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Abstract: As the performance of devices that conduct large-scale computations has been rapidly
improved, various deep learning models have been successfully utilized in various applications.
Particularly, convolution neural networks (CNN) have shown remarkable performance in image
processing tasks such as image classification and segmentation. Accordingly, more stable and robust
optimization methods are required to effectively train them. However, the traditional optimizers
used in deep learning still have unsatisfactory training performance for the models with many layers
and weights. Accordingly, in this paper, we propose a new Adam-based hybrid optimization method
called HyAdamC for training CNNs effectively. HyAdamC uses three new velocity control functions
to adjust its search strength carefully in term of initial, short, and long-term velocities. Moreover,
HyAdamC utilizes an adaptive coefficient computation method to prevent that a search direction
determined by the first momentum is distorted by any outlier gradients. Then, these are combined
into one hybrid method. In our experiments, HyAdamC showed not only notable test accuracies
but also significantly stable and robust optimization abilities when training various CNN models.
Furthermore, we also found that HyAdamC could be applied into not only image classification and
image segmentation tasks.

Keywords: deep learning; optimization; first-order optimization; gradient descent; adam optimiza-
tion; convolution neural networks; image classification

1. Introduction

As the computational power of graphic processing units (GPU) have further enhanced,
various neural network models performing a large-scale computations have been actively
studied. In particular, modern neural network models are consisted of deeper layers and more
weights than traditional ones to maximize their performance. Accordingly, the latest deep
learning models have shown notable abilities in many real-world applications, for example,
computer visions (CV) [1,2], data analysis [3,4], personalized services [5,6], internet of things
(IoT) [7,8], and natural language processing (NLP) [9,10], et al. Among them, particularly,
the CV task involving image classification and image semantic segmentation is one of the
applications in which the deep learning models have been most actively used.

Accordingly, many studies to improve the image processing ability of CNNs are
being actively conducted. In particular, the recent many researches have focused on
further enhancing their architectures by stacking a lot of layers sequentially. For example,
GoogleNet [11], VGG [12], ResNet [13], DenseNet [14], and MobileNet [15] have shown
successful image processing performance, especially, high-level image classification ability,
in various application areas. It indicates that constructing the architecture of the CNNs
using deeper layers and more weights can contribute to boost their image processing power.

Nevertheless, such large-scale architecture has two weaknesses. First, if a CNN model
has a number of layers, the gradient becomes vanished gradually as it has been passed from
the output to the input layers. Accordingly, the weights around the initial layers cannot be
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sufficiently trained, which is called “vanishing gradient problem”. Second, because they
contain a great number of weight values, their loss function often has further complicated
solution space (i.e., optimization terrain). Such complex terrain involves many saddle
point or local minimums which makes searching its optimal weights extremely hard. Thus,
it is important to not only construct the architectures with many layers and weights but
also utilize robust and stable optimization methods that can boost the image processing
performance of the CNN models.

Meanwhile, the traditional first-order optimization methods such as gradient descent
(GD), stochastic GD (SGD) [16], SGD with momentum (SGDM) [17], and Adam [18] have
been widely utilized to train the CNNs. Among them, the Adam optimizer has shown more
improved solution search ability than the existing methods by utilizing the momentum
and bias-correction methods. Accordingly, recent many studies have focused on improving
the performance of Adam optimizer further or combining it with other optimization
methods [19]. As the most representative cases, Adagrad [20], Yogi [21], Fromage [22],
diffGrad [23], and TAdam [24] have successfully been proposed recently. However, they
still have several defects in training latest CNNs. First, they suffer from determining an
optimal search velocity at each training step, which often causes the overfitting problem
or worsens their training and test accuracies [25,26]. Second, the existing momentum
used in Adam optimizer can easily be skewed toward an inaccurate search direction made
by outlier gradients [24]. Third, they often fail to find the approximate optimal weights
because they have difficulty identifying the current state of the optimization terrain in the
solution space spanned by the weights. Accordingly, the CNNs trained by the existing
optimization methods often have unsatisfactory performance such as inaccurate image
classification ability even though they could achieve better results.

To overcome such weaknesses of the existing optimization methods, we propose a
hybrid and adaptive optimization method that utilizes various terrain information when
searching the complicated solution space of CNNs. In this paper, we define our novel
hybrid and adaptive first-order optimization method as “HyAdamC ”. The core strategy of
HyAdamC is to accurately identify a current state of the optimization terrain and adaptively
control its search velocity depending on the identified states. For this, HyAdamC analyzes
the past and current gradients in terms of the initial, short, and long-term convergences
and utilizes them to control the search velocity. In addition, HyAdamC further improves its
search ability by preventing that the first momentum is distorted by any outlier gradients.
Furthermore, HyAdamC effectively alleviates many problems from which the existing
optimization methods have suffered by taking a hybrid approach that combines such
various strategies with one. Such hybrid method makes more stable and robust solution
search than the traditional optimization methods. The core characteristics of our HyAdamC
are summarized as follows.

• First, we show how HyAdamC identifies a current state of the optimization terrain
from the past momentum and gradients.

• Second, we propose three new velocity control functions that can adjust the search
velocity elaborately depending on the current optimization states.

• Third, we propose a hybrid mechanism by concretely implementing how these are
combined. Furthermore, we show how our hybrid method contributes to enhancing
its optimization performance in training the CNNs.

• Fourth, we propose how the three velocity functions and the strategy to prevent
outlier gradient are combined into one method. Accordingly, we show that such
elastic hybrid method can significantly contribute to overcome the problems from
which the existing optimization methods have suffered.

Accordingly, we can summary the contributions of this study as follows.

• First, we discovered a variety of useful information for searching an optimal weight
in the solution space with any complicated terrains.

• Second, we showed that such various terrain information could be simply utilized by
applying them to scale the search direction.
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• Third, we concretely found that minimizing the unexpected affections caused by any
outlier gradients could contribute significantly to determining its promising search
direction by implementing the adaptive coefficient computation methods.

• Fourth, we showed that they could be combined as a hybrid optimization method
with a detailed implementation.

• Fifth, we confirmed that our HyAdamC was theoretically valid by proving its upper
regret bound mathematically.

• Sixth, we validated the practical optimization ability of HyAdamC by conducting
comprehensive experiments with various CNN models for the image classification
and image segmentation tasks.

Our article consists of seven sections as follows. In Section 2, we explain theoretical
backgrounds required to understand the optimization methods used to train CNNs. In
Section 3, we introduce the Adam optimizer and the latest first-order optimization methods
briefly. In Section 4, we explain our new optimization method, i.e., HyAdamC, with
detailed implementations. In Section 5, we show all the experiments performed to evaluate
the optimization performance of HyAdamC and their results in detail. In Section 6, we
discuss the experimental results in terms of each of the CNN models. Finally, we conclude
this article and introduce our future study plan briefly in Section 7.

2. Preliminaries

In general, a neural network model, involving the CNNs, is formulated as

M = {N, W, f (x; W)} (1)

where N is a set of neurons and W is a set of weights between any two neurons, and
f (x; W) is an output function of the computational graph constituted by N and W for any
input X. Let (x, y) be a data pair involved in a dataset and its predicted output be y∗. Then,
a loss function to measure an error between the ground truth (GT) output of the input data
and its predicted output (i.e., y and y∗) is formulated as

L(y∗, y) = {l|y∗ = f (x; w) ∧ l = loss(y, y∗)} (2)

where loss(y, y∗) is a loss value measured by any error functions such as the cross-entropy.
Our goal is to find an approximate optimal weight w∗ which minimizes the loss function.
Hence, the loss function L(x, y) is used as an objective function to evaluate a fitness of the
weight. Accordingly, training a neural network is formulated as a typical search problem as

w∗ = argminw
∂

∂w
L( f (x; w), y). (3)

Meanwhile, the optimization algorithms for training neural networks are mainly
divided into two approaches according to their fundamental solution search methods, i.e.,
the first-order and the second-order optimization methods, respectively [27,28]. The first-
order optimization methods search an optimal weight by iteratively moving the weights
found at each step to a direction of its gradient in the solution space. In particular, we need
to notice that this update method is derived from the first-order Taylor series of the loss
function, which is given by

L ≈ L( f (x; w0), y) +∇wL( f (x; w), y) (4)

where ∇wL( f (x; w), y) denotes a gradient of the loss function L( f (x; w), y) at each step,
which is computed by

∇wL( f (x; w), y) =
[

∂L
∂w1

,
∂L

∂w2
, · · · ,

∂L
∂wn

]T
. (5)
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Then, the current weight wt is updated to wt+1 by moving wt toward a direction of it
gradient. For example, GD updates its current weight wt as

wt+1 = wt − α∇wL( f (x; wt), y) (6)

where α is a learning rate to control a strength of convergence.
On the other hands, the second-order optimization methods use a Hessian matrix

of the loss function additionally to find the optimal weight [29]. Similar to the first-order
method, the second-order optimization methods are also derived from the second-order
Taylor series of the loss function, which is given by

L ≈ L( f (x; w0), y) +∇wL( f (x; w), y) +
1
2!
∇2

wL( f (x; w), y) (7)

where ∇2
wL( f (x; w), y) is the Hessian matrix that is computed by taking a second differen-

tial of the loss function with respect to each parameter as

∇2
wL( f (x; w), y) =


∂2L

∂2w1
· · · ∂2L

∂w1∂wn
...

. . .
...

∂2L
∂wn∂w1

· · · ∂2L
∂2wn

. (8)

The second-order methods determine its next search direction by combining the
gradient with the Hessian matrix. For example, Newton’s methods, one of the second-
order optimization methods [30], updates the current parameter wt as

wt+1 = wt − α
[
∇w

2L( f (x; wt), y)
]−1
∇wL( f (x; wt), y). (9)

From Equations (6) and (9), we can expect that the second-order methods may have
better optimization ability than the first-order ones. Nevertheless, these are not often
used to train the neural networks because they need at least O(n2) space complexity
to compute the n by n Hessian matrix [19]. Although many studies to alleviate these
excessive computational overhead have been carried out, it is still a challenging issue
to utilize these for training the neural networks when compared against the first-order
methods. Hence, recent many studies are focusing on developing more effective first-order
optimization methods.

