative approaches 
including targeted sequencing of 16S ribosomal RNA 
(rRNA), PICRUSt (phylogenetic investigation of com-
munities by reconstruction of unobserved states), and 
high-throughput DNA sequencing to facilitate the 
identification of microbial gene or taxon as disease 
biomarkers. Nonetheless, intra-individual variability 
of the gut microbiota, as well as microbiologically 
heterogeneous subjects has forced the host–micro-
biota interaction to remain fraught and 
challenging.120 Notwithstanding the individual dis-
tinctions in microbial composition and the enormous 
differences in pathologies of metabolic diseases, inter-
vention in the fragile host-microbiota crosstalk can 
lead to joint and disease-specific alteration in the 
community and activity of gut microbiota. Obesity, 
T2D, cardio-metabolic disease, metabolic liver disease, 
and malnutrition are primary metabolic disorders 
resulting from microbiome dysbiosis.121

Antibiotic treatment as a major disrupter of the 
gastrointestinal microbial community may lead to 
alpha diversity reduction, metabolome alteration, 
and antibiotic resistance.122 Antibiotic administra-
tion not only influences the resistome of the subject 
to whom it is given, but also the whole population 
owing to selection for resistance to its function.123 

The propagation and spread of antibiotic resistance 
genes in the mucus layer is a defensive function for 
gut microbiota to minimize the effect of antibiotics, 
yet short-term antibiotic therapy can cause a long- 
term reduction in certain commensal bacteria.124 In 
addition to the antibiotic-directed modification of 
the gut microbiota, researchers have reported that 
intervention therapies can remodel the gene 
expression and overall metabolic activity of the 
gastrointestinal microbiota.125 Moreover, PPIs as 
essential drugs in H. pylori eradication can directly 
disrupt microbial composition, in addition to 
increasing the stomach pH and thereby influencing 
which bacteria reach the intestine.126 It is also sug-
gested that the gut microbiota response to antibio-
tic treatment is determined by particular bacteria in 
the pre-treatment microbiome; thereby, targeting 
these bacteria may reduce the risk of dysbiosis 
and antibiotic-related metabolic disorders.127

Probiotic supplementation

Multiple microorganisms comply with the defini-
tion of probiotics as live microorganisms providing 
a health benefit when supplemented in sufficient 
amounts.128 The empirical top-down strategy to 
study indigenous bacteria enriched in healthy sub-
jects is still a major approach to identify probiotic 
strains with sufficient beneficial effects on human 
health.129 Common probiotics classify as probiotic 
lactic acid bacteria (LAB) such as Lactobacillus spp., 
Bifidobacterium spp., and Streptococcus spp., non- 
LAB probiotics, such as Clostridium butyricum, 
Bacillus spp., and E. coli Nissle 1917, and next- 
generation probiotics, such as Akkermansia muci-
niohila, Faecalibacterium prausnitzii, and 
Bacteroides species.130

The impact of probiotic supplementation on 
human health has been largely investigated and 
reported to interfere with acute diarrhea, improve 
IBD, reduce the risk for late-onset neonatal sepsis, 
cardiometabolic syndrome, and necrotizing enter-
ocolitis, increase H. pylori eradication rate, decrease 
the prevalence and intensity of respiratory infec-
tion, ease depression and manage atopic 
dermatitis.131 Although several studies have failed 
to investigate mucosal or fecal microbiota compo-
sition of individuals during therapeutic interven-
tions, strong evidence points out that the 
effectiveness of probiotic strains might not rely on 
colonizing the gastrointestinal tract but rather 
reside in their capacity of sharing genes and meta-
bolites, reinforcing disturbed bacteria, and directly 
affecting the gut barrier and immune cells.132 The 
differences in responding to the same probiotic 
supplementation in healthy adults further suggest 
that an individual’s basal gut microbiota influences 
the body’s response to probiotic strains.133 

Considering the variabilities in the host genetics, 
diet, disease-associated dysbiosis, and indigenous 
gut microbiota composition, the responses to the 
same intervention therapy might differ within the 
study population.

Next-generation probiotic supplementation

Next-generation probiotics, also termed as live 
biotherapeutics, emphasize emerging microorgan-
isms not being used as health-promoting factors to 
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date, which will probably be taken under a drug 
regulatory framework. Regarding the importance of 
the gut microbiota, these probiotic strains mainly 
originate from the human microbiome symbionts 
including A. muciniphila, F. prausnitzii, and several 
Bacteroides species.134 A. muciniphila as an abun-
dant bacterium within the host intestine is involved 
in regulating metabolic pathways, modulating the 
immune response, and preserving the intestinal 
barrier.135 The prevalence of this bacterium is nega-
tively associated with obesity, T2D, IBD, and 
appendicitis.136 Daily administration of 1010 

A. muciniphila bacteria to obese volunteers for 
90 days is reported to reduce insulin resistance, 
plasma cholesterol, and the risk for developing 
liver dysfunction and inflammation, whereas no 
significant alteration is demonstrated in the gut 
microbiota.137 On the other hand, F. prausnitzii is 
reported to be reduced in patients with IBD,138 

