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Identification of metabolic 
markers predictive of prediabetes 
in a Korean population
Heun‑Sik Lee, Tae‑Joon Park, Jeong‑Min Kim, Jun Ho Yun, Ho‑Yeong Yu, Yeon‑Jung Kim & 
Bong‑Jo Kim*

Prediabetes (PD) is a high-risk state of developing type 2 diabetes, and cardiovascular and metabolic 
diseases. Metabolomics-based biomarker studies can provide advanced opportunities for prediction 
of PD over the conventional methods. Here, we aimed to identify metabolic markers and verify 
their abilities to predict PD, as compared to the performance of the traditional clinical risk factor 
(CRF) and previously reported metabolites in other population-based studies. Targeted metabolites 
quantification was performed in 1723 participants in the Korea Association REsource (KARE) 
cohort, from which 500 normal individuals were followed up for 6 years. We selected 12 significant 
metabolic markers, including five amino acids, four glycerophospholipids, two sphingolipids, and 
one acylcarnitine, at baseline, resulting in a predicted incidence of PD with an area under the curve 
(AUC) of 0.71 during follow-up. The performance of these metabolic markers compared to that of 
fasting glucose was significantly higher in obese patients (body mass index: BMI ≥ 25 kg/m2, 0.79 
vs. 0.58, P < 0.001). The combination with metabolic markers, CRF, and fasting glucose yielded the 
best prediction performance (AUC = 0.86). Our results revealed that metabolic markers were not only 
associated with the risk of PD, but also improved the prediction performance in combination with 
conventional approaches.

Prediabetes (PD) is an intermediate state between normal glucose tolerance (NGT) and overt type 2 diabetes 
(T2D). T2D is a multifactorial chronic disease that results from combined environmental and genetic risk fac-
tors that affect insulin resistance (IR) and impaired glucose tolerance (IGT)1. Approximately 37% and 70% of 
individuals with PD may be at a high-risk of developing T2D or related complications within 4 and 10 years, 
respectively2,3. The prevalence of T2D can be reduced, delayed, or even prevented by early screening for PD and 
effective interventions such as dietary changes, increased physical activity, and clinical treatment4. Similarly to 
T2D, PD diagnosis is based on biochemical criteria, such as impaired fasting glucose (IFG), IGT, combined IFG/
IGT, glycated hemoglobin (HbA1c), or IR, which are early indicators of progression to diabetes5. Additionally, 
several traditional clinical risk factors (CRF), such as age, sex, body mass index (BMI), high-density lipoprotein 
(HDL) and low-density lipoprotein (LDL) cholesterol (HDL-C, LDL-C), and triglyceride (TG) can predict future 
diabetes risk. However, detecting PD using these indicators is tedious and time-consuming, as well as prone 
to inconsistencies in a condition-dependent manner in patients6,7. Furthermore, they have moderate or low 
sensitivity in PD diagnosis and are typically examined after years of subclinical metabolic changes8,9. Therefore, 
there has been an increasing interest in developing predictive methods by identifying molecular biomarkers 
to improve the understanding of specific biochemical changes preceding PD onset. These studies would allow 
the patients to adopt preventive lifestyle actions or successful clinical interventions based on monitoring of the 
molecular markers and may lead to the development of effective medicines.

Metabolomics is a high-throughput technology for identifying endogenous metabolic markers with diverse 
biochemical properties to provide insights into the pathogenesis of diseases and diagnostic approaches10,11. In 
the last decade, several studies have evaluated the associations between a wide range of metabolites and PD 
using targeted or non-targeted metabolomics approaches12,13. To date, branched-chain amino acids (BCAAs) 
(isoleucine, leucine, and valine), other amino acids (glycine, glutamine, glutamate, and aromatic amino acids), 
sugars (glucose and fructose), and lipid subclasses (phospholipids, sphingomyelins, triglycerides, palmitate, 
and palmitoleate) have been associated with the progression of PD12,14,15. However, because these metabolites 
were reported mostly in Caucasian and European population-based cohort studies, further studies of different 
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racial and ethnic groups, such as Asian populations, are needed. A recent metabolomics study reported PD-
related metabolites, including methylcysteine and sedoheptulose 1,7-bis-phosphate in a Japanese population 
with IFG16. The results obtained using a non-targeted metabolomics approach revealed a set of five metabolites, 
including 20-hydroxy-leukotriene E4, lysophosphatidylcholine (lysoPC) (C20:3, C20:4), 5-methoxytryptamine 
and endomorphin-1, in a Chinese population with IFG and IGT17. Another targeted metabolomics approach 
identified 7 metabolites, including BCAAs and lysoPC (C16:0, C18:0, C18:1, C18:2), in a Chinese population 
with IFG and T2D18. Therefore, in the present study, we identified novel metabolic markers for PD, estimated 
their predictive performance in a Korean population using a comprehensive targeted metabolomics approach, 
and compared them to other well-known predictors, including two previously reported models12,15, CRF, and 
fasting glucose levels.