3. Related Work
3.1. CNNs

The CNN is a neural network model proposed to train the data with region features.
When the model was initially proposed, it did not receive much attention because of its
excessive computational costs. However, as the performance of the computing device
has drastically enhanced, it has recently became one of the most popular deep learning
models. In particular, it has been successfully utilized in various applications such as the
image classification, image semantic segmentation, and objective detection tasks [31–35].
Before discussing an optimization method to effective train the CNN, we need to under-
stand its basic architecture and characteristics briefly. Different to the traditional neural
networks, the CNN is composed of three layers, i.e., a convolution layer, a pooling layer,
and a fully-connected layer. Figure 1 shows an overall architecture of the CNN. In detail,
the convolution layer extracts region features from the input image using convolution
operations and receptive fields. At this time, each feature is computed by a linear combi-
nation of the input values recognized within the receptive field. Then, the region feature
is passed to the pooling layer. The pooling layer reduces a size of the region feature into
smaller-dimensional one. For this, various pooling operations such as max pooling, average
pooling, and min pooling are used. Finally, the reduced region feature is flatten and passed
into an input of the fully connected neural network where it is classified into one class.



Sensors 2021, 21, 4054 5 of 41

Figure 1. The overall architecture of CNNs.

The architecture shown in Figure 1 implies that the CNN is especially effective to
address a two-dimensional data such as an image. Different to the data that can be
represented by a linear feature vector, an image should be analyzed considering a position
information of each pixel in two-dimensional space. As the input image shown in Figure 1,
a color data in each pixel is strongly affected by other pixels around it. Accordingly, many
CNN models to effectively address complex image data have been actively proposed. For
example, Karen Simonyan and Andrew Zisserman showed that constructing many layers
in the CNNs could achieve better performance than the traditional CNNs by implementing
CNNs with 16 or more layers, called VGG [12]. However, the CNN models involving
many layers suffered from the vanishing gradient, which worsens an accuracy of the image
classification. To overcome such weakness of the existing CNN models, ResNet utilizes
additional weights called residual connections [13]. Figure 2 describes two conceptual
diagrams of the general connection used in the existing CNNs and the residual connection
utilized in ResNet, respectively. In the existing CNN models described in Figure 2a, a
connection between any two layers is connected from the previous and current layers
sequentially. In this case, if the number of layers drastically increases, the gradient becomes
more and more vanished as it has been passed from the output to the input layers. On
the other hands, Figure 2b shows the residual connection in ResNet where each block is
connected by not only its parent one but also ascendant one directly simultaneously. Thus,
ResNet can effectively alleviate the vanishing gradient problem when compared to the
existing CNNs with no residual connections. Furthermore, Gao Huang, Zhuang Liu, and
et al. proposed a further enhanced CNN model with the residual connections between all
blocks, which is called DenseNet [14]. While the residual connections of ResNet is added
into the general connection, DenseNet concatenates them into one connection and passes it
into all following layers. Accordingly, DenseNet has more weights than those of ResNet.

That is, the modern CNN models such as ResNet and DenseNet could construct
more layers than the traditional ones by introducing various auxiliary connections such
the residual connections into their models. Tuhs, it is required to not only modify their
architecture but also utilize a robust and stable optimization method in order to improve
the image processing performance of such complicated CNNs, for example, an accurate
image classification ability.
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Figure 2. The comparison between the general connections and the residual connections used
in ResNet. (a) describes how the input data x is passed into the weight layers in general CNN models
with no residual connections. (b) shows how x is passed to both the weight layers and the residual
connections in ResNet.

3.2. Overview of Optimization Methods for Machine Learning

As shown in Section 2, the first-order optimization methods determine its next search
direction by referring the gradient of the loss function on the current weights. For this, the
first-order methods compute its gradient using the first-order differential as explained in
Equation (5). Many optimization methods to train not only the neural networks but also
diverse machine learning models have been designed based on the first-order methods. For
example, GD [19], SGD [16], RMSProp [36], and Adam [18] are typical first-order methods.
Furthermore, Yogi [21], Fromage [22], diffGrad [23], and TAdam [24] also were designed
based on the first-order methods.

On the other hands, the second-order method determines its next search direction
from Hessian matrix of the loss function as shown in Equation (9). Accordingly, the second-
order method can perform better solution search in the complicated optimization terrains
with a lot of saddle points or local minimums [29]. Nevertheless, because the second-order
methods need more computations than those of the first-order methods, it is a hard task
to apply them directly to train the deep neural networks. To overcome such incredible
computational complexity, recent many studies have focused on reducing its computations
by introducing various approximate methods. For example, conjugate GD [37], BFGS [38],
and L-BFGS [39] are typical second-order methods used in the deep learning models.

Finally, various hybrid methods with local search algorithms have been widely utilized
as the optimization methods to train diverse machine learning models. They aim to
enhance the search ability of the existing optimization methods by combining the existing
local search methods compensatively. For example, Yulian Cao and Han Zhang et al.
proposed a comprehensive search method that uses particle swarm optimization and local
search method simultaneously to solve multimodal problems [40]. Yuanyuan Tan and
MengChu Zhou et al. proposed a hybrid scatter search method utilizing the mixed integer
programming and scatter search methods to address the steelmaking-continuous casting
problems [41]. Furthermore, Liliya A. Demidova and Artyom V.Gorchakov showed a
novel hybrid optimization algorithm that combines merits of the collective behavior of fish
schools and traditional first (or second)-order methods [42]. These study results indicates
that the hybrid approach combining various strategies compensatively can significantly
contribute to searching an approximate optimal solution in the complicated solution space.
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3.3. Optimization Methods to Train CNNs

Since the residual connections have been introduced, the modern CNN models have
more complicated architecture, i.e., deeper layers and more weights, than the traditional
ones. Accordingly, a sophisticated and robust optimization algorithm is needed to train
such large-scale CNN models effectively [43]. Among many first-order optimization
methods for deep learning, Adam optimizer [18] is one of the most popular methods which
have widely been utilized to train various neural networks. Algorithm 1 describes an
overall architecture of Adam optimizer. Unlike the exiting methods such as GD and SGD,
Adam optimizer utilizes the average search trajectories of the past gradients by introducing
two momentums of the gradient, called the first and second momentums. In detail, the
first momentum is the exponentially weighted average (EWA) of the past and current
gradients. The second momentum is the EWA of the squared gradients, which is used
to scale the first momentum. After the momentums are computed, these initial biases
are corrected by the bias-correction method. Finally, the current weight wt is updated
by the update rule of the GD shown in Equation (6). From Algorithm 1, we can find
that the first momentum represents the most promising search direction determined by
the past and current gradients. Moreover, the second momentum adjusts a strength of
its movements toward the search direction with the learning rate α. Accordingly, Adam
optimizer can perform more sophisticated solution search than those of the existing first-
order optimization methods.

Algorithm 1: A pseudocode of Adam optimization algorithm
Algorithm: Adam
Input: f , w, α, β1, β2
Output: w∗

Begin
Initialize t = 0, m1 = 0, v1 = 0
while not converged do:

t = t + 1
gt = ∇w f (wt)
mt+1 = β1mt + (1− β1)gt
vt+1 = β2vt + (1− β2)g2

t
ˆmt+1 = mt+1

1−βt
1
, ˆvt+1 = vt+1

1−βt
2

wt+1 = wt − α
ˆmt+1√
ˆvt+1

end while
w∗ = wt
End Begin

Accordingly, for the recent five years, diverse Adam-based optimization algorithms
have been proposed. DiffGrad [23] proposed a friction method to decelerate its convergence
to prevent that a CNN model is overfitted while it is being trained. Fromage [22] proposed
a method to utilize the Euclidean distance to compute a difference between two gradients
when computing the next search direction based on them. Meanwhile, TAdam [24] showed
how to detect an outlier of gradients and estimate its coefficient adaptively when computing
the first-momentum of gradients. For this, they derived the formulae to compute the first-
momentum from a Student-t distribution using its maximum-likelihood estimation and
utilized them to derive the first-momentum. Actually, they showed that TAdam had better
optimization performance than the existing Adam-based optimizers.

Although such many methods to improve Adam optimizer have been studied, these
still have difficulties in identifying the accurate and detailed information about their past
and current gradients. In addition, they suffer from controlling a strength of their search
elastically, which often makes finding an approximate optimal weight extremely hard.
Despite of such difficulties, we aim to further improve these optimization performance by
applying more sophisticated search control methods and adaptive coefficient computation
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methods. Accordingly, in the following section, we explain how our HyAdamC can
effectively alleviate various problems from which the existing Adam-based optimization
methods have suffered in training the CNNs in detail.

4. Proposed Method
4.1. Introduction

In this section, we propose a novel Adam-based first-order optimization algorithm for
training the CNNs effectively, called HyAdamC. Figure 3 illustrates an overall architecture
of HyAdamC.

Figure 3. The overall architecture of HyAdamC and its hybrid mechanism.

As shown in Figure 3, HyAdamC is composed of four core methods, i.e., the adap-
tive coefficient computation methods and three velocity control functions. The adaptive
coefficient computation method calculates a coefficient of the first momentum adaptively
depending on the difference between the past first momentum and current gradient to
minimize an influence of any outlier gradients. The three velocity control functions, i.e.,
the initial-term, short-term, and long-term velocity control functions, adjust their search
(convergence) velocity, i.e., a strength of search at each step, by considering the convergence
states of the observed gradients.

Figure 3 also presents a hybrid mechanism of HyAdamC. Our intuition is to combine
various strategies where each of them specializes in addressing each problem occurring
in searching the optimal weights. In HyAdamC, the three velocity control function and
the adaptive coefficient computation method are designed to alleviate each of various
convergence problems. Then, they are coupled into one optimization method. In detail, first,
the adaptive coefficient computation method is applied to compute the first-momentum
at each step. Second, the first-momentum is divided by the long-term velocity control
function to scale a strength of a search direction of the first-momentum. That is, the
long-term velocity control function plays a role of the second-momentum in HyAdamC.
Third, the initial-term and short-term velocity control functions are used to scale the first-
momentum, which is implemented by multiplying them by the first-momentum. Then,
the first-momentum scaled by the three velocity control functions is used as a next search
direction. Accordingly, we can address diverse convergence problems comprehensively.

In the following subsections, we show how the three velocity control functions and
the coefficient computation methods are implemented step by step. Then, their hybrid
method is described with the detailed implementations.

4.2. Adaptive Coefficient Computation Method for the Robust First Momentum

In the Adam-based optimizers, the next search direction is determined by the first
momentum for the current gradient gt, i.e., mt. As demonstrated in Section 3, the first mo-
mentum maintains an average moving trajectory of its past gradients, which is computed
by the EWA. At this time, if an unpromising gradient heading a direction far from the
global optimum is found, a direction of the first momentum becomes further far from the
approximate optimum, which makes its search ability seriously worse. Figure 4 shows how
the first momentum is distorted by the unpromising gradients. As shown in Figure 4a, the
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next first momentum mt+1 is computed by the EWA between mt and gt that are weighted
by two constant coefficients β1 and (1− β1), respectively. At this time, if gt heads an
unpromising direction as shown in Figure 4b, a direction of mt+1 is also skewed toward
a direction of gt. Thus, the next search direction gets further away from the approximate
optimal weight w∗. From the example described in Figure 4, we can find that the existing
method computing the first momentum is inherently vulnerable to these outlier gradients.