IBS,139 colorectal cancer,140 obesity, and 
diabetes.141 Owing to the oxygen sensitivity of this 
bacterium and several other candidate strains, little 
is known about their efficiency and safety as pro-
biotic supplements.142 It is suggested that prebiotic 
co-supplementation with next-generation probio-
tics may promote the survivability and activity of 
probiotic strains in the human gut.143 Nevertheless, 
the development of gastrointestinal modeling 
through organoid technology can deepen our 
knowledge of the complexity of probiotic-host 
interaction and provide the opportunity of design-
ing personalized therapeutics and develop next- 
generation probiotics.144

H. pylori eradication

International guidelines highly recommend H. pylori 
eradication for individuals who test positive.145,146 

According to the test-and-treat strategy, randomized 
clinical trials were conducted to demonstrate the 
long-term safety of H. pylori treatment and further 
report that despite the transient alteration in gastro-
intestinal microbiota and elevation in specific anti-
biotic resistance, this perturbation diminished 
8 weeks or one year after treatment. Meanwhile, 
the reduction in insulin resistance and triglyceride 
serum concentrations were demonstrated as the 
advantages of H. pylori management.147 Moreover, 
the incidence of developing gastric carcinogenesis 

can be decreased by 50% following therapeutic man-
agement of H. pylori infection.148 However, H. pylori 
eradication not only stimulates gut dysbiosis but 
may also selects out drug-resistant species from the 
gut microbiota and further expands single-drug 
resistance (SDR) and multiple-drug resistance 
(MDR) mechanisms in other microbial species.149 

Furthermore, H. pylori eradication can lead to 
major drug-related side effects including T2D and 
gastric adenocarcinoma.150,151 The tight interaction 
of the gastrointestinal microbiota and host wellness, 
as well as microbiome alteration and alpha diversity 
reduction during intervention therapies suggest 
a substantial involvement of the host microbiota in 
the adverse effects of H. pylori treatment.152

As the gut microbiota can potentially spread the 
resistance genes from commensals to pathogens 
and regulate the host bioactivity,54 reducing anti-
biotic resistance genes and preserving the intrinsic 
gut microbiota composition might increase 
H. pylori eradication rate and reduce collateral 
damages. Probiotic supplementation during treat-
ment can preserve the host indigenous microbiota, 
facilitate rebiosis, and restore the intrinsic balance 
of bacteria in the gastrointestinal tract.153,154 It has 
been recently indicated that probiotic administra-
tion reduces the resistome configuration in coloni-
zation-permissive individuals. However, post- 
treatment probiotic supplementation has been 
reported to inhibit the reduction of antibiotic resis-
tance genes number and further spread the resis-
tance mechanisms in the intestinal mucosa.155 

Cifuentes et al. reported a substantial reduction in 
resistant genes for lincosamides, tetracyclines, 
MLS-B (macrolide, lincosamide, and streptogramin 
B), and beta-lactam class following Saccharomyces 
boulardii CNCM I-745 supplementation during 
H. pylori eradication.156 Moreover, a recent meta- 
analysis of 5792 cases indicated that probiotic sup-
plementation significantly increases the H. pylori 
eradication rate. Zhang et al. further reported that 
long-term (>10 days) probiotic administration 
leads to a statistically higher eradication rate com-
pared with short-term administration.157 However, 
limited effectiveness has been obtained in H. pylori 
eradication through probiotic supplementation as 
the main treatment strategy without being co- 
supplemented with conventional antibiotic 
regiments.158
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Owing to the high prevalence of H. pylori infec-
tion in childhood, mostly adolescence, or young 
adulthood should be considered for screening 
studies.148 Clinical symptoms, epidemiology, diag-
nostic approaches, antibiotic susceptibility, and 
treatment strategies for H. pylori infection signifi-
cantly differ from the ones in adults and 
children.159 Yet, significant improvement has been 

obtained in H. pylori management, decreasing clin-
ical manifestations, and the incidence of antibiotic- 
related side effects through probiotic supplementa-
tion in children. Lactobacillus casei strains and 
multi-strain consortia of Lactobacillus acidophilus 
and Lactobacillus rhamnosus are reported as the 
foremost adjuvant supplement in promoting 
H. pylori eradication rate and reducing drug- 

Figure 4. The interplay between probiotic strains, H. pylori, and the host immune system. Several probiotic strains can directly 
eliminate H. pylori cells by producing bacteriocins, siderophore, hydrogen peroxide, biosurfactant, lactic acid, and SCFAs. Probiotic 
bacteria can retain the activity of the gut barrier by stimulating the production of mucin and tight junction proteins. Certain probiotic 
species preserve the inherent structure of the gut microbiota by increasing the concentration of AMPs, peptidoglycan hydrolase, and 
exopolysaccharides. Furthermore, several probiotic bacteria regulate the host inflammatory response and prevent the development of 
chronic inflammation.
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associated adverse effects in children, respectively.160 

However, major limitations to meta-analysis studies 
include the different study designs, the wide spec-
trum of the co-supplemented antibiotic regimen, 
and the few studies conducted on the same probiotic 
strain.160