Results
Subject characteristics.  Table 1 shows the baseline characteristics of the participants, stratified by preva-
lent cases at baseline and incident cases in the follow-up. Compared to the participants who did not develop PD 
(NGT, n = 924), those with PD (n = 799) were older and had higher levels of BMI, LDL-C, TG, HbA1c, fasting 
glucose, 2 h-PPG, fasting insulin, and HOMA-IR, and lower levels of HDL-C, and were mostly female. The par-
ticipants with incident PD (n = 199) had higher levels of TG, HbA1c, fasting glucose, 2 h-PPG, fasting insulin, 
and HOMA-IR compared to those without PD (n = 301) during the follow-up. Because PD can be observed form 
the dysglycemia and IR states, all participants at baseline were also reclassified according to IFG, IGT, combined 
IFG/IGT, HbA1c, and HOMA-IR levels (study characteristics are shown in Supplementary Table S1). Accord-
ing to the dysglycemic state, the sample set included 997, 255, 265, and 206 participants with NGT, IFG, IGT, 
and combined IFG/IGT (Supplementary Table S1A). According to HbA1c levels, the population corresponded 
to 1105 participants with NGT (HbA1c < 5.7) and 618 with PD (5.7 ≤ HbA1c ≤ 6.4) (Supplementary Table S1B). 
According to HOMA-IR levels, the sample set was divided into four quartiles: 431 in the 25th percentile (Q1), 
431 in the 50th percentile (Q2), 430 in the 75th percentile (Q3), and 431 in the 100th percentile (Q4) of distribu-
tion (Supplementary Table S1C).

Significantly changed metabolites in PD and PD‑related biochemical traits.  To identify signifi-
cant metabolites with altered serum concentrations between individuals with NGT and PD, as well as PD-related 
traits, we performed multivariable logistic regression analysis based on pairwise comparisons (PD vs. NGT by 
the ADA criteria or HbA1c levels, IFG, IGT, and IFG + IGT vs. NGT by dysglycemic state, as well as Q4 vs. Q1 
by HOMA-IR) at baseline. As a result, the levels of 44 and 39 metabolites significantly differed (P < 4.07 × 10–4) 
in PD compared to those in NGT based on the ADA criteria and HbA1c levels, respectively (odds ratios and P 
values are shown in Supplementary Table S2A,B). The levels of 34, 29, and 28 metabolites significantly differed in 
the IFG, IGT, and IFG + IGT groups, respectively, compared to in NGT by the dysglycemic state (Supplementary 
Table S2C–E). Finally, the concentrations of 25 metabolites significantly differed in the top quartile (Q4) as the 
IR group compared to in the lowest quartile (Q1) as referenced by HOMA-IR levels (Supplementary Table S2F).

Elevated glucose and IR are risk indicators for PD development. Thus, we examined metabolite changes in 
response to increasing fasting glucose, 2 h-PPG, HbA1c, and HOMA-IR levels by multivariable linear regres-
sion analysis. Testing of the explanatory fasting glucose and 2 h-PPG revealed 47 and 52 significant metabo-
lites, respectively, associated with dysglycemia (P < 4.07 × 10–4) (Supplementary Figure S1, Supplementary 
Table S3A,B). Among them, 33 and 32 metabolites showed consistent results in response to PD using the ADA 
criteria (75% and 73% of 44 metabolites in Supplementary Table S2A), 32 and 26 metabolites in response to IFG 

Table 1.   Characteristics of the study populations in the baseline (KARE S2) and follow-up (KARE S5) 
cohorts by ADA criteria. Data presented as mean ± deviations (SD) and n (%). BMI body mass index, HDL 
high density lipoprotein, LDL low-density lipoprotein, HbA1c glycated hemoglobin. 2 h-PPG 2 h-postprandial 
glucose. HOMA-IR (homeostasis model assessment of insulin resistance) was calculated by following 
formula = [Fasting insulin (µlU/mL) × Fasting glucose (mg/dL)]/405. *Mann–Whitney test analyzed the 
significance between the two groups (P < 0.05).