Figure 4. The example to explain how the outlier gradient negatively affects a direction the first
momentum. (a) shows an ideal case that the first momentum is computed by the current momentum
and the ordinary gradient. In this case, the first momentum becomes further close to the optimal
weight. On the other hands, (b) shows a bad case that the first momentum is distorted by the
unpromising (i.e., unexpected outlier) gradient. In this case, its next search direction moves away
from the optimal weight by the unpromising gradient.

To overcome such shortcomings of the existing first momentum, it is required to check
whether the current gradient is unpromising or not and reduce their influences as much as
possible. For this, HyAdamC checks the difference between mt and gt. If their difference
becomes drastically large, a possibility that the direction of gt is unpromising is higher
than their difference is small. In this case, we increase β1 in proportion to a degree of their
difference to minimize a force of gt in mt+1. This mechanism is formulated as

mt+1 = β1,tmt + (1− β1,t)gt (10)

where β1,t is an adaptive coefficient defined by

β1,t ∝ |mt − gt|. (11)

In other words, β1,t determines a ratio of accumulation of gt in proportion to their
difference. Actually, there exist many methods to implement Equation (11). Among them,
we compute Equation (11) according to the methods shown in [24] as

β1,t =
Qt−1

Qt−1 + qt
. (12)

In Equation (12), qt denotes a similarity between gt and mt that is measured by

qt = 2d

(
d +

d

∑
j=1

(gt, j−mt−1,j)
2

vt−1,j + ε

)−1

(13)

where mt−1 and vt−1 are the first and second momentums computed at the previous
step, i.e., t− 1. In addition, Qt−1 in Equation (12) is a weighted sum of q1, . . . , qt−1 that
accumulates them as

Qt−1 =
2β1 − 1

β1
Qt−2 + qt−1. (14)
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Meanwhile, Equations (10)–(14) can be derived from the EWA of g1, . . . , gt by taking
the partial differential of the normal distribution with respect to its µ. For this, we first
apply the difference between gt and mt into the normal distribution. Second, we scale a
random variable sampled from the modified normal distribution using the χ2-distribution.
Third, we derive a new probability density function (PDF) from the scaled random variable.
Finally, by taking a partial differential of the derived PDF with respect to µ, we can derive
Equations (10)–(14). The detailed proofs for these are provided in the following Theorem 1.

Theorem 1. Let N(µ, σ2) be a normal distribution and χ2(d) be a χ2-distribution. In addition,
let F(g; m, d) be a PDF derived by scaling a random variable sampled from N using χ2. Then,
Equations (10)–(14) are derived from ∂F(g; m, d)/∂m.

Proof. The detailed proofs are provided by “S.1. Proof of Theorem 1” in our supplemen-
tary file.

Figure 5 shows a brief mechanism of the first-momentum computation method used
in HyAdamC. As described in Figure 5a, the existing first momentum uses a constant
coefficient β1. Accordingly, if gt heads an unpromising direction far from the optimum
w∗, mt+1 also proceeds to a direction of gt. On the other hands, Figure 5b presents
the first momentum computed by Equations (10)–(14) of HyAdamC. If the difference
between gt and mt becomes large, Equation (12) also becomes increased. Accordingly, a
coefficient of gt, i.e., 1− β1,t becomes low. Thus, mt+1 heads a direction close to mt as an
influence of gt is reduced as 1− β1,t. In other words, the outlier gradients far from the
previous momentum have an influence as little as possible when the next first-momentum
is computed. Therefore, we can effectively find a promising search direction which can
access the optimal weight faster than the existing one.

Figure 5. A brief mechanism of the first-momentum computation in HyAdamC. (a) describes a
comparison of the existing first momentum computation method. (b) shows the new first momentum
computation methods used in HyAdamC.

4.3. Adaptive Velocity Control Functions

To find an approximate optimal weight w∗ effectively, it is necessary to control its
search (or convergence) velocity elaborately depending on its past and current convergence
states. For this, HyAdamC collects various information about the current optimization
terrain from the past and current gradients. Then, these are utilized by the three adaptive
control functions, i.e., the initial-term, short-term, and, long-term velocity control functions,
to adjust the search velocity in various methods. In this section, we explain how HyAdamC
controls its search velocity adaptively using the three velocity control functions.

4.3.1. Initial-Term Velocity Control Function

In HyAdamC, the initial-term control function is designed to control a degree of its
convergence at initial steps. In [44], the authors showed that controlling a strength of the
convergence appropriately at initial steps could often help to improve the performance of
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the trained model. In order to implement such mechanism, they proposed a method that
increases a strength of its convergence gradually as the step has been progressed, called
warm-up strategy.

Accordingly, the initial-term velocity control function of HyAdam suppresses its
search velocity at initial steps. Then, as the steps are progressed, this function fast increases
its velocity. In detail, this function is formulated as

ξ I(β2, ρt; ρ∞) =

(
ρ∞(1− β2

t)(ρt
2 − 6ρt + 8)

ρt(ρ∞2 − 6ρ∞ + 8)

) δ(ρt)
2

(15)

where β2 is a coefficient used to compute the second momentum; ρ∞ = 2/(1− β2)− 1;
ρt = ρ∞ − 2tβ2

t(1− β2
t)−1; δ(ρt) is a Kronecker delta summation function defined by

δ(ρt) = 1−
4

∑
i=1

δρt ,i. (16)

As shown in Equation (15), this function strongly suppresses a strength of its search
to less than 0.1 at initial steps. Then, as the steps are progressed, its velocity becomes
fast recovered because this function returns a value close to 1, which indicates that the
search velocity is not suppressed by this function anymore. Therefore, we can control its
convergence strength step by step by multiplying the first momentum mt+1 computed by
Equation (10) by Equation (15) when updating the weight wt to wt+1. In Section 4.4, we
will explain how this function is used with other functions in detail.

4.3.2. Short-Term Velocity Control Function

The short-term velocity control function adjusts its search velocity depending on how
much the current gradient gt has been changed when compared to the previous one gt−1.
For more convenient understanding, we assume that there are two example optimization
terrains in one and two-dimensional solution spaces, respectively. Figure 6 illustrates three
examples to explain what a difference between the previous and current gradients indicates
on the optimization terrain.

Figure 6. The examples to show a difference between the current gradient gt and its previous gradient
gt−1. The left figure shows that an one-dimensional loss function with several local minimums. The
right figure describes a zoomed area around any local (or global) minimum of a two-dimensional
loss function. In the two example plots, (a–c) illustrate three cases where the degree of variations
between gt and gt−1 is large, small, and medium, respectively.

As shown in Figure 6, the difference between gt−1 and gt measures a degree of an
instant variation from gt−1 to gt. This provides an useful information to understand the
optimization terrain around wt in the solution space. For example, as shown in Figure 6b,
if a degree of their instant variation is very small, we can guess that its current terrain
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is flatten. In this case, a possibility that there exists a local or global optimum around
wt is relatively higher than other points. On the other hands, if a degree of the instant
variation is large, as illustrated in Figure 6a, we can expect that the terrain around wt has
been drastically changed. Finally, if two gradients have a gradual variation as described in
Figure 6c, its convergence velocity has to be carefully adjusted to prevent too fast or slow
searches. Thus, HyAdamC can check a current state of the terrain around wt by analyzing
a degree of the instant variation from gt−1 to gt.

According to the principles explained above, the short-term velocity control function
of HyAdamC is formulated as

ξS(gt, gt−1; λ1, λ2) =

(
1 + e−σ

λ1
t (|gt−gt−1|−λ2µt)

)−1
(17)

where λ1 and λ2 are model selection parameters; µ and σ indicate the mean and stan-
dard deviation of |gt − gt−1|, respectively. Figure 7 illustrates how an instant difference
between gt and gt−1 is mapped into the short-term velocity control function explained
in Equation (17). As described in Figure 7a, if a degree of the instant variation from gt
to gt−1 is large, the search toward a direction of gt has to be encouraged because a pos-
sibility that there exist any steeply descending terrains around wt is high. Accordingly,
this function returns a high value close to 1, which implies that its search velocity is not
almost decreased. On the other hands, in Figure 7a, if these instant difference is very small,
its search speed is strongly suppressed by a small value close to 0.5 because a possibility
that there is an approximate optimal weight around wt is high. Accordingly, this function
makes HyAdamC further carefully search around wt. Similarly, Figure 7c illustrates that
the search velocity when |gt − gt−1| = 1.75 is decelerated as 0.85. Thus, the short-term
velocity control function can effectively check a current state of its optimization terrain
by analyzing a degree of the instant variation between the recent gradients and adjust a
strength of its search velocity adaptively depending on the found terrain information.

Figure 7. The principles of the short-term velocity control function. The right graph presents the plot
of the short-term velocity control function described in Equation (17). (a) describes an example case
that this function returns a value close to 1 as the difference between gt and gt−1 becomes large. On
the other hands, (b) shows other case that this function returns a value close to 0.5 as their difference
becomes small. Finally, (c) illustrates how the short-term velocity control value is computed when
a degree of their variation is 1.75. These examples show that this function can control the search
velocity adaptively depending on a degree of variation of their previous and current gradients.

Meanwhile, λ1 ∈ {0, 1, 2} and λ2 ∈ {0, 1} in Equation (17) are used to determine how
|gt − gt−1| is scaled by µ and σ. For example, if λ1 = 0 and λ2 = 0, |gt − gt−1| is not scaled
by µ and σ. On the other hands, if λ1 = λ2 = 1, it is scaled by them as σ|gt − gt−1| − µ.
Thus, we can implement six different models depending on these settings. Incidentally, the
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short-term velocity control function always returns a value between 0.5 and 1 as described
in Figure 7. We can prove it as follows.

Theorem 2. The short-term velocity control function ξS(gt, gt−1; λ1, λ2) always returns a value
between 0.5 and 1 according to the instant variation between any two recent gradients, i.e., |gt − gt−1|.