Probiotics mechanism of action in modulating 
H. pylori infection

Studies have indicated that advantageous impacts of 
probiotics against H. pylori infection occur through 
a variety of mechanisms, such as reinforcement of 
gut mucosal barrier, elimination of pathogens, 
enhancement of the host immune system, and 
microbiome modification (Figure 4).161 Several pro-
biotic species are antagonistic toward invasive patho-
gens, yet in H. pylori eradication, solid proof 
indicates that probiotics mainly reduce antibiotic- 
induced side effects.162 However, there are consider-
able limitations in these mechanistic studies includ-
ing high reliability on cell-culture systems not 
attributed to complex intestinal environment and 
low colonization capacity of human probiotic strains 
in the gastrointestinal tract of mice models.131 

Nonetheless, multiple key mechanisms are demon-
strated for probiotic administration in clinical, 
in vitro, and in vivo studies, as detailed further 
below.

Promotion of mucosal barrier

The gastrointestinal epithelium as the front line of 
the host innate defense against pathogenic invaders 
is required to preserve the integrity of the gastro-
intestinal barrier. Despite the uncovered mechan-
isms concerning the exact relationship between the 
intestinal barrier and inflammatory disorders, 
a defective epithelial barrier rather than immune 
dysfunction may result in chronic inflammation.163 

Accordingly, H. pylori-associated carcinogenesis is 
either indirectly accelerated by chronic inflamma-
tion and tumorigenesis or directly through induc-
tion of epigenetic alteration in the gastric epithelial 
cells by bacterial factors.164

The protective properties of the mucosal barrier 
largely rely on the gut microbiota community and 
their components and metabolites. Due to the 

presence of mucin glycan, the so-called mucus- 
associated microorganisms can colonize and attach 
to the intestinal mucus layer.165 Recent advances in 
characterizing the beneficial mechanisms of com-
mensal bacteria have led to novel strategies to 
maintain and promote intestinal barrier function. 
Lactobacillus plantarum ZS2058 as a probiotic can 
preserve the gut barrier function and permeability 
by modulating the expression of tight junctions and 
improving the intestinal epithelium.166 

L. plantarum 299 v and L. rhamnosus GG promote 
the expression of key mucin genes mucin 2 
(MUC2) and MUC3 to maintain the integrity of 
the intestinal barrier.167 Moreover, L. plantarum 
ZS2058 is reported enhancing the host defense pep-
tides such as pBD2 and PG1-5; therefore, elevating 
the intestinal barrier function.166 As a key bacter-
ium in healthcare-related gastrointestinal infection, 
Clostridioides difficile colonization in the intestine 
contributes to nosocomial diarrhea with significant 
morbidity and mortality.168 For which, 
Lactobacillus reuteri LMG P-27481 is demonstrated 
to provoke IL-10 production in immature DCs, 
repair the mucosal barrier function, and obtain 
a distinguish outcome in preventing C. difficile 
colonization and toxin load possibly by expressing 
bioactive molecules including exopolysaccharide 
and peptidoglycan hydrolases.169

H. pylori can overcome the epithelial barrier by 
mislocalizing or reducing the expression of tight 
junction transmembrane protein components 
including junctional adhesion molecule A (JAM- 
A) and further disrupt the tight junctional defense 
barrier.170 The aforementioned mechanism high-
lights the activity of probiotics, such as 
L. rhamnosus GG, L. acidophilus, L. plantarum 
MB452, Bifidobacterium infantis BB-02, and 
E. coli Nissle 1917 that stimulate TLR activation 
and further promote epithelial barrier by regulation 
of tight junction proteins production.171 

Nevertheless, some strains such as Lactobacillus 
amylovorus DSM 16698 T and Lactobacillus jense-
nii TL2937 negatively regulate TLR activation to 
inhibit the expression of pro-inflammatory cyto-
kines IL-8 and IL-1β. Moreover, Bifidobacterium 
longum BB536 and Bifidobacterium breve M-16 V 
can significantly suppress IL-8, IL-6, and MCP-1 
secretion by inhibiting activator protein 1 (AP-1) 
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and NF-κB activation through interaction with 
TLR and increasing the expression of ubiquitin 
editing protein A20.172

Secretion of antimicrobial substances

Lactic acid, SCFAs, hydrogen peroxide, and bacter-
iocin are the major antibacterial substances 
secreted from probiotics. The incomplete ioniza-
tion of lactic acid and SCFAs act as proton carriers, 
lowering the cytoplasmic pH and accumulating 
toxic anions to prevent H. pylori colonization. 
Probiotics can further eliminate H. pylori by gen-
erating hydrogen peroxide (H2O2) and damaging 
pathogenic proteins, membrane lipids, and DNA of 
the bacterial cell.173 However, due to their oxygen 
tolerance, lactic acid bacteria have anti-oxidative 
properties suppressing oxidative stress through 
radical scavenging, metal ion chelation, antioxidant 
enzyme expression, and host antioxidant and ROS- 
producing enzyme regulation.174

Bacteriocin expression has been considered as 
a pivotal property of probiotics to inhibit pathogen 
colonization and obtain a competitive advantage. The 
antimicrobial mechanisms of action differ among 
bacteriocins, yet common mechanisms are the eleva-
tion of membrane permeability and prevention of 
nucleic acid and/or cell wall protein synthesis.175 