Clinical and laboratory parameters

Baseline (n = 1723) Follow-up (n = 500)

NGT (n = 924) PD (n = 799) NGT (n = 301) PD (n = 199)

Age (years) 54.54 ± 8.66 56.85 ± 8.70* 59.42 ± 7.71 62.07 ± 9.08*

Sex (female) (%) 50.11 58.46* 50.83 54.27*

BMI (kg/m2) 23.31 ± 2.91 25.29 ± 3.15* 22.98 ± 2.75 23.63 ± 3.37

HDL cholesterol (mg/dL) 45.46 ± 10.28 43.38 ± 10.13* 49.91 ± 13.06 48.03 ± 12.28

LDL cholesterol (mg/dL) 118.57 ± 29.74 124.42 ± 32.58* 115.66 ± 26.63 118.34 ± 30.82

Triglycerides (TG) (mg/dL) 110.74 ± 56.79 145.44 ± 69.85* 108.06 ± 50.25 124.95 ± 64.72*

HbA1c (%) 5.26 ± 0.29 5.74 ± 0.33* 5.16 ± 0.23 5.68 ± 0.29*

Fasting glucose (mg/dL) 82.91 ± 4.68 99.65 ± 8.74* 83.47 ± 5.44 91.70 ± 8.20*

2 h-PPG (mg/dL) 88.96 ± 15.94 143.20 ± 32.33* 89.74 ± 19.09 126.11 ± 34.01*

Fasting insulin (μU/mL) 6.70 ± 3.05 8.57 ± 4.36* 6.24 ± 2.20 8.04 ± 4.04*

HOMA-IR 1.38 ± 0.67 2.12 ± 1.14* 1.29 ± 0.49 1.85 ± 1.05*
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and IGT (94% and 90% of 34 and 29 metabolites in Supplementary Table S2C,D), and 28 and 23 metabolites 
in response to combined IFG + IGT by logistic regression (100% and 82% of 28 metabolites in Supplementary 
Table S2E). Furthermore, because increased HbA1c levels and IR are major determinants of the PD risk, linear 
regression was performed to estimate the difference in PD metabolite changes based on HbA1c and HOMA-IR 
variables. Consequently, 47 and 37 metabolites were significantly associated with HbA1c and IR after correc-
tion for multiple testing, respectively (Supplementary Figure S1, Supplementary Table S3C,D). Among these 
metabolites, 38 and 22 compositions showed consistent results in response to PD according to HbA1c and the 
HOMA-IR levels, respectively, and in logistic regression (97% and 88% of 39 and 25 metabolites in Supplemen-
tary Table S2B,F). These results indicate that the identified metabolites are reliable for assessing PD and related 
conditions.

A total of 39 metabolites, which appeared in more than half of previously mentioned results in both logis-
tic and linear regression analysis, were selected as PD-enriched metabolites (Supplementary Table S4). The 
metabolite dataset contained an acylcarnitine, 10 amino acids, a biogenic amine, 19 glycerophospholipids, 7 
sphingolipids, and a hexose. Among these metabolites, 25 were inversely related to the prevalence of PD and 
included known diabetic markers such as glycine (Gly), kynurenine, lysoPC a C18:2, phosphatidylcholine acyl-
alkyl C34:3 (PC ae C34:3) and C44:4 (PC ae C44:4), and sphingomyelin C16:1 (SM C16:1), whereas 14 were 
positively associated with PD prevalence, including known diabetic markers such as octadecenoylcarnitine 
(C18:1), alanine (Ala), glutamate (Glu), isoleucine (Ile), phenylalanine (Phe), tyrosine (Tyr), valine (Val), phos-
phatidylcholine diacyl C36:1 (PC aa C36:1) and C40:5 (PC aa C40:5), and hexose12,19–22. Thus, these metabolites 
were closely linked to the risk of PD.

Determination of discriminatory metabolites of PD.  To improve the accuracy and select more signif-
icant metabolites for distinguishing individuals with prediabetic conditions, we performed supervised random 
forest analysis with the 39 PD-enriched metabolites and 3 covariates. The 30 top-ranked variables, including 
both metabolites and diabetic risk indicators, were chosen based on the two indices: Mean Decrease Accuracy 
and Mean Decrease Gini (Supplementary Figure S2). Consequently, 26 metabolites with the potential to dis-
criminate between individuals with prevalent PD and NGT were obtained. Total hexose, which is mainly repre-
sented as glucose, was not considered as a variable in subsequent analyses.