Proof. This is proved by taking limit of Equation (17). Let di = |gt − gt−1|. Then, the limit
of ξS to zero is given by

lim
di→0

ξS(gt, gt−1) =

(
1 + eσ

λ1
t λ2µt

)−1
. (18)

In Equation (17), λ1 ∈ {0, 1, 2} and λ2 ∈ {0, 1}. In addition, µt ≥ 0 and σt ≥ 0 because
they are mean and standard deviation of di. Accordingly, we can find that σλ1

t λ2µt ≥ 0
and thus derive

lim
di→0

ξS(gt, gt−1) ≥ 0.5. (19)

Meanwhile, the limit of ξS to ∞ is obviously 1 as

lim
di→∞

ξS(gt, gt−1) =
(
1 + e−∞)−1

= 1. (20)

Thus, ξS(gt, gt−1) returns a value between 0.5 and 1 according to |gt − gt−1|.

4.3.3. Long-Term Velocity Control Function

Different to the short velocity control function utilizing a degree of variations between
the previous and current gradients, the long velocity control function adjusts its search
velocity by considering all the historical gradients, i.e., g1, . . . , gt−1. For this, HyAdamC
observes the previous first momentum mt−1 to refer an average direction of the past
gradients. Then, the difference between mt−1 and gt is computed to control its search
velocity adaptively. Figure 8 shows how these difference is used to adjust the search speed
in HyAdamC.

Figure 8. The principles of the long-term velocity control function. The left examples, i.e., (a–d)
show how much the difference between mt−1 and gt. The right graph shows a plot of the long-term
velocity control function in two-dimensional space. Each arrow from the left to the right figures
describes how these differences are mapped to the long-term velocity control function.

Figure 8a,c show the cases where gt heads toward a similar direction to mt−1. In this
case, a possibility that a direction of gt is promising is further high because the current
search direction is continuously similar to the previous one. Thus, as shown in the right
graph of Figure 8, this function further enhances its search velocity by returning a value
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close to 1 to achieve faster convergence. On the other hands, Figure 8b,d describe another
case that these difference is significantly large. Such cases imply that the search direction of
gt has been drastically changed when compared to the previous average search direction,
i.e., mt−1. In this case, it is necessary to further carefully search the direction of gt because
a possibility that the optimization terrain around wt has any steep slopes is relatively high.
For this, this function reduces its convergence speed by returning relatively smaller values,
to avoid hovering its search trajectory around wt. Therefore, the long-term velocity control
function is formulated as

ξL(vt−1, mt−1, gt; β1, β2) = β2vt−1 + β2
1,t−1(1− β2)(mt−1 − gt)

2 (21)

where β2 is a coefficient parameter to compute the EWA between vt−1 and gt. From Figure 8
and Equation (21), we can find that the long-term velocity control function is a momentum
of β2

1,t−1(mt−1 − gt)2. Accordingly, HyAdamC accumulates β2
1,t−1(mt−1 − gt)2 using the

EWA to utilize a degree of these long-term average variations in the next steps. Then,
the long-term velocity control function is used as a new second momentum computation
method instead of the existing second momentum shown in Algorithm 1 as

vt+1 = ξL(vt, mt−1, gt; β1, β2). (22)

In the following sections, we explain how the three velocity control functions are used
in the parameter update rule of HyAdamC. Furthermore, we show how our HyAdamC is
implemented in detailed.

4.4. Parameter Update Methods and Implementations

To update the current weight wt to wt+1, the next search direction at wt has to be
determined from the first momentum. Let Ψt be a bias-corrected first momentum, i.e.,

Ψt+1 =
mt+1

1− βt
1

. (23)

Then, HyAdamC scales the bias-corrected first momentum Ψt+1 using the modified
second momentum vt+1, the learning rate α, and the three velocity control functions as

Ψ∗t+1 =
ξ I(β2, ρt)ξS(gt, gt−1)√

vt+1 + ε
Ψt+1 (24)

where vt+1 is a second momentum computed by the long-term velocity control function
of Equation (22). Accordingly, wt is updated to wt+1 by the first-order gradient descent
method as

wt+1 = wt − αΨ∗t+1 (25)

where α is a learning rate.
Algorithm 2 describes a complete implementation of our HyAdamC algorithm. At tth

step, HyAdamC first gets the gradient of wt, i.e., ∇gt. Next, the coefficient β1,t used in the
first momentum mt is adaptively computed in proportion to the difference between the
previous momentum mt−1 and current gradient gt. Then, the current first momentum mt
is updated to mt+1 by the EWA with β1,t. At the same time, the second momentum vt+1 is
computed by the long-term velocity control function ξL.

After mt+1 and vt+1 are computed, the element used to compute β1,t, i.e., qt+1 is
accumulated incrementally into Qt+1 depending on Equation (14). Next, the initial biases
of mt+1 are corrected using 1− βt

1, which is equivalent method to that of Adam optimizer.
Then, HyAdamC derives the next search direction Ψ∗t+1 by scaling mt+1 using vt+1, ξ I , and
ξS, simultaneously. Accordingly, wt is updated to the new weight wt+1 by the gradient
descent rule. Finally, after any convergence condition is satisfied, the optimization process
is terminated and the final approximate optimal weight w∗ is returned.
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Algorithm 2: An implementation of HyAdamC
Algorithm: HyAdamC
Input: L, w, α , β1, β2, λ1, λ2, ε
Output: w∗

Begin
t = 1, m1 = 0, v1 = 0, Q1 = 0, g0 = 0, w1 = w
ρ∞ = 2

1−β2
− 1

while not converged do:
gt = ∇wL( f (x; wt), y)
D = Dimensions(gt)

qt+1 = 2D
(

D + ∑D
j=1

(gt,j−mt,j)
2

vt,j+ε

)−1

β1,t =
Qt

Qt+qt+1

mt+1 = β1,tmt + (1− β1,t)gt
vt+1 = ξL(vt, mt, gt)

Qt+1 = 2β1−1
β1

Qt + qt+1

Ψt+1 = mt+1
1−βt

1

ρt = ρ∞ −
2tβt

2
1−βt

2

Ψ∗t+1 = ξ I(β2, ρt)ξS(gt, gt−1)
Ψt+1√vt+1+ε

wt+1 = wt − αΨ∗t+1
t = t + 1

end while
w∗ = wt
End Begin

4.5. Regret Bound Analysis

In recent studies, the regret bounds of the Adam-based optimizers, such as Adam,
diffGrad, and TAdam, have been analyzed by expanding the derivations of [45,46]. Actually,
they provide significantly intuitive and useful methods to derive the regret bounds of the
Adam-based optimizers. In addition, [24] showed more in-depth regret bound analysis
methods in a case that an adaptive coefficient method is applied. Hence, we derived the
regret bound of HyAdamC by utilizing the proofs of [24,45,46].

According to the methods of [24,45], several definitions are required to prove the upper
regret bound of HyAdamC as follows. Let w1, . . . , wT (∀t, wt ∈ F) be the sequences found
by HyAdamC and v̂1, . . . , v̂T be the sequence of the bias-corrected second momentums
used in HyAdamC. In addition, let αt = α/t, β1,t = β̄w, βmin = min{β1,1, . . . , β1,T},
γ = β̄w/β1/2

2 , and D∞ is a bound diameter of F. Furthermore, a bounded gradients for a
function ft is considered as ∀t ∈ {1, . . . , T}, wt ∈ F, ‖ gt,w ‖2≤ G and ‖ gt,w ‖∞≤ G∞ [23].
Then, the regret bound of HyAdamC is given as the following Theorem 3.

Theorem 3. Let RT be an upper regret bound of HyAdamC. Then, RT is given by

RT ≤
D2

∞
αT(1− β̄w)

d

∑
i=1

√
v̂T,i +

D2
∞

(1− β̄w)2

T

∑
t=1

d

∑
i=1

β1,tη
−1
S,t,i
√

v̂t,i

αtηI,t

+
α
√

1 + log T
(1− β̄w)2|βmin|(1− γ)

√
(1− β2)

d

∑
i=1

∥∥g1:T,i
∥∥

2.

Proof. The detailed proofs are provided by “S.2. Proof of Theorem 3” in our supplementary
file.
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We also can derive the average regret convergence of HyAdamC by utilizing a fact
∑d

i=1 ‖ g1:T,i ‖2� dG∞
√

T [23] and the results of Theorem 3. Let ‖ gt,w ‖2≤ G and
‖ gt,w ‖∞≤ G∞. Moreover, we assume that the weights found by HyAdamC satisfy
‖ wn − wm ‖2≤ D and ‖ wn − wm ‖∞≤ D∞, ∀n, m ∈ {1, . . . , T}. Then, HyAdamC satisfies

R(T)
T

= O
(

1√
T

)
, ∀T > 1. (26)

In other words, the upper regret bound of HyAdamC is converged to 0 as the step t
increases from 1 to T. Then, we can understand a behavior of HyAdamC further concretely
by taking the limit of Equation (26) as

lim
T→∞

R(T)
T

= 0. (27)

Thus, we can find that the the weights found by HyAdamC, i.e., w1, w2, . . . , wT become
closer and closer to the optimal weight w∗ as the training steps are progressed.

5. Experiments

To evaluate the optimization ability of HyAdamC in practical CNN models, we per-
formed various experiments with the SOTA CNN models and optimization methods. In
Section 5.1, we first describe the overall experimental configurations. In Section 5.2, we ex-
plain the experiments conducted to choose the model of HyAdamC shown in Equation (17)
and present these results. In Section 5.3, we evaluate the optimization performance of
HyAdamC by comparing the image classification results of VGG, ResNet, DenseNet trained
by HyAdamC with the results of other optimization methods and discuss these results
in detail.

5.1. Experimental Settings

In this section, we explain the baseline CNN models, the compared optimization
methods, benchmark datasets, and the experimental environment as follows.

• Compared optimization methods: As the optimization methods to compare the opti-
mization performance of HyAdamC, we adopted 11 first-order optimization methods,
i.e., SGD [16], Adam [18], RMSProp [36], AdaDelta [47], AdaGrad [20], AdamW [18],
Rprop [48], Yogi [21], Fromage [22], diffGrad [23], and TAdam [24]. These have
been extensively utilized to train various deep learning models involving the CNNs.
Among them, in particular, Fromage, diffGrad, and TAdam are the latest optimization
methods and have shown better optimization performance than the existing methods.
In our experiments, all these parameters were set to the default values reported by
their papers. The detailed parameter settings of our HyAdamC and the compared
methods are listed in Table 1 (In all the methods except for RMSProp, their learning
rate is denoted by α as shown in Algorithm 1).