Bacillus subtilis 3, Weissella confuse PL9001, 
Lactobacillus gasseri Kx110A1, Lactobacillus brevis 
ATCC 14869, Lactobacillus bulgaricus, and L. reuteri 
ATCC 55730 demonstrated inhibitory activity against 
H. pylori through bacteriocin production.167,173 Less- 
studied antimicrobial compounds in probiotics are 
siderophores that prevent pathogen access to iron, 
biosurfactants that interrupt or lyse pathogen cell 
membrane, and adhesion inhibitors, which interfere 
with the pathogen adhesion to epithelial cells and 
consequently prevent its virulence function.175

Immune promotion

Probiotic strains may indirectly suppress H. pylori 
infection through the host immune response pro-
motion by stimulating the activity of phagocytoses 
and natural killer (NK) cells, modifying phenotype 
and cytokine pattern of DCs, as well as increasing 
antibody and anti-inflammatory cytokines 
secretion.176 Interestingly, researchers reported 

that viable and non-viable bacteria had a different 
impact on the host cellular gene expression, sug-
gesting the importance of both microbial cell sur-
face and actively released substances on the gut 
transcriptome.177

B. infantis 35624 and B. breve YIT10347 activate 
the intestinal DCs by interacting with TLRs and 
stimulating RA metabolism. As a result, DCs acti-
vation elevates the expression of IL-10 and the 
number of Foxp3+ Treg and type 1 regulatory 
T (Tr1) cells. Moreover, L. rhamnosus GG and 
L. acidophilus can reduce the number of Th17 
cells and the expression of IL-23 and IL-17 cyto-
kines through prevention of STAT3 and NF-κB 
signaling and further shift the balance between pro- 
inflammatory M1 and immunosuppressive M2 
macrophage toward M2 phenotype.178 In contrast, 
Bifidobacterium animalis spp. lactis Bl 5764 is able 
to promote IL-17A expression by CD4+ 

T lymphocytes in vitro. L. reuteri Lr 5454 co- 
culture with DCs can promote Tregs, and regener-
ating islet-derived protein 3-beta (Reg3b) expres-
sion in a NOD2-dependent manner and further 
induce IL-22 production.179 IL-22 plays an impera-
tive role in preserving gut homeostasis and tissue 
regeneration. Furthermore, this cytokine acceler-
ates the colonization of Phascolarctobacterium bac-
terium and thereby prevents C. difficile infection 
(CDI).180

Immunoglobulin A (IgA) as the main immu-
noglobulin isotype in the gut mucosa, regulates 
bacterial translocation and interferes with bac-
terial toxicity.181 L. acidophilus and B. longum 
are the major probiotic species demonstrated to 
increase IgA production from B cells in the 
intestinal lamina propia.182 Intestinal secretory 
IgA antibodies coat bacteria to prevent them 
from adhering the epithelium and barricading 
inflammation development. However, in vitro 
studies indicated that commensal microorgan-
isms coated with IgA can grow without remark-
able alteration. Moreover, high-affinity IgA 
coating elevates the risk of bacterial invasion 
and activation of inflammatory pathways. As 
H. pylori expresses receptors detecting IgA gly-
coprotein motifs, IgA attachment to these sur-
face receptors improves H. pylori adhesion to 
the epithelial layer and facilitates its 
colonization.183
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Probiotic supplementation and gut microbiota 
alteration

Regarding H. pylori eradication, multiple studies 
investigated the impact of probiotic administration 
on the gut microbiota composition (Table 1). In the 
following sections, we aim to discuss the bioactivity of 
microbiota that noted significantly altered within the 
gastrointestinal tract of individuals who underwent 
H. pylori eradication by probiotic supplementation.

Single-strain probiotic supplementation

C. butyricum is an anaerobic bacterium that con-
sumes undigested dietary fibers and mainly pro-
duces butyrate and acetate. Although some 
C. butyricum strains are equipped with toxins, 
others are antibiotic-sensitive and free of patho-
genic markers and clostridial toxin genes.193 In 
particular, C. butyricum CBM 588 can inhibit gas-
trointestinal inflammation and side effects of anti-
biotic treatments, such as diarrhea. Consequently, 
oral administration of this probiotic might prevent 
inflammation-associated diseases such as UC.194 

Chen et al. reported that C. butyricum CBM 588 co- 
supplementation with H. pylori quadruple therapy 
exhibited a significant reduction in Fusobacteria 
and Tenericutes phyla as well as an increase in 
Actinobacteria phylum following H. pylori eradica-
tion. However, Lactococcus raffinolactis, 
Lactobacillus sakei, and Acinetobacter baumannii 
NIPH60 were significantly increased only in the 
antibiotic group.99

Disregarding health conditions, over 100 uncul-
tured Tenericutes have been recently discovered in 
the human gastrointestinal metagenome. Although 
the complex behavior of this phylum is not fully 
understood, Tenericutes bacteria in the host gastro-
intestinal tract demonstrated a substantial reduc-
tion in their genomes and metabolic capacities 
compared to environmental Tenericutes.195 