Construction of PD prediction model.  We further conducted stepwise regression analysis to select the 
best prediction model among the discriminatory metabolites. Indeed, 12 independent metabolites, as named the 
KARE model, maximized the prediction performance at baseline. These metabolites and their associations with 
prevalent and incident PD, as well as fasting glucose, 2 h-PPG, HbA1c, and HOMA-IR at baseline are listed in 
Table 2. Six of these (i.e., C18:1, Ala, Met, Val, PC aa C36:1, and SM(OH) C22:2) were linked to an increased risk 
of prevalent PD, whereas the others (i.e., Gly, Tyr, lysoPC a C18:2, PC ae C30:0, PC ae C42:1, and SM C18:1) were 
associated with a decreased risk at baseline. Ala, Gly, Val, lysoPC a C18:2, and PC ae C42:1 showed significant 
altered serum levels in fasting glucose, 2 h-PPG, HbA1c and HOMA-IR from baseline as well as incident PD. 
However, SM C18:1 showed significance in only fasting glucose, but PC ae C30:0 and SM(OH) C22:2 showed 
significance in fasting glucose, 2 h-PPG, HbA1c and incident PD. In contrast, Met or Tyr maintained significance 
in HOMA-IR together with HbA1c or 2 h-PPG, respectively. Finally, PC aa C36:1 was significantly associated 
with all variables but not with incident PD. Next, we examined whether the predictive ability of these metabolites 
was comparable to that of previously established clinical parameters at baseline by analyzing the AUC (Sup-
plementary Figure S3). The KARE model used to discriminate between prevalent PD and NGT had an AUC of 
0.84 (95% confidence interval: 0.82, 0.86), which was higher than that of the FHS and KORA metabolites and 
traditional CRF models [AUC 0.74 (0.71, 0.76), 0.66 (0.63, 0.69), and 0.74 (0.72, 0.76), respectively, P < 0.0001] 
and lower than that of the fasting glucose (Glu0) model [AUC 0.95 (0.94, 0.96), P < 0.0001], which was highly 
correlated with the diabetic condition (Supplementary Table S5). Notably, Val and Tyr as well as Gly and lysoPC 
a C18:2, previously reported by FHS and KORA, were selected in the KARE model. When the KARE model was 
combined with the established risk prediction models, i.e., CRF and Glu0, the discrimination was slightly but 
significantly improved according to the AUC of 0.88 (0.86, 0.89) and 0.96 (0.95, 0.97), respectively, (P < 0.001).

Predicting incident PD with the KARE model.  Figure 1 shows the AUC comparisons across the differ-
ent prediction models in the follow-up dataset. KARE metabolites discriminated future PD with an AUC of 0.71 
(95% confidence interval: 0.67, 0.76), which was significantly higher than that of the FHS and KORA metabolite 
models [AUC 0.56 (0.50, 0.60) and 0.63 (0.58, 0.68), P < 0.005, respectively]. The AUC of the traditional CRF 
model was significantly lower than that of the KARE model [AUC 0.64 (0.59, 0.69), P < 0.013]. However, as 
expected, the AUC of Glu0 model was significantly higher than that of the KARE model [AUC 0.79 (0.76, 0.84), 
P < 0.005]. The AUC of the combined KARE and CRF models significantly improved the predictive performance 
compared to KARE or CRF model only [0.75 (0.71, 0.80), P < 0.008]. More importantly, adding Glu0 to the com-
bined CRF and KARE model maximized the AUC to 0.86 (0.82, 0.89). These results indicate that the selected 
metabolite model improved the prediction of PD compared to other prediction models and established clinical 
parameters.

We also tested whether the metabolite and fasting glucose models predicted the risk of incident PD in differ-
ent baseline risk groups. The AUC values of the KARE metabolite and fasting glucose models in subpopulations 
stratified by age, sex, and BMI (used for covariates) are shown in Fig. 2. In the four age quartile groups, the AUC 
of the KARE model did not significantly differ from that of Glu0 model but was higher in early ages and smaller 
in advancing ages. The AUC of the Glu0 model was significantly higher than that of the KARE model in the 
female group [AUC 0.85 (0.80, 0.90) vs. 0.73 (0.66, 0.79), P < 0.005], but showed no significant difference in the 
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Table 2.   Association of stepwise regression selected 12 metabolites with prevalent and incident PD, as well as 
fasting glucose, 2 h-PPG, HbA1c, and HOMA-IR at baseline (P < 0.05). Odds ratio (OR) and 95% confidence 
interval (CI) estimates provided from logistic regression and Beta (beta coefficient; effect size) from linear 
regression in the normalized metabolites.