• Baseline CNNs and benchmark datasets: In this experiments, VGG [12], ResNet [13],
and DenseNet [14] were chosen as the baseline CNN models. In addition, we adopted
the image classification task as a baseline task to evaluate the optimization perfor-
mance of VGG, ResNet, and DenseNet models trained by HyAdamC and the com-
pared methods. The image classification is one of the most fundamental and important
tasks in the image processing applications and has been widely applied into many
practical applications with the CNNs. Moreover, we adopted an universal benchmark
image dataset, i.e., CIFAR-10 [49] image dataset which is one of the most popular
benchmark datasets used to evaluate the image classification performance. In detail,
the dataset involves 70,000 images with 60,000 training samples and 10,000 test ones.
Each of them is a 32× 32 color image and belongs to one of ten coarse classes. Figure 9
describes several example images and their classes briefly. In our experiments, the
images involved in the dataset were utilized to evaluate how accurately the CNN
models trained by HyAdamC and other algorithms could classify them.
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• Metrics used in the experiments: In the experiments, we set the batch-size of the
train/test samples to 64 and 128, respectively. The VGG, ResNet, and DenseNet were
trained by HyAdamC and the compared methods. At this time, their weight values
were randomly initialized by the default function provided in PyTorch. In detail,
PyTorch initializes the weight value in each layer depending on the layer generation
functions such as Linear() and Conv2d(). For example, the weights in Conv2d layers
are initialized by Xavier method if any initialization method is not declared explicitly
by a user. Different to ResNet and DenseNet, an implementation of VGG contains
a function to initialize its weights. Thus, the weights of VGG were initialized by its
initialization method. Furthermore, to maintain the same initial weight values for all
compared methods, we fixed the random seeds of PyTorch, CUDA, and NumPy as
a constant when training them. Then, we compared their performance and learning
curves for the first 200 epochs. The training and test accuracies, i.e., Acctrain and
Acctest were measured by

Acctrain =
∑mtrain

i=1 δ
y(i), ˆy(i)

mtrain
, (28)

Acctest =
∑mtest

i=1 δ
y(i), ˆy(i)

mtest
(29)

where y(i) is the GT class and ˆy(i) is the classified class for ith training sample, respec-
tively; δ

y(i), ˆy(i)
is a Kroneker delta; mtrain and mtest are the total number of training

and test image samples. In addition, the train and validation loss in our experiments
were measured by the cross-entropy method. When the CNN model is defined as
a K-classes classification problem, an cross-entropy loss for any ith input image is
measured by

CE(i) = −
K

∑
j=1

t(i)j log o(i)j (30)

where t(i)j is the GT of the jth node and o(i)j is an output value of the jth node for ith
input image, respectively.

• Experimental environments: Our HyAdamC and other optimization methods were
implemented and evaluated by Python 3.8.3 with PyTorch 1.7.1 and CUDA 11.0.
In addition, we used matplotlib 3.4.1 library to represent our experimental results
visually. Finally, all the experiments were performed on the Linux server with Ubuntu
7.5 OS, Intel Core i7-7800X 3.50GHz CPU, and NVIDIA GeForce RTX 2080Ti GPU.

Table 1. The parameter settings of HyAdamC and the compared first-order optimization methods.

Algorithms Parameter Settings

HyAdamC α = 10−3, β1 = 0.9, β2 = 0.99, ε = 10−8

SGD α = 10−3

RMSProp Learning rate = 10−2, α = 0.99, ε = 10−8

Adam α = 10−3, β1 = 0.9, β2 = 0.99
AdamW α = 10−3, β1 = 0.9, β2 = 0.99
Adagrad α = 10−2, β1 = 0.9, ε = 10−10

AdaDelta α = 1.0, ρ = 0.9, ε = 10−6

Rprop α = 10−2, η− = 0.5, η+ = 1.2, step sizes= [10−6, 50]
Yogi α = 10−2, β1 = 0.9, β2 = 0.99, ε = 10−3

Fromage α = 10−2

TAdam α = 10−3, β1 = 0.9, β2 = 0.99, v = d, kv = 1.0
diffGrad α = 10−3, β1 = 0.9, β2 = 0.99
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Figure 9. The example images in the CIFAR-10 dataset and their classes for image classification tasks.

5.2. Experiments to Choose the Convergence Control Model of Hyadamc

As shown in Equation (17), HyAdamC has two control options λ1 and λ2 which deter-
mine whether the mean and standard deviation of |gt − gt−1| are used to scale it or not in
the short-term velocity control function. Because λ1 ∈ {0, 1, 2} and λ2 ∈ {0, 1}, HyAdamC
has six distinguished models according to these settings. Table 2 describes the six models
of HyAdamC and the detailed formulae of their short-term velocity control functions.

Table 2. The six models of HyAdamC created by setting λ1 and λ2 in Equation (17).

Models λ1 λ2 ξS(gt, gt−1; λ1, λ2)

HyAdamC-v1 0 0
(

1 + e−(|gt−gt−1|)
)−1

HyAdamC-v2 0 1
(

1 + e−(|gt−gt−1|−µt)
)−1

HyAdamC-v3 1 0
(

1 + e−σt(|gt−gt−1|)
)−1

HyAdamC-v4 1 1
(

1 + e−σt(|gt−gt−1|−µt)
)−1

HyAdamC-v5 2 0
(

1 + e−σ2
t (|gt−gt−1|)

)−1

HyAdamC-v6 2 1
(

1 + e−σ2
t (|gt−gt−1|−µt)

)−1

Accordingly, we trained three CNN models, i.e., VGG, ResNet, and DenseNet, using
the six HyAdamC models. Then, we compared their image classification results, i.e., test
accuracies, to evaluate which model had the best optimization performance. Tables 3–5
describes the experiments results of VGG, ResNet, and DenseNet trained by HyAdamC-v1
to v6, respectively. First, Table 3 shows the test accuracies of the VGG-16 and 19 trained
by HyAdamC-v1 to v6. In the experiments, HyAdamC-v1 and v5 achieved the first and
second highest test accuracies in the 64 and 128-batched tests. In the tests for the ResNet-18
and 101 shown in Table 4, HyAdamC-v6 showed the best results for three of the four
tests. In detail, the ResNet-18 trained by HyAdamC-v6 achieved 0.936 test accuracy in
the 64-batched experiment and the ResNet-101 recorded 0.942 accuracy in both 64 and
128-batched tests. Meanwhile, as shown in Table 5, the DenseNet-121 and 169 trained by
HyAdamC-v4 and V5 showed the best image classification performance. In particular, we
found that HyAdamC-v5 achieved the first and second highest test accuracies in all four
tests. From the results shown in Tables 3–5, we found that HyAdamC-v1, v3, v5, and v6
had relatively good optimization performance in VGG, ResNet, and DenseNet. On the
other hands, HyAdamC-v2 and v4 showed slightly lower accuracies than others in the
most experiments.
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Table 3. The test accuracies of the VGG-16 and 19 trained by the six HyAdamC models. The first and
second best results are highlighted in red and orange, respectively.

VGG-16 VGG-19
Models Batch 64 Batch 128 Batch 64 Batch 128

HyAdamC-v1 0.894 0.902 0.885 0.900
HyAdamC-v2 0.894 0.894 0.887 0.885
HyAdamC-v3 0.894 0.900 0.886 0.899
HyAdamC-v4 0.888 0.906 0.881 0.894
HyAdamC-v5 0.899 0.900 0.890 0.899
HyAdamC-v6 0.887 0.899 0.889 0.896

Table 4. The test accuracies of the ResNet-18 and 101 trained by the six HyAdamC models. The first
and second best results are highlighted in red and orange, respectively.

ResNet-18 ResNet-101
Models Batch 64 Batch 128 Batch 64 Batch 128

HyAdamC-v1 0.934 0.935 0.940 0.939
HyAdamC-v2 0.936 0.937 0.937 0.933
HyAdamC-v3 0.934 0.936 0.940 0.937
HyAdamC-v4 0.933 0.935 0.940 0.938
HyAdamC-v5 0.935 0.938 0.939 0.937
HyAdamC-v6 0.936 0.932 0.942 0.942

Table 5. The test accuracies of the DenseNet-121 and 169 trained by the six HyAdamC models. The
first and second best results are highlighted in red and orange, respectively.

DenseNet-121 DenseNet-169
Models Batch 64 Batch 128 Batch 64 Batch 128

HyAdamC-v1 0.939 0.938 0.944 0.942
HyAdamC-v2 0.942 0.938 0.943 0.942
HyAdamC-v3 0.943 0.940 0.942 0.945
HyAdamC-v4 0.941 0.943 0.944 0.942
HyAdamC-v5 0.945 0.943 0.943 0.944
HyAdamC-v6 0.942 0.943 0.943 0.941

Meanwhile, Figure 10 describes the number of experiments in which each model
achieved the first and second highest test accuracies. We found that HyAdamC-v5, v6,
and v1 achieved the first, second, and third best results across all the experiments. In
detail, HyAdamC-v5 recorded the first and second highest test accuracies in five and
four experiments, respectively. HyAdamC-v6 showed the first and second best results in
four and two experiments, respectively. Moreover, HyAdamC-v1 achieved the first and
second best performance in two and four experiments, respectively. Accordingly, we chose
HyAdamC-v1, v5, and v6 as the candidate models of HyAdamC by considering these
results totally.

Additionally, we checked the convergence curves of the test accuracies recorded by
HyAdamC-v1, v5, and v6. Figure 11 illustrates these test accuracy curves recorded in the
64-batched experiments. In VGG-16, the convergence curve of HyAdamC-v4 was relatively
worse than that of HyAdamC-v1 around 75 steps. Nevertheless, as the epochs became
progressed, HyAdamC-v5 gradually showed better accuracy than that of HyAdamC-v1.
Moreover, HyAdamC-v6 showed relatively slower and lower convergence curves than
others in both VGG-16 and 19. However, in ResNet-18 and 101, the its test curves were
similar or slightly better than others. In the DenseNet-121 and 169, the test curves of
HyAdamC-v5 presented better convergence than others.
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Figure 10. The number of the experiments in which HyAdamC-v1 to v6 achieved the first and second
best test accuracies.

Figure 11. The test accuracy curves of VGG, ResNet, and DenseNet trained by HyAdamC-v1, v5, and v6 with CIFAR-10
images in the 64-batched experiments.

Figure 12 describes the test accuracies curves of HyAdamC-v1, v5, and v6 observed in
the 128-batched tests. We found the HyAdamC-v1 had relatively stable convergence with-
out notable oscillations in the tests except for the ResNet-101. Meanwhile, the test curves of
HyAdamC-v5 and v6 showed slightly unstable convergence in the VGG-16, VGG-19, and
ResNet-18. Interestingly, in the DenseNet-169, which is the most complicated model in our
experiments, the three HyAdamC models showed significantly stable convergence with
the high test accuracies. It indicates that our HyAdamC has stable and robust optimization
ability for the complicated CNN models with a lot of layers.
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Figure 12. The test accuracy curves of VGG, ResNet, and DenseNet trained by HyAdamC-v1, v5, and v6 with CIFAR-10
images in the 128-batched experiments.