Furthermore, Tenericutes is suggested to play 
a key role in the host metabolic pathways, such as 
bile acid metabolism.196 However, pathogenic spe-
cies of this phylum are presented with virulence 
factors including hydrogen peroxide, toxins, sur-
face polysaccharides, and sialic acid catabolism.195 

Therefore, the reduction in the population of this 
taxon may cause various metabolic changes in the 

host, which needs further in-depth investigations at 
the strain level. Moreover, Fusobacteria is not pre-
valent nor relatively enriched in non-colorectal 
cancer individuals.197 This genus can stimulate can-
cer cell survival through modulation of STAT3, 
janus kinase 1 (JAK1), and MYC oncogenes and 
further induce tumor cell invasion by promoting 
IL-8 expression.198 Consequently, Fusobacteria 
depletion in the probiotic supplemented group 
may indicate a potentially beneficial effect for 
C. butyricum CBM 588 consumption during 
H. pylori eradication. On the other hand, 
A. baumannii bacteria are opportunistic pathogens 
and mainly contribute to ventilator-associated 
pneumonia and bloodstream infections.199 This 
pathogen has become a global health-care problem 
owing to the several mechanisms underlying its 
antibiotic resistance.200 As a result, the enrichment 
of this pathogenic species in the antibiotic group is 
consistent with the foregoing favorable effective-
ness of probiotic administration. However, 
L. sakei that enriched in the antibiotic group is 
beneficially involved in obesity, cardiovascular dis-
ease, and gastrointestinal inflammation.201

Enterococcus faecium strains are particularly 
adaptive to their respective environment owing to 
their salt and acid tolerance. Although E. faecium 
are antibiotic-resistant infectious agents, they are 
hardly reported to induce infection in the human 
body. Moreover, certain E. faecium and E. faecalis 
strains are the only enterococci bacteria supple-
mented as probiotics.202 Biofermin-R (multidrug- 
resistant preparation of E. faecium 129 BIO 3B-R) 
administration with H. pylori triple therapy 
demonstrated beneficial advantages.188 This pro-
biotic strain was reported to promote Blautia 
genus colonization, which is most commonly 
accompanied by probiotic activities.203 The 
reduced proportion of Bifidobacterium genus in 
the antibiotic treated group further highlights the 
delicate impact of Biofermin-R supplementation on 
preserving the abundance of probiotic genera 
among gut bacteria.

Multi-strain probiotic supplementation

A randomized, controlled trial conducted in 
Germany demonstrated the advantage of probiotic 
co-supplementation in H. pylori eradication.190 In 
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this study, the intestine of probiotic supplemented 
individuals was the residence of a higher propor-
tion of Slackia bacteria that are suggested benefi-
cially involved in the host isoflavone, fat, and 
energy metabolism.204,205 On the other hand, 
Fusobacterium that was enriched in the antibiotic 
group was correlated to digestive disorders, gastro-
intestinal inflammation, and colorectal 
carcinoma.206,207 However, Desulfovibrio, as Gram- 
negative sulfate-reducing bacteria, produce hydro-
gen sulfide and lipopolysaccharide and might con-
tribute to the pathogenesis of Parkinson’s 
disease;208 consequently, the increased proportion 
of these bacteria in the gut bacterial community 
may cause post-therapy adverse effects following 
probiotic consumption. Moreover, 
Methanobrevibacter that enriched in the probiotic 
group are reported more abundant in Parkinson’s 
disease and gut dysbiosis.209 On the other hand, 
Roseburia, as major butyrate-producing bacteria 
in the intestine, can reduce oxidative stress, repair 
intestinal mucosa, and suppress intestinal 
inflammation.210 Therefore, the increased abun-
dance of Roseburia bacteria in the antibiotic group 
may accelerate gut rebiosis after H. pylori 
treatment.

B. subtilis bacteria are consists of mesophilic, 
neutrophilic, and some pH tolerant strains with 
the capacity to produce a vast diversity of antimi-
crobial compounds.211 Several studies used 
B. subtilis and E. faecium combination as oral sup-
plemented probiotic and further evaluated their 
synergic effect on H. pylori eradication, such as 
the research conducted by Oh et al. exhibiting 
that resistant bacteria to clarithromycin and amox-
icillin, including Citrobacter, Klebsiella, 
Pseudomonas, and Escherichia, were significantly 
enriched in the antibiotic group than probiotic- 
supplemented group.184 Klebsiella pneumoniae, 
known as Gram-negative opportunistic pathogens, 
are responsible for the respiratory tract, urinary 
tract, and bloodstream infections. Due to the anti-
biotic resistance and hypervirulent characteristic of 
Klebsiella pneumoniae strains, clinical management 
of this pathogen has become progressively 
challenging.212 Oh et al. further reported the 
increased abundance of Prevotella stercorea in the 
antibiotic group, whereas Lactobacillus ruminis 
were enriched in the probiotic group.185 

P. stercorea has been suggested to be positively 
correlated with the expression of mucosal pro- 
inflammatory cytokines especially TNF-α.213 

Despite the poorly understood interaction of 
L. ruminis with the host biofunction, these bacteria 
may stimulate immune response through TLR2- 
mediated NF-κB activation and inhibit the growth 
of pathogens by acid secretion and competition for 
binding sites.214