Metabolites

Prevalent PD Incident PD Fasting glucose 2 h-PPG HbAlc HOMA-IR

OR (95% 
CI) P value

OR (95% 
CI) P value

Beta (95% 
CI) P value

Beta (95% 
CI) P value

Beta (95% 
CI) P value

Beta (95% 
CI) P value

Acylcarnitines (1)

1 C18:1 1.67 (1.47, 
1.91) 2.36E−14 1.05 (0.84, 

1.32) 0.66 0.18 (0.14, 
0.22) 2.45E−16 0.10 (0.06, 

0.14) 9.75E−06 0.00 (-0.05, 
0.04) 0.97 0.01 (-0.04, 

0.05) 0.77

Amino acids (5)

2 Ala 1.73 (1.47, 
2.02) 1.29E−11 1.42 (1.08, 

1.88) 1.22E−02 0.21 
(0.16,0.27) 1.53E−15 0.19 (0.14, 

0.24) 1.09E−11 0.12 (0.07, 
0.18) 1.02E−05 0.19 (0.13, 

0.24) 3.22E−11

3 Gly 0.50 (0.43, 
0.58) 3.01E−20 0.71 (0.56, 

0.90) 6.00E−03 -0.23 (-0.28, 
-0.19) 2.00E−16 -0.22 (-0.27, 

-0.18) 2.00E−16 -0.12 (-0.17, 
-0.07) 9.69E−07 -0.17 (-0.22, 

-0.13) 4.39E−12

4 Met 1.23 (1.05, 
1.44) 1.20E−02 0.95 (0.68, 

1.32) 0.75 0.01 (-0.05, 
0.05) 0.97 0.05 (-0.01, 

0.10) 0.10 0.07 (0.01, 
0.12) 1.89E−02 -0.11 (-0.16, 

-0.05) 2.27E−04

5 Tyr 0.84 (0.70, 
0.99) 4.43E−02 1.10 (0.78, 

1.54) 0.58 0.02 (-0.04, 
0.08) 0.51 -0.10 (-0.16, 

-0.04) 9.33E−04 -0.04 (-0.10, 
0.02) 0.23 0.17 (0.11, 

0.24) 8.50E−08

6 Val 1.91 (1.61, 
2.26) 5.28E−14 1.47 (1.11, 

1.94) 6.77E−03 0.17 (0.11, 
0.22) 3.86E−09 0.23 (0.17, 

0.28) 9.40E−15 0.16 (0.10, 
0.21) 1,71E−07 0.11 (0.05, 

0.16) 3.51E−04

Glycerophospholipids (4)

7 lysoPC a 
C18:2

0.61 (0.53, 
0.69) 1.03E−13 0.59 (0.46, 

0.74) 1.50E−05 -0.07 (-0.11, 
-0.02) 2.11E−03 -0.25 (-0.29, 

-0.20) 2.00E−16 -0.20 (-0.24, 
-0.15) 2.00E−16 -0.11 (-0.16, 

-0.06) 2.68E−06

8 PC aa C36:1 1.79 (1.53, 
2.11) 7.38E−13 1.07 (0.79, 

1.54) 0.68 0.11 (0.06, 
0.16) 3.49E−05 0.09 (0.04, 

0.15) 6.08E−04 0.24 (0.18, 
0.29) 2.00E−16 0.10 (0.05, 

0.16) 2.23E−04

9 PC ae C30:0 0.59 (0.51, 
0.68) 1.05E−12 0.62 (0.48, 

0.81) 4.02E−04 -0.09 (-0.14, 
-0.05) 1.06E−04 -0.10 (-0.15, 

-0.06) 2.15E−05 -0.17 (-0.22, 
-0.12) 1.09E−11 -0.02 (-0.07, 

0.03) 0.45

10 PC ae C42:1 0.56 (0.48, 
0.66) 6.60E−12 0.76 (0.58, 

1.00) 5.00E−02 -0.14 (-0.19, 
-0.09) 1.01E−07 -0.12 (-0.18, 

-0.07) 3,55E−06 -0.15 (-0.21, 
-0.10) 2.20E−08 -0.15 (-0.21, 

-0.10) 2.65E−08

Sphingolipids (2)