In the experiments, HyAdamC-V1 showed most stable test convergence curves. On
the other hands, HyAdamC-v5 finally achieved best test accuracies in the most experiments,
even though it had slightly larger oscillations than those of HyAdamC-v1. Meanwhile,
HyAdamC-v6 showed worse results than others in several models, particularly, VGG.
Accordingly, we determined HyAdamC-v1 and HyAdamC-v5 as our final models. As
explained in Table 2, HyAdamC-v1 is the baseline method that does not use the scale
method. On the other hands, HyAdamC-v5 uses the variance to scale |gt − gt−1| in
Equation (17). Henceforth, we denote “HyAdamC-v1 and v5” as

• HyAdamC-v1→ HyAdamC-Basic ,
• HyAdamC-v5→ HyAdamC-Scale (i.e., scaled HyAdamC)

with no confusions for simpler notations. Incidentally, we note that the configurations of
λ1 and λ2 can be set variously depending on any characteristics of the CNN models or
their applications.

5.3. Experimental Results in the Image Classification Tasks
5.3.1. Image Classification Tasks in Vgg-16 and 19

Table 6 shows the test accuracies of VGG-16 and 19 trained by HyAdamC and other
methods. The VGG-16 models trained by HyAdamC-Basic and HyAdamC-Scale achieved
the best test accuracies among the compared methods. In detail, the VGG-16 and 19 trained
by HyAdamC-Basic showed the best accuracies in 128-batched tests, i.e., 0.902 and 0.9 accu-
racies, respectively. On the other hands, in 64-batched tests, the VGG-16 and 19 trained by
HyAdamC-Scale recorded 0.899 and 0.89 test accuracies, respectively, which were the high-
est results. Meanwhile, the VGG models trained by other methods showed relatively lower
accuracies than those of HyAdamC-Basic and HyAdamC-Scale. In particular, RMSProp,
AdamW, AdaDelta, and Yogi could not achieved promising training accuracies. It indicates
that they could not train the VGG models normally. Such low training performance can
occur by various causes such as inappropriate parameter settings and the vanishing gradi-
ent problem [19,35]. Such experimental results implies that the optimization methods are
significantly sensitive to their parameter settings or any characteristics of the CNN models.
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Table 6. The test accuracies of the VGG-16 and 19 trained by the optimization methods for the CIFAR-
10 image dataset classification task. “W (Win)”, “T (Tie)”, and “L (Loss)” refer to the number of the
compared methods for which HyAdamC-Basic (or HyAdamC-Scale) achieved better, equivalent,
and worse test accuracies, respectively. The first and second best results are highlighted in red and
orange, respectively.

VGG-16 VGG-19
Methods Batch 64 Batch 128 Batch 64 Batch 128

SGD 0.820 0.674 0.790 0.688
RMSProp 0.100 0.100 0.100 0.100
Adam 0.100 0.871 0.100 0.100
AdamW 0.100 0.100 0.100 0.100
Adagrad 0.746 0.738 0.740 0.742
AdaDelta 0.100 0.100 0.100 0.100
Rprop 0.123 0.223 0.149 0.166
Yogi 0.100 0.100 0.100 0.100
Fromage 0.883 0.897 0.859 0.882
TAdam 0.875 0.889 0.871 0.887
diffGrad 0.875 0.886 0.100 0.878
HyAdamC-Basic 0.894 0.902 0.885 0.900
HyAdamC-Scale 0.899 0.900 0.890 0.899

HyAdamC-Basic: W/T/L 11/0/0 11/0/0 11/0/0 11/0/0
HyAdamC-Scale: W/T/L 11/0/0 11/0/0 11/0/0 11/0/0

Figures 13 and 14 show the training accuracy curves of the compared optimization
methods in VGG-16 and 19, respectively. We found that VGG-16 and VGG-19 trained by
HyAdamC-Basic and HyAdamC-Scale showed better training convergence than those of
other methods. In particular, our curves showed considerably stable convergences when
compared of those of other methods. Furthermore, other methods except for TAdam,
Fromage, and AdaGrad, could not achieve reasonable training accuracies. As explained
previously, these results indicates that the existing methods are significantly sensitive to the
structural complexity of VGG. On the other hands, our HyAdamC-Basic and HyAdamC-
Scale presented the most stable training convergence with the highest accuracies without
notable oscillations even though the VGG was significantly vulnerable to the vanishing
gradient problem.

Meanwhile, Figures 15 and 16 shows the convergence curves of their test accuracies
in VGG-16 and 19, respectively. HyAdamC-Basic and HyAdamC-Scale also showed most
robust and stable test convergence curves with the highest test accuracies. We notice that
HyAdamC decelerates its search velocity slightly to control a strength of its convergence
according to the warm-up strategy at initial steps. Furthermore, when a difference between
the previous and current gradients is small, HyAdamC further reduces its search velocity
to search around the current weights carefully in the solution space. Nevertheless, our
HyAdamC achieved most stable not only the training but also test convergence curves
with the best training/test accuracies. From the results, we found that HyAdamC had
considerably robust and notable optimization performance for the CNN models that have
suffered from the vanishing gradient problem.
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Figure 13. The training accuracy curves of the VGG-16 trained by HyAdamC and other optimization methods in the
CIFAR-10 image classification tasks. In this figure, (a) shows the training accuracy curves of all compared methods. On the
other hand, (b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.9
and 1.

Figure 14. The training accuracy curves of the VGG-19 trained by HyAdamC and other optimization methods in the
CIFAR-10 image classification tasks. In this figure, (a) shows the training accuracy curves of all compared methods. On the
other hand, (b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.9
and 1.
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Figure 15. The test accuracy curves of the VGG-16 trained by HyAdamC and other optimization methods in the CIFAR-10
image classification tasks. In this figure, (a) shows the test accuracy curves of all compared methods. On the other hand,
(b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.85 and 0.9.

Figure 16. The test accuracy curves of the VGG-19 trained by HyAdamC and other optimization methods in the CIFAR-10
image classification tasks. In this figure, (a) shows the test accuracy curves of all compared methods. On the other hand,
(b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.85 and 0.9.



Sensors 2021, 21, 4054 25 of 41

5.3.2. Image Classification Tasks in Resnet-18 and 101

Table 7 describes the test accuracies of the ResNet-18 and 101 trained by the HyAdamC
and other methods. We found that the ResNet-18 and 101 trained by TAdam, diffGrad,
and HyAdamC considerably improved their test accuracies when compared against other
methods. Particularly, HyAdamC-Basic achieved the best accuracies in the three tests.
In addition, the ResNet-101 trained by HyAdamC-Basic showed the best classification
performance in both 64 and 128-batched experiments. Furthermore, the ResNet-18 trained
by HyAdamC-Basic and HyAdamC-Scale also presented the best test accuracies in both
128 and 64-batched tests. Meanwhile, the ResNet-18 and 101 trained by TAdam and diff-
Grad also showed good test accuracies. In particular, diffGrad achieved better optimization
performance than the result of the HyAdamC-Scale in the 128-batched test. Nevertheless,
the test accuracies of both HyAdamC-Basic and HyAdamC-Scaled still were better than
those of other methods.

Table 7. The test accuracies of the ResNet-18 and 101 trained by the optimization methods for
the CIFAR-10 image dataset classification task. “W (Win)”, “T (Tie)”, and “L (Loss)” refer to the
number of the compared methods for which HyAdamC-Basic (or HyAdamC-Scale) achieved better,
equivalent, and worse test accuracies, respectively. The first and second best results are highlighted
in red and orange, respectively.

ResNet-18 ResNet-101
Methods Batch 64 Batch 128 Batch 64 Batch 128

SGD 0.881 0.860 0.854 0.825
RMSProp 0.924 0.920 0.912 0.911
Adam 0.931 0.923 0.934 0.929
AdamW 0.923 0.927 0.922 0.928
Adagrad 0.914 0.910 0.924 0.918
AdaDelta 0.932 0.931 0.931 0.936
Rprop 0.498 0.533 0.102 0.302
Yogi 0.929 0.927 0.928 0.931
Fromage 0.894 0.921 0.911 0.912
TAdam 0.934 0.932 0.939 0.936
diffGrad 0.926 0.928 0.933 0.938
HyAdamC-Basic 0.934 0.935 0.940 0.939
HyAdamC-Scale 0.935 0.938 0.939 0.937

HyAdamC-Basic: W/T/L 10/1/0 11/0/0 11/0/0 11/0/0
HyAdamC-Scale: W/T/L 11/0/0 11/0/0 10/1/0 10/0/1

Figures 17 and 18 illustrate the training convergence curves of the ResNet-18 and
ResNet-101, respectively. Different from the experiments for the VGG, most of the com-
pared methods achieved high training accuracies more than 0.99. One of the reasons
for such high training performance is that ResNet uses the residual connections, which
is not used in VGG, to prevent the vanishing gradient problems [35,50]. As shown in
Figures 17 and 18, the ResNet-18 and 101 trained by HyAdamC showed overall similar or
better training accuracies than others. Meanwhile, AdaGrad presented the fastest training
convergence among all the compared methods including our HyAdamC. Nevertheless,
the test accuracies of AdaGrad were lower than those of not only HyAdamC but also
other SOTA methods such as TAdam and diffGrad. Such experimental results indicate
that adjusting its training strength in the initial steps can contribute to improving its image
classification abilities.
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Figure 17. The training accuracy curves of the ResNet-18 trained by HyAdamC and other optimization methods in the
CIFAR-10 image classification tasks. In this figure, (a) shows the training accuracy curves of all compared methods. On the
other hand, (b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.99
and 1.

Figure 18. The training accuracy curves of the ResNet-101 trained by HyAdamC and other optimization methods in the
CIFAR-10 image classification tasks. In this figure, (a) shows the training accuracy curves of all compared methods. On the
other hand, (b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.99
and 1.
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Meanwhile, Figures 19 and 20 show the convergence curves of test accuracies recorded
by HyAdamC and other compared methods in the ResNet-18 and 101, respectively. We
found HyAdamC-Basic and HyAdamC-Scale achieved overall better convergences than
others. Meanwhile, from the 128-batched test shown in Figure 20, we found that the
ResNet-101 trained by TAdam had similar or slightly better test accuracy convergence than
those of HyAdamC. In particular, AdaGrad showed less test accuracy curves than those of
HyAdamC-Basic and HyAdamC-Scale even though it had the fastest training convergence.
As explained previously, because HyAdamC uses the warm-up strategy to control a degree
of convergence at initial steps depending on the warm-up strategy. Accordingly, its initial
training convergence can become slightly slower than others. Nevertheless, as the training
has been progressed, its test accuracy becomes higher and higher with a faster ratio than
others. Accordingly, HyAdamC can achieve better image classification performance than
other methods.