As a result of probiotic administration for 
H. pylori treatment, Tang et al. reported the enrich-
ment of beneficial bacteria including Oscillospira, 
Lactobacillales, and Phascolarctobacterium in the 
feces of probiotic-supplemented individuals.189 

Although some studies indicated a positive correla-
tion between Oscillospira and intestinal inflamma-
tion, it has been demonstrated that the relative 
abundance of Oscillospira is negatively associated 
with the expression of pro-inflammatory MCP-1, as 
well as the development of UC, IBD, and pediatric 
nonalcoholic fatty liver disease (NAFLD); there-
fore, Oscillospira is a candidate for the next- 
generation probiotics.215 Moreover, Lactobacillales 
of the Bacilli family can stimulate the innate and 
adaptive immune system and suppress inflamma-
tion by regulating IL-17 production.216 

Phascolarctobacterium are reduced in hepatitis 
B virus-infected patients217 as well as individuals 
with postpartum depression disorder.218 As succi-
nate consumers, Phascolarctobacterium bacteria 
can interfere with the colonization of succinate- 
consuming bacteria; therefore, preventing CDI.219 

On the other hand, pathogenic bacteria have been 
reported to be enriched in the antibiotic group as 
Dialister, Sutterella, and Collinsella are mainly 
responsible for gut inflammation, liver diseases, 
and digestive disorder.220–222 Furthermore, 
Anaerotruncus that enriched in the antibiotic 
group are butyrate-producing bacteria with 
a positive correlation to saturated fatty acid and 
cholesterol intake; therefore, they are involved in 
obesity and NAFLD-associated hepatocellular car-
cinoma (HCC).223,224 Citrobacter genus presented 
a low virulence activity following their colonization 
in the gastrointestinal tract. However, increased 
abundance of Citrobacter species might lead to 
severe diseases in respiratory and urinary tract, 
central nervous system, bloodstream, and intestines 
in the probiotic supplemented patients.225 
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Anaerofustis genus is associated with movement 
and psychiatric disorders as well as pro- 
inflammatory activities.226 Furthermore, decreased 
starch degradation, possibly as a result of Collinsella 
reduction, leads to low levels of SCFAs production 
and weakens the gut epithelial barrier and host 
immune response in the probiotic group.227 

Moreover, certain commensal bacteria including 
Megasphaera, Ruminococcus, and Coprococcus 
were significantly increased in the antibiotic 
group. Although some studies indicated that 
Ruminococcus species, particularly Ruminococcus 
gnavus, are correlated with T2D, CD, and 
UC,228,229 certain species such as Ruminococcus 
bromii, are abundant in healthy individuals and 
may lower cardiovascular risk and provide anti- 
inflammatory compounds through carbohydrate 
degradation.230,231 Furthermore, the proportion of 
gut Ruminococcus species is possibly associated 
with the number of CD8+ Treg cells in the human 
body, and thereby Ruminococcus bacteria may 
lower the risk for developing type 1 diabetes 
(T1D).232 Megasphaera are capable of SCFAs 
synthesis, osmotic diarrhea regulation, and host 
immune response promotion.233 Moreover, 
Coprococcus are inversely correlated to depression, 
lung cancer, and Parkinson’s disease.234–236

In consistent with the aforementioned studies, 
Wu et al. reported Dialister and Plesiomonas as the 
main genera in the patients undergoing H. pylori 
triple therapy regimen,186,187in which Plesiomonas 
shigelloides, as a single species in the Plesiomonas 
genus, is involved in gastrointestinal disorders 
including gastroenteritis and diarrhea.237 

Nevertheless, some pathogenic bacteria, such as 
Achromobacter, Actinomyces, and Cupriavidus, 
were enriched during the study follow-up of the 
probiotic-supplemented group.

Non-viable probiotic supplementation

The capacity of supplemented probiotics to tem-
porarily or persistently colonize the gut mucosa 
and whether it is essential for their effects on the 
host biofunction are yet to be fully elucidated. A vast 
majority of researchers examined the successful pro-
biotic colonization in the host mucosal layer by the 
proportion of probiotic bacteria in stool without 

direct assessment of mucosal samples.238 In 
a recent study, the comparison of fecal and mucosal 
expansion of supplemented probiotic species 
demonstrated that fecal presence of probiotic strains 
cannot identify permissive and resistant individuals, 
suggesting the passage of probiotic bacteria through 
the gastrointestinal tract without substantial adhe-
sion nor colonization.239 Consequently, some studies 
investigated the effects of probiotic strains without 
the colonization capacity through the administration 
of dead and inactivated microorganisms, also termed 
as paraprobiotics.