11 SM C18:1 0.65 (0.53, 
0.80) 5.58E−05 0.85 (0.60, 

1.21) 0.37 -0.18 (-0.24, 
-0.11) 7.67E−08 0.04 (-0.02, 

0.11) 0.21 -0.04 (-0.11, 
0.03) 0.30 -0.01 (-0.08, 

0.06) 0.81

12 SM (OH) 
C22:2

1.65 (1.31, 
2.08) 1.74E−05 1.92 (1.31, 

2.84) 9.33E−04 0.09 (0.01, 
0.16) 1.93E−02 0.11 (0.04, 

0.19) 3.79E−03 0.14 (0.07, 
0.22) 3.11E−04 0.05 (-0.02, 

0.13) 0.17

Figure 1.   Comparison of AUCs from different prediction models for PD incidence in the follow-up dataset 
determined by DeLong’s test. FHS Framingham Heart Study model (Leucine, Isoleucine, Valine, Tyrosine, and 
Phenylalanine), KORA KORA cohort model (Glycine, lysoPC a C18:2 and acetylcarnitine), CRF Clinical Risk 
Factors (Age, Sex, BMI, HDL-C, LDL-C and TG), Glu0 fasting glucose.
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male group. Similarly, in the group with a normal BMI (< 23 kg/m2), the AUC of the Glu0 model was significantly 
higher than that of the KARE model [AUC 0.78 (0.71, 0.84) vs. 0.67 (0.60, 0.74), P < 0.05]. In contrast, in the 
overweight BMI (23 to 24 kg/m2) no significant difference was observed [AUC 0.78 (0.70, 0.87) vs. 0.79 (0.71, 
0.87), P = 0.93], whereas in the obese BMI group (≥ 25 kg/m2), the AUC of the KARE model was significantly 
higher than that of the Glu0 model [AUC 0.79 (0.72, 0.87) vs. 0.58 (0.48, 0.68), P < 0.001]. These results suggest 
that the KARE metabolite model is useful for predicting PD in obese individuals.

Discussion
PD is considered as an important risk factor for the development of T2D as well as vascular problems, kidney dis-
ease, and nerve and retinal injuries. Thus, an early PD diagnosis can improve the quality of life of patients suffer-
ing from T2D and related complications. However, because approximately 90% of patients with PD are not aware 
of their conditions until they are diagnosed with diabetes, the development of suitable prediction models using 
effective PD-related biomarkers in biofluids, including blood, serum, plasma, and urine is urgently required.

Using targeted metabolomics combined with statistical analysis enable identification of metabolic markers for 
discriminating between the absence and presence of PD in a cross-sectional study and perform predictive analysis 
of incident PD in a 6-year follow-up study. As a result, 39 metabolites were significantly associated with the risk 
of PD in different biochemical phenotypic traits. Finally, from the results of both random forest and stepwise 
logistic regression analyses, 12 metabolites were further selected as a KARE model, including an acylcarnitine, 
five amino acids, four glycerophospholipids, and two sphingolipids, because of their powerful discrimination 
for predicting the future onset of PD. The KARE metabolite model significantly improved the PD prediction 
performance compared to the FHS or KORA metabolite model, CRF, or fasting glucose. We also showed that 
the combined metabolite model predicted future PD better than fasting glucose in the obese population. In 
addition, we concluded from the FHS and KORA studies that Val, Tyr, Gly, and lysoPC a C18:2 are predictors of 
diabetes development independently of other risk factors12,15. Among the other KARE metabolites, C18:1, Ala, 
Met, PC aa C36:1, and SM(OH) C22:2 were previously reported as potential predictive and diagnostic markers 
for PD or T2D. As a free fatty acid, the plasma levels of octadecenoylcarnitine (C18:1) were increased not only 
in T2D but also in IGT and IFG, and may lead to hyperglycemia by excessive IR-induced beta oxidation22,23. 
Alanine (Ala) is a gluconeogenic substrate linked to impaired insulin sensitivity prior to the elevation of fasting 
glucose or insulin levels and may predict the incidence of diabetes as a marker of attenuated glucose tolerance24,25. 
An increase in circulating blood methionine (Met) and altered Met catabolism led to excessive conversion of 
Met into S-adenosylmethionine by a liver-specific Met adenosyltransferase, and thus to diabetes pathogenesis 
(insulin-resistant and β-cell dysfunctions)9,26,27. By controlling Met levels, the conditions of glucose homeostasis, 
insulin sensitivity, and oxidative stress with activation of the fibroblast growth factor 21 and protein phosphatase 
2A signals in diabetes may improve28,29. As previously reported, increased or reduced concentrations of PC aa 
C36:1 or SM(OH) C22:2 in plasma indicated the incidence of T2D12,20. Significant concentration changes in these 
metabolites were correspondingly observed in our study, suggesting that KARE metabolite levels may change in 
T2D as well as PD, supporting the relevance that the metabolites were linked to diabetes progression. As shown 
in Table 2, all metabolites at baseline were associated with prevalent PD, although some were not associated with 
incident PD in the follow-up. However, we retained all metabolites in the KARE prediction model, as this lack 
of association may have resulted from the small size effect, and only a large sample may generate sufficient sta-
tistical power to obtain significant results. Another reason may be that sequential metabolite changes take place 
depending on the PD duration and progression, which could not be controlled in statistical analysis. Addition 