Figure 19. The test accuracy curves of the ResNet-18 trained by HyAdamC and other optimization methods in the CIFAR-10
image classification tasks. In this figure, (a) shows the test accuracy curves of all compared methods. On the other hand,
(b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.9 and 0.94.
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Figure 20. The test accuracy curves of the ResNet-101 trained by HyAdamC and other optimization methods in the
CIFAR-10 image classification tasks. In this figure, (a) shows the test accuracy curves of all compared methods. On the
other hand, (b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.9
and 0.945.

5.3.3. Image Classification Tasks in Densenet-121 and 169

As shown in Figure 2, the DenseNet constructs more residual connections between
the inner blocks than that of ResNet. Accordingly, the DenseNet has more complicated
architectures than those of the VGG and ResNet, which makes searching its optimal weights
further hard.

Table 8 presents the test accuracies of the DenseNet-121 and 169 trained by HyAdamC
and other methods. We found that the DenseNet models trained by HyAdamC outper-
formed other models in terms of the test accuracies. In detail, the DenseNet-121 trained
by HyAdamC-Basic and HyAdamC-scale achieved the best test accuracies in all four tests.
Particularly, HyAdamC-Scale showed the highest accuracies in three tests, i.e., 0.945 and
0.943 in the DenseNet-121 and 0.944 in the DenseNet-169, respectively. Meanwhile, the
DenseNet-169 trained by HyAdamC-Basic showed the best test result in the 64-batched test,
i.e., 0.944 test accuracy. In addition, it also achieved second highest test accuracies among
all compared methods. Thus, HyAdamC-Basic and HyAdamC-Scale achieved the best test
accuracies among all the compared methods, which is notable results when compared to
other methods.

Table 8. The test accuracies of the DenseNet-121 and 169 trained by the optimization methods for
the CIFAR-10 image dataset classification task. “W (Win)”, “T (Tie)”, and “L (Loss)” refer to the
number of the compared methods for which HyAdamC-Basic (or HyAdamC-Scale) achieved better,
equivalent, and worse test accuracies, respectively. The first and second best results are highlighted
in red and orange, respectively.

DenseNet-121 DenseNet-169
Methods Batch 64 Batch 128 Batch 64 Batch 128

SGD 0.865 0.835 0.866 0.830
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Table 8. Cont.

DenseNet-121 DenseNet-169
Methods Batch 64 Batch 128 Batch 64 Batch 128

RMSProp 0.906 0.923 0.925 0.921
Adam 0.933 0.934 0.933 0.937
AdamW 0.928 0.929 0.932 0.928
Adagrad 0.925 0.921 0.920 0.919
AdaDelta 0.937 0.931 0.932 0.938
Rprop 0.114 0.416 0.104 0.367
Yogi 0.933 0.928 0.927 0.916
Fromage 0.907 0.916 0.907 0.907
TAdam 0.933 0.931 0.937 0.937
diffGrad 0.936 0.935 0.937 0.933
HyAdamC-Basic 0.939 0.938 0.944 0.942
HyAdamC-Scale 0.945 0.943 0.943 0.944

HyAdamC-Basic: W/T/L 11/0/0 11/0/0 11/0/0 11/0/0
HyAdamC-Scale: W/T/L 11/0/0 11/0/0 11/0/0 11/0/0

Figures 21 and 22 illustrate the training accuracy curves in DenseNet-121 and 169 trained
by HyAdamC and other methods, respectively. Similar to the results of ResNet, HyAdamC
showed slightly slower convergence than those of AdaGrad. However, we also found that
the HyAdamC-Basic and HyAdamC-Scale were further fast converged when compared to
the curves of other methods. In particular, our HyAdamC still showed further stable and
robust training accuracy curves when compared to ones in ResNet-18 and 101 even though
the DenseNet-121 and 169 have more complicated architectures than the ResNet. On the
other hands, other methods except for AdaGrad showed slower and lower convergence
than those of HyAdamC-Basic and HyAdamC-Scale.

Such robust and stable training performance of HyAdamC-Basic and HyAdamC-Scale
is also found in their test accuracy curves. Figures 23 and 24 present that the DenseNet-121
and 169 trained by HyAdamC-Basic and HyAdamC-Scale showed significantly better
test convergence curves with the highest test accuracies than those of other methods. In
particular, we found that the gap between the curves of HyAdamC and other methods
further widened when compared to the convergence curves of the ResNet-18 and 101 shown
in Figures 19 and 20. Furthermore, our test curves were significantly stable with no large-
width oscillations. For example, in Figure 24, the test curves of Fromage and RMSProp
showed considerably large oscillations. On the other hands, the test curves of HyAdamC-
Basic and HyAdamC-Scale made the most stable and best convergences. In other words,
as the CNN model was further complicated from ResNet to DenseNet, the optimization
performance of other methods were slow down, however, HyAdamC-Basic and HyAdamC-
Scale still maintained best test accuracies and stable convergence curves, simultaneously.
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Figure 21. The training accuracy curves of the DenseNet-121 trained by HyAdamC and other optimization methods in the
CIFAR-10 image classification tasks. In this figure, (a) shows the training accuracy curves of all compared methods. On the
other hand, (b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.99
and 1.

Figure 22. The training accuracy curves of the DenseNet-169 trained by HyAdamC and other optimization methods in the
CIFAR-10 image classification tasks. In this figure, (a) shows the training accuracy curves of all compared methods. On the
other hand, (b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.99
and 1.
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Figure 23. The test accuracy curves of the DenseNet-121 trained by HyAdamC and other optimization methods in the
CIFAR-10 image classification tasks. In this figure, (a) shows the test accuracy curves of all compared methods. On the other
hand, (b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.9 and 0.95.

Figure 24. The test accuracy curves of the DenseNet-169 trained by HyAdamC and other optimization methods in the
CIFAR-10 image classification tasks. In this figure, (a) shows the test accuracy curves of all compared methods. On the other
hand, (b) illustrates the plots in which a range of the y-axis of the plots described in (a) is zoomed into between 0.9 and 0.95.



Sensors 2021, 21, 4054 32 of 41

5.4. Additional Experiments to Evaluate the Performance of Hyadamc
5.4.1. Image Classification Task in the Latest Lightweight Cnn Model: Mobilenet-V2

Different to VGG, ResNet, and DenseNet, MobileNet-v2 [15] is a lightweight CNN
model designed to effectively perform image processing with a small amount of compu-
tations in limited environments such as mobiles or smart devices. Thus, MobileNet-v2
has relatively lightweight architecture when compared to ResNet and DenseNet. Accord-
ingly, we conducted additional experiment to confirm how our HyAdamC behaves in the
lightweight CNN models such as MobileNet-v2.

Figure 25 describes training and test accuracy curves in MobileNet-V2. Different to the
results in the VGG, ResNet, and DesNet, Figure 25 shows that the existing methods such
as Adam and RMSProp achieved better test curves to those of HyAdamC. In particular,
even though they showed comparable training curves when compared to the results
of HyAdamC, their test curves were better than those of HyAdamC. Furthermore, the
SOTA optimization methods such as Fromage and diffGrad also presented that worse test
curves to those of HyAdamC and other traditional methods although they showed notable
test accuracy in the ResNet and DenseNet. We think that such experimental results are
caused by the lightweight architecture of MobileNet-V2. When compared to the traditional
methods such as Adam and RMSProp, the SOTA methods involving our HyAdamC
conducts further various operations to detect their search velocity in the complicated
solution space. Accordingly, they perform more elastic search than the existing methods,
which can cause relatively slower convergence than those of the existing methods.

Figure 25. The training and test accuracy curves of the MobileNet-v2 trained by HyAdamC and other optimization methods
in the CIFAR-10 image classification tasks. In this figure, the plots in the left side shows the training and test curves of all
compared methods. On the other hand, ones in the right side illustrates the plots in which a range of the y-axis of the left
plots is zoomed in.

To analyze the test accuracies of the compared methods in detail, we checked the their
test accuracies at 200 epochs. Their results are listed in Table 9. As shown in Figure 25
and Table 9, HyAdamC-Basic and HyAdamC-Scale showed less test accuracies than the
existing methods such as Adam, AdaDelta, and Yogi. TAdam, one of the SOTA methods,
achieved equivalent to slightly better result than our HyAdamC. On the other hands, diff
and Fromage showed less performance than HyAdamC even though they achieved high
test accuracies in ResNet and DenseNet. Nevertheless, we also found that the difference in
test accuracies between the methods that performed better than HyAdamC and HyAdamC
was small. Such experimental results indicate that our HyAdamC can achieve comparable
optimization performance in the lightweight CNN models.
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Table 9. The test accuracies of the MobileNet-v2 trained by the optimization methods for the CIFAR-
10 image dataset classification task. “HyAdamC-Basic − Other Method” (or “HyAdamC-Scale − Other
Method”) indicates a difference between the test accuracies of HyAdamC-Basic (or HyAdamC-Scale)
and the compared method. “W (Win)”, “T (Tie)”, and “L (Loss)” refer to the number of the compared
methods for which HyAdamC-Basic (or HyAdamC-Scale) achieved better, equivalent, and worse test
accuracies, respectively.

Methods Test accuracy HyAdamC-Basic
− Other Method

HyAdamC-Scale
− Other method

SGD 0.8 0.116 0.118
RMSProp 0.915 0.001 0.003
Adam 0.92 −0.004 −0.002
AdamW 0.914 0.002 0.004
Adagrad 0.885 0.031 0.033
AdaDelta 0.92 −0.004 −0.002
Rprop 0.341 0.575 0.577
Yogi 0.921 −0.005 −0.003
Fromage 0.891 0.025 0.027
TAdam 0.918 −0.002 0
diffGrad 0.911 0.005 0.007
HyAdamC-Basic 0.916 - -
HyAdamC-Scale 0.918 - -

Win/Tie/Lose (HyAdamC-Basic) 7/0/4
Win/Tie/Lose (HyAdamC-Scale) 7/1/3

5.4.2. Validation Tests

To confirm the number of suitable epochs of HyAdamC for each CNN models, we
conducted validation tests. Figure 26 shows the training and validation loss curves of
HyAdamC-Basic and HyAdamC-Scale in VGG-16 and 19, respectively. In the validation
tests for VGG-16 and 19, we found that VGG-16 and 19 can be sufficiently learned by
training less than about 50 times. In addition, it was found that the validation loss of
HyAdamC was drastically increased when the epoch was performed more than 200 times.
Furthermore, we found that HyAdamC-Scale showed more stable validation loss than
HyAdamC-Basic. It indicates that the scale method using the variances in the short-term
velocity function can contribute to making its optimization further stable.