Through leveraging a non-viable probiotic to 
reduce the cost and biological risk of treatment, 
Yang et al. demonstrated Fusicatenibacter, 
Bacteroides, Faecalibacterium, and Subdoligranulum 
as the main genera in the stool sample of individuals 
undergoing H. pylori triple therapy plus probiotic 
regimen.191 Several Bacteroides species are commensal 
bacteria providing nutrition and vitamins and playing 
a key role in cancer immunotherapy and 
prevention.240 Faecalibacterium genus mainly pro-
mote the host immune system by producing anti- 
inflammatory substances such as butyric acid and 
bioactive peptides; thereby, the reduced proportion 
of Faecalibacterium bacteria is correlated with the 
progression of IBD.241 Although the exact bioactivity 
of Subdoligranulum are not fully understood, this 
genus is suggested to have probiotic properties, parti-
cularly in the host metabolic health.242 Moreover, 
Fusicatenibacter are involved in butyric acid produc-
tion and inversely correlated with IL-8 expression.243 

On the other hand, Escherichia-Shigella, as the abun-
dant bacteria in the antibiotic group, are associated 
with macrophage cell death, gut inflammation, and 
diarrhea.244,245

A recent study conducted in China reported the 
advantage of multi-strain probiotic administration 
in which detrimental bacteria were enriched in the 
antibiotic group while commensal bacteria were 
more abundant in the probiotic group.192 

Lachnospiraceae UCG 006 and Eubacterium ventrio-
sum, as commensal bacteria, can protect the human 
intestinal against colorectal cancer by producing 
SCFAs.246,247 Furthermore, Ruminococcaceae bac-
teria are one of the main butyrate producers in the 
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human digestive tract; therefore, promoting the 
integrity of the gut barrier.248 On the other hand, 
the increased proportion of Leptotrichia is a risk 
factor for colorectal cancer;249 however, certain 
Leptotrichia species might be inversely correlated to 
pancreatic cancer.250 Moreover, Leptotrichia is 
reported as an oral health-related genus, substan-
tially enriched in healthy individuals without dental 
caries experience.251

As one of the major causes of gastroenteritis, 
Campylobacter genus prevalence increased during 
the last decade globally. Well-studied species within 
the Campylobacter genus are C. jejuni and C. fetus, 
mainly responsible for the vast majority of reported 
Campylobacter infections and bloodstream infections, 
respectively.252 Therefore, the enhanced colonization 
of Campylobacter bacteria in the antibiotic group may 
further emphasize the beneficial effect of paraprobio-
tic consumption. Although Erysipelatoclostridium are 
SCFAs producers, the relative abundance of this 
genus is demonstrated to be enriched in the intestine 
of patients with gout, metabolic syndrome, and 
IBS.253,254 Furthermore, Ralstonia is a genus of Gram- 
negative opportunistic bacteria causing infection in 
immunocompromised hosts.255 However, these bac-
teria are more abundant in H. pylori-negative indivi-
duals than infected patients.256 Consequently, 
Erysipelatoclostridium and Ralstonia enrichment 
may increase the risk of developing gastrointestinal 
inflammation and immune disorders in the antibiotic 
group.

The pros and cons of probiotic supplementation

While the safety of probiotic strains constitutes 
decades of ongoing conflict, researchers have gen-
erally reported beneficial advantages of probiotic 
supplementation in maintaining the host indigen-
ous microbiome and reducing drug-related adverse 
effects.257 Notwithstanding, probiotic-induced 
adverse effects are poorly investigated and less 
noted in clinical trials.258 It has been recently indi-
cated that the exposure of neonates to probiotic 
species is associated with a higher risk of oral, 
respiratory, and gastrointestinal infection through-
out the lifespan.259 Furthermore, probiotic co- 

supplemented therapies, especially with 
Lactobacillus species, might be correlated with 
a delayed and incomplete post-antibiotic recovery 
of normal host–microbiome balance resulting in 
a long-term gut dysbiosis.260

Although fecal microbial composition may not 
exactly indicate the intestinal mucosa-adherent 
microbiome,261 only a limited number of clinical 
trials have investigated the influence of probiotic 
consumption on the gastrointestinal microbiota 
in situ. Thus, till the performance of more accurate 
studies, comparing the microbiota profile of 
patient’s stool sample following probiotic interven-
tions and various other conditions may roughly 
represent the long-term safety and efficacy of pro-
biotic supplementation. In this regard, 
C. butyricum CBM 588 co-supplementation99 may 
inhibit the replication of commensal bacteria and 
cause metabolic disorder, meanwhile reducing the 
risk of colorectal cancer and preventing the over-
growth of certain opportunistic pathogens. 
Furthermore, consumption of single-strain probio-
tic Biofermin-R188 may potentially promote the 
colonization of commensal bacteria.

Concerning multi-strain probiotic supplementa-
tion, results from the study by Guillemard et al.190 

indicate the possibility of developing Parkinson’s 
disease and depletion of key butyrate-producing bac-
teria. However, this study may further point out the 
beneficial effect of probiotic supplementation 
through regulating the host isoflavone, fat, and 
energy metabolism, and reducing the risk of devel-
oping digestive disorders, gastrointestinal inflamma-
tion, and colorectal carcinoma. On the other hand, 
B. subtilis and E. faecium administration184,185 can 
inhibit the colonization of some opportunistic 
pathogens and potentially prevent respiratory tract, 
urinary tract, and bloodstream infections, as well as 
gastrointestinal inflammation. Gastrointestinal 
microbiota alteration following probiotic supple-
mentation in the Tang et al.189 study further indi-
cates the capacity of probiotic strains to prevent 
intestinal inflammation, as well as the development 
of UC, IBD, NAFLD, and CDI. However, the persis-
tence of pathogenic genera in the probiotic supple-
mented group may provoke the emergence of severe 
gastrointestinal and extra-gastrointestinal diseases. 
Moreover, Wu et al.186 reported the enrichment of 
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pathogenic bacteria in both the probiotic and the 
antibiotic groups. This might indicate limited effec-
tiveness for the consumed probiotic strains in mod-
ulating drug-related adverse events.