Figure 2.   Comparisons of AUCs in the follow-up dataset according to age (a), sex (b), and BMI (c) groups. 
DeLong’s test was performed to compare AUCs between the KARE and fasting glucose (Glu0) prediction 
models. (/): number of controls and incident cases analyzed in the follow-up.
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of KARE metabolites complemented the PD prediction based on fasting glucose and CRFs, and thus when 
combined, yielded the best model, as shown in Fig. 1. This may be attributed to the selection of the KARE model 
which could be performed independently of CRFs, possibly because the significant metabolites were linked to 
other causes of PD. Furthermore, the improvement in the predictive performance with additional metabolites 
implies that metabolic alterations in PD besides impaired glucose regulation were involved. According to Fig. 2, 
the AUC of the metabolite model was higher than that of the fasting glucose model in the obese subgroup but 
was not significantly changed in the male and ages subgroups. This result suggests that the metabolite model 
had better or equal accuracy in PD prediction in those with no obvious traditional risk factors. However, when 
the AUC of the metabolite model was lower than that of the fasting glucose model in the female and leaner 
subgroups, further analysis was required to identify additional metabolites with good prediction performance.

In this study, we detected a difference in the metabolic profiles of PD and NGT groups and evaluated PD 
prediction in cross-sectional and follow-up studies. However, because of the broad metabolite spectrum in 
this study, validation of the selected metabolite model has not been performed in different cohorts. Another 
limitation is that there were no clear clues for the metabolic alterations of the prediction model that could occur 
before PD onset. Nevertheless, a series of metabolic alterations may occur before the onset of PD, based on the 
beta values of the linear regression with fasting and postprandial glucose, HbA1c, or HOMA-IR. Furthermore, 
compared to our previous report, most of these metabolites, C18:1, Ala, Val, Gly, lysoPC a C18:2, PC aa C36:1, 
PC ae C42:1, and SM C18:1, were also significantly altered in subjects with T2D compared to in non-patients30, 
indicating that the metabolites are involved in the overall diabetes progression.

In conclusion, introduction of a metabolomics approach to identify serum metabolites yielded a novel pre-
diction model containing 12 metabolites related to PD, and thus improved the prediction performance of PD 
in combination with diabetes risk factors. These findings may improve the understanding of the PD metabolic 
etiology and promote the prevention of this and other related diseases.

Methods
Study subjects and sampling.  The KARE cohort for the prospective population study was established 
by the Korean Genome and Epidemiology Study (KoGES) in the Ansan and Ansung areas of South Korea31. 
The KARE cohort was assembled and biannually surveyed from 2001 to 2014 through a twelve-year follow-
up. KARE 2nd survey (KARE S2) was administered to 7515 individuals examined from 2005 to 2006. In total, 
1723 subjects, including 799 PD and 924 NGT individuals, were recruited from the KARE S2 cohort for cross-
sectional study as a baseline (Table 1). The follow-up data collection of the KARE 5th survey (KARE S5) took 
place from 2011 to 2012 (6 years after baseline data collection). Of the 924 NGT individuals at KARE S2, 500 
were followed up for 6 years, resulting in 199 incidences of PD and 301 remaining as NGT; the prediction analy-
sis was performed on this population (Table 1). According to the criteria of the American Diabetes Association 
(ADA)1, NGT was defined as fasting glucose levels below 100 mg/dL, 2-h postprandial glucose (2 h-PPG) levels 
below 140 mg/dL, and glycosylated hemoglobin A1c (HbA1c) levels below 5.7%. However, fasting glucose levels 
of 100–125 mg/dL, 2 h-PPG levels of 140–199 mg/dL, or HbA1c levels of 5.7 to 6.4% were defined as PD.

Metabolite measurements and quality assessment.  Serum metabolites in subjects from both the 
KARE S2 (n = 1723) and KARE S5 (n = 500) were quantitatively analyzed by a targeted metabolomics approach 
using the AbsoluteIDQ p180 kit (BIOCRATES Life Science, Innsbruck, Austria), as previously described in 
our studies30. Briefly, to quantify metabolites in the serum samples, liquid chromatography system and flow-
injection analysis-mass spectrometry were performed using an API 4000 QTRAP system (Applied Biosystems, 
Foster City, CA, USA), equipped with an Agilent 1200 HPLC system (Agilent Technologies, Santa Clara, CA, 
USA) and following the manufacturer’s instructions. The concentrations of 186 metabolites, 40 acylcarnitines, 
21 amino acids, 19 biogenic amines, 90 glycerophospholipids, 15 sphingolipids, and a hexose were measured 
in micromolar units with the MetVal software package (BIOCRATES Life Sciences). Quality control (QC) was 
performed by using calibration standards and QC samples included in the kit, and reference standards were used 
as normal human pooled serum. Data quality of each metabolite was checked based on the following criteria. 
First, the coefficient of variance for each metabolite in the reference standards < 15%; second, half of the analyzed 
metabolites concentrations in the reference standards > limit of detection (LOD), which was set to three times 
the median of the three blank samples within each kit plate; and third, half of the analyzed metabolite concen-
trations in the experimental samples > LOD. After excluding metabolites that did not meet the quality criteria, 
subsequent analyses were performed using 123 and 131 metabolites in the KARE S2 baseline and KARE S5 
follow-up, respectively.