Figure 26. The training and validation loss curves of HyAdamC-Basic and HyAdamC-Scale in VGG.
The left and right plots shows the loss curves of HyAdamC evaluated in VGG-16 and 19, respectively.

Figures 27 and 28 describe the validation test results of HyAdamC in ResNet and
DenseNet, respectively. Unlike the validation test results in VGG, both HyAdamC-Basic
and HyAdamC-Scale showed stable validation curves in ResNet and DenseNet. In detail,
we found that the validation losses in both ResNet and DenseNet were gradually increased
after about 50 epochs were progressed. Also, when compared with the result of ResNet-18,
we found that the validation loss curve was increased little by little as the epoch has been
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progressed. These results show that more epochs should be performed than those in
ResNet-18 to sufficiently train ResNet-101.

Figure 27. The training and validation loss curves of HyAdamC-Basic and HyAdamC-Scale in
ResNet. The left and right plots shows the loss curves of HyAdamC evaluated in ResNet-18 and
101, respectively.

Figure 28. The training and validation loss curves of HyAdamC-Basic and HyAdamC-Scale in
DenseNet. The left and right plots shows the loss curves of HyAdamC evaluated in DenseNet-121
and 169, respectively.

Figure 29 shows the training and validation loss curves of HyAdamC in MobileNet-
v2. We found that the validation loss of MobileNet-v2 was increased after the epoch
has been progressed more than about 50 times. In addition, both HyAdamC-Basic and
HyAdamC-Scale were able to train MobileNet-v2 stably. The validation test results for the
VGG, ResNet, and DenseNet imply that HyAdamC can train them effectively even with a
relatively small number of epochs, depending on the complexity of their architecture in
training the CIFAR-10 data set.

Figure 29. The training and validation loss curves of HyAdamC-Basic and HyAdamC-Scale in
MobileNet-v2.
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Meanwhile, when compared to the validation curves of Figures 26–29, their test accu-
racy curves described in Sections 5.3 and 5.4.1 show a phenomenon that their test accuracies
were increased even though their validation losses were increased. Such phenomenon is
caused by a difference of the methods that compute the test accuracy and validation loss.
As shown in Equation (29), the test accuracy indicates a ratio of the number of correctly
classified images among all the test images. On the other hands, the cross-entropy loss
explained in Equation (30) is measured by computing an entropy of the real-valued output
values of the nodes in the output layers. Therefore, when many sample images are used as
the training, validation, and test sets and a number of training epochs are progressed, their
test accuracy can be sometimes increased although their loss is increased according to their
output values in the output layers.

5.4.3. Image Segmentation in the U-Net

Finally, we designed another additional experiment to confirm whether HyAdamC
can train not only the image classification models but also other applications performed by
the CNNs. For this, we adopted the image segmentation task that identifies the semantic
segments from any given images. In addition, we adopted the U-Net [51] as the baseline
CNN model for image segmentation tasks. Figure 30 describes a basic architecture of the
U-Net for image segmentation task.

Figure 30. The basic architecture of the U-Net [51].

Our experiment goal is to confirm whether our HyAdamC can be applied to train a
CNN model for the image segmentation. For this, the U-Net was trained by HyAdamC-
Basic and HyAdamC-Scale using the biomedical images involved in the Transmission
Electron Microscopy (ssTEM) dataset [52]. Figure 31 shows several example images used
to train the U-Net. In our experiments, the number of epochs was set to 2000. In addition,
the parameters of HyAdamC-Basic and HyAdamC-Scale were set to the default values
shown in Table 1. Moreover, the cross entropy function was used as the loss function.
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Figure 31. The example benchmark images involved in ssTEM dataset. (a) describes several sample
training images and (b) illustrates their GT ones.

Figure 32 shows the training loss and validation accuracy curves of HyAdamC-Basic
and HyAdamC-Scale, respectively. We found that HyAdamC-Basic had relatively faster
training convergence than that of HyAdamC-Scale. Meanwhile, HyAdamC-Basic showed
higher validation accuracies than those of HyAdamC-Scale at between 100 and 200 epochs.
However, after about 800 epochs, the validation accuracies of HyAdamC-Basic were slightly
better or equivalent than those of HyAdamC-Scale. Moreover, both HyAdamC-Basic and
HyAdamC-Scale maintained stable validation accuracies with no notable increasing or
decreasing after about 1000 epochs were progressed.

Figure 32. The training loss and validation accuracy curves of HyAdamC-Basic and HyAdamC-Scale in U-Net, respectively.

Table 10 lists their training losses and validation accuracies recorded at several epochs.
After 2000 times epochs were progressed, their final validation accuracies were 0.92 and
0.919, respectively. In addition, they achieved the best validation accuracies, i.e., 0.9254
and 0.9256, at 267 and 373 epochs, respectively. Thus, we found that they had comparable
performance in terms of the training losses and validation accuracies.

Finally, Figure 33 shows the validation results of U-Net trained by both HyAdamC-
Basic and HyAdamC-Scale at epoch 267 and 373, respectively. As explained in Table 10,
the most validation accuracies of HyAdamC-Basic and HyAdamC-Scale were 0.9254 and
0.9256, respectively. We found that the U-Net models trained by both HyAdamC-Basic
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and HyAdamC-Scale could effectively identify the segments from the input images when
compared to their GT ones.

Table 10. The detailed training losses and validation accuracies of HyAdamC-Basic and HyAdamC-Scale.

HyAdamC-Basic HyAdamC-Scale
Epochs Train Loss Val.Acc. Train Loss Val.Acc.

50 0.3075 0.8694 0.3052 0.8790
100 0.2616 0.9027 0.2859 0.8901
200 0.1739 0.9233 0.1834 0.9223
500 0.0973 0.9199 0.1227 0.9222
1000 0.0684 0.9184 0.0753 0.9192
2000 0.0524 0.9200 0.0554 0.9190

Maximum Val. Acc. Epochs Maximum Val. Acc. Epochs

0.9254 267 0.9256 373

Figure 33. The images segmented by the U-Net trained by HyAdamC-Basic and HyAdamC-Scale.
The left images show the original input images and their GT ones.

From these experimental results, we can find that our HyAdamC-Basic and HyAdamC-
Scale have considerably robust and stable optimization performance regardless of the
structural complexity of the CNN. Furthermore, we also found that our HyAdamC could
be effectively applied not only the image classification but also image segmentation tasks.

6. Discussions

In this section, we briefly discuss our experimental results shown in Section 5 in terms
of the three CNN models.

• VGG : As explained previously, the VGG is vulnerable to the vanishing gradient
problem because it does not use the residual connections [13]. Accordingly, the
existing methods such as SGD, AdaDelta, and Rprop showed considerably unstable
convergence while training both the VGG-16 and 19 even though RMSprop and
AdamW failed to train them. On the other hands, HyAdamC showed the most ideal
convergence with the highest accuracies and the least oscillations when compared
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to other SOTA methods. It implies that our HyAdamC can perform considerably
stable yet robust training even for the CNN models suffering from the vanishing
gradient problems.

• ResNet: Different from the VGG, the ResNet alleviates the vanishing gradient problem
by introducing the residual connections [13]. Accordingly, most of the compared
methods, including HyAdamC, achieved high training accuracies 0.95 or higher in
the experiments for ResNet-18 and 101. Nevertheless, HyAdamC still showed better
test accuracies although it had slightly slower convergence than other SOTA methods.
In particular, although AdaGrad presented faster convergence than HyAdamC, its
test accuracies were significantly lower than those of HyAdamC. It indicates that
the velocity control methods of HyAdamC are effective to search its optimal weight
carefully on the complicated CNN models with the residual connections.

• DenseNet: As explained in Section 3, the DenseNet has more complicated architecture
than the ResNet by constructing more residual connections [14]. Thus, the optimiza-
tion terrain created in the DenseNet becomes further complicated than those in ResNet.
In the experiments for the DenseNet-121 and 169, HyAdamC showed not only the best
test accuracies but the most stable convergence. Especially, from Table 8, we found
that the gap between HyAdamC and other methods became further increased when
compared to the results in ResNet-18 and 101. Such results show the HyAdamC still
maintains considerably robust and stable training ability with the highest accuracies
in the complex architecture. Our velocity control functions and adaptive coefficient
computation methods provide useful information about the complicated solution
space of the DenseNet. Accordingly, HyAdamC could further elastically control its
search strength and direction which helps to avoid falling into any local minimums or
excessively oscillating around them. It is the most distinguished characteristic and
merit of HyAdamC.

Thus, we found that HyAdamC had considerably robust and practical optimization
abilities in training the CNNs. Such merits allow HyAdamC to be utilized to boost the
performance of CNN models, e.g., the accuracy of image classification.

7. Conclusions

In this paper, we proposed a new Adam-based hybrid optimization algorithm, called
HyAdamC. Our core intuition is to utilize various terrain information observed from the
current and past gradients to effectively search its optimal weight. For this, HyAdamC
exploits the three velocity control functions to elastically control its search velocity in
terms of the initial, short, and long-term, respectively. Furthermore, HyAdamC effectively
prevents that the first momentum is distorted by any outlier gradients by computing its
coefficients adaptively according to a degree of variations of the past gradients.

In our experiments performed on the CIFAR-10 image classification tasks, the CNN
models trained by HyAdamC showed better performance with stable training ability than
those trained by the existing methods. It implies that the hybrid strategy of HyAdamC
could contribute to enhancing its optimization performance, particularly, the image classifi-
cation accuracy in the complicated CNN models such as ResNet and DenseNet. Further-
more, we also found that HyAdamC could be applied into not only image classification but
also image segmentation tasks such as U-Net. Accordingly, in the near future, we will con-
duct more in-depth researches so that HyAdamC can be generally applied various models
such as Recurrent Neural Networks (RNNs) [53] and Generative Adversarial Networks
(GANs) [54].
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CNN Convolution neural network
CV Computer vision
DenseNet Densely connected network
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GAN Generative adversarial network
GD Gradient descent
GPU Graphic processing unit
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NLP Natural language processing
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SGD Stochastic gradient descent
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