Data from the study by Yang et al.191 may 
demonstrate the potential capacity of paraprobiotic 
consumption in promoting the host immune 
response, preventing intestinal inflammation and 
IBD development, and improving nutritional avail-
ability. Likewise, paraprobiotic administration192 

may also promote the replication of SCFA- 
producing bacteria and prevent colorectal cancer, 
and preserve the integrity of the gut barrier. This 
might further inhibit pathogen colonization and 
lower the risk of developing bloodstream infection, 
metabolic syndrome, and IBS.

Limitations and outstanding questions

Extensive complexity might describe the foremost 
characteristic of the host-microbiota multifaceted 
interplay. The individual gut microbiota composi-
tion at deep resolution levels and enormous struc-
tural diversity affecting bacterial functionality 
remain the challenge of grasping a profound 
knowledge in the field of host health and probiotic 
supplementation. This complexity leads to major 
limitations in determining the source of metabo-
lites as host, probiotic, or indigenous microbiota;54 

understanding the whole spectrum of condition- 
dependent and dose-dependent influence of pro-
biotics; and exploring probiotic-host interaction in 
cell-culture systems or animal models.131 These 
limitations are frequently intermingled in ways 
that force conceptual and statistical interpretation 
toward substantial challenges. Nonetheless, several 
cohort studies with probiotic-oriented approaches 
guided experimental reductionism to elucidate 
mechanistic comprehension regarding probiotic 
involvement in human health and disease. 
Furthermore, the introduction of specific micro-
biome including probiotic strains into organoids 
by microinjection is a novel strategy to investigate 
the accurate cause and effect interaction between 
the host and microbiome.262

Recent advances in the knowledge about micro-
biota and the presentation of innovative experi-
mental techniques would enable the integration of 
strain-specific features of probiotics and 

consideration of biologically related notions to 
accelerate the development of tailored therapeutics. 
The clinically controlled trials are the most practi-
cal way toward probiotic strain selection, in which 
a mechanism-oriented strategy should be pursued 
and certain questions should be contemplated. Is 
the probiotic interaction with the host mediated 
through the secretion of metabolites and alteration 
of the gut microbiota or colonization of the intest-
inal surface or other possible contact-dependent 
interactions? Should a next-generation probiotic 
strain be considered safe to provide a medical 
advantage in therapeutic interventions? What are 
the long-term consequences of probiotic-mediated 
alteration of the host microbiome? These critically 
important questions might be resolved by the novel 
paradigms of microbiome-on-a-chip technology, 
which can provide the real-time assessment of the 
host-microbiome interaction and explore the emer-
gence of microbiome-related therapeutics.263

Conclusions and outlook

The oral supplementation of a narrow diversity of 
Gram-positive bacteria demonstrated distinct ame-
lioration in H. pylori-related clinical symptoms; 
however, the identified alteration in the gut micro-
biota demonstrates the possibility of intestinal or 
extra-gastrointestinal disease development later in 
life. Considering the enriched and depleted genera 
in the stool samples of probiotic-supplemented 
individuals, oral administration of multi-strain 
probiotics and paraprobiotics than single-strain 
probiotics might reduce the incidence of develop-
ing metabolic disorders. Yet, various characteristics 
of different strains in a common genus require 
innovative clinical approaches with high- 
throughput sequencing technology to determine 
gut microbiota alteration at the strain level.

Recent studies have expressed the intention of 
seeking next-generation probiotics and genetically 
modified microorganisms to promote the beneficial 
effect of probiotic supplementation in clinical out-
comes. Concerning current probiotic strains, two 
main strategies are suggested for developing next- 
generation probiotics. One way is to identify the 
presence or absence of particular strains within the 
disease condition and investigate the efficiency of 
supplementing those strains to recover the health 
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state. Another strategy is to harness a well- 
characterized probiotic strain to express 
a particular metabolites such as AMPs.264 Recent 
discoveries in biotechnology will accelerate the 
emergence of novel candidate probiotic strains and 
facilitate the transition from empiric into target- 
oriented interventions. Furthermore, the integration 
of nanotechnology with microencapsulation strate-
gies may efficiently enhance the probiotic delivery 
system and thereby provide a regulatory framework 
to reduce the metabolic consequences of probiotic 
supplementation. Large-scale population studies 
with broad-spectrum antibiotic regimens and pro-
biotic strains, as well as germ-free mice modeled by 
the human microbiome, will shed light on the long- 
term outcome of probiotic supplementation and 
elucidate unconventional ways to leverage diet and 
clinical interventions and personalize them to the 
subjects’ biology and microbiota.
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