Statistical analyses.  Statistical analyses were conducted with R statistical package environment (http://
www.r-proje​ct.org) and SPSS for windows (version 20.0, IBM). The concentration of each metabolite was log-
transformed and then the z-score was normalized to a mean equal to zero and variance of one. Figure 3 shows 
the selection of metabolites. First, we tested the association between the 123 individual metabolites and differ-
ent prediabetic phenotypes by multivariable regression analysis adjusting for age, sex, and BMI in the KARE S2 
baseline. To perform the regression analysis, 1723 subjects with PD, defined by ADA criteria, were stratified in 
subgroups according to their PD-related biochemical traits, such as IFG, IGT, combined IFG/IGT, HbA1c, and 
homeostasis model assessment of insulin resistance (HOMA-IR) as follows: (1) NGT and PD groups by ADA 
criteria (Table 1); (2) NGT, IFG, IGT, and combined IFG/IGT groups based on glucose levels (Supplementary 
Table S1A); (3) NGT and PD groups based on HbA1c levels (Supplementary Table S1B); and (4) quartile groups 
based on HOMA-IR levels (Supplementary Table  S1C). HOMA-IR was calculated as follows: fasting insulin 
(μU/mL) × ***fasting glucose (mg/dL)/40532. Multivariable regression analyses were performed using the glm() 

http://www.r-project.org
http://www.r-project.org
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and lm() function for the logistic and linear model with the MASS R package. To control the false discovery 
rates from multiple testing, we applied stringent Bonferroni corrections at a level of significance of 4.07 × 10–4 
(5% level and 123 metabolites: 0.05/123). As a result, 39 significant metabolites were selected as PD-enriched 
metabolites that appeared more than five times in the 10 regression analyses. Second, we employed the random 
forest algorithm to select differentially abundant metabolites between the NGT and PD groups by using the 
‘randomForest’ package33. The classification method based on the variable importance scores identified the 26 
highest ranked metabolites from the PD-enriched metabolites by excluding less important metabolite classifiers. 
Third, a stepwise backward elimination logistic regression was applied to select metabolites with maximum pre-
diction performance. As a result, the 12 most significant predictable metabolites were selected and included in a 
final model with minimal Akaike’s information criterion.

Prediction of PD incidence in the follow‑up dataset.  The PD incidence was predicted in the KARE 
S5 follow-up dataset using the predictive model including 12 metabolites and previously reported models from 
other studies. Analysis of the area under the receiver operator characteristic (ROC) curve (AUC), based on 
predicted probabilities from a logistic regression without stepwise variable selection, was performed to com-
pare different prediction models. The following models were compared: KARE metabolite model (metabolites 
selected in the current study), Framingham Heart Study (FHS) metabolite model (amino acids reported by 
the FHS research; BCAAs, tyrosine, and phenylalanine)15, KORA metabolite model (glycine, lysoPC a C18:2, 
acetylcarnitine)12, and traditional CRFs (age, sex, BMI, HDL-C, LDL-C, and TG) and fasting glucose single and 
combined models. We also tested the models according to age (quartile groups), sex (male/female), and BMI 
classification for Asians [normal (< 23 kg/m2), overweight (23–24.9 kg/m2), and obese (≥ 25 kg/m2)], as previous 

Figure 3.   Flow chart of metabolite selection. The selected metabolites showed significant concentration 
differences in multivariable logistic and linear regression analysis with adjustment for age, sex, and BMI. The 
Bonferroni correction was applied for multiple testing with P < 4.07E−04. KARE S2/S5 Korea Association 
REsource (KARE) cohort 2nd Survey/5th Survey, PD Prediabetes, ADA American Diabetes Association, 
HbA1c Glycated Hemoglobin, IFG impaired fasting glucose, IGT impaired glucose tolerance, HOMA-IR Q1/Q4 
homeostasis model assessment of insulin resistance 1st quartile/4th quartile.
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studies showed a broad influence of age, sex, and BMI on the serum metabolome in the general and diabetic 
populations25,34. A P < 0.05 obtained from the DeLong’s test of the difference between paired AUC was used as a 
cut off to detect significant improvement across the models. Comparison of the AUC values from ROC analyses 
were conducted using the roc.test() of the pROC package in R.

Ethical approval and informed consent.  This study was approved by the Korea National Institute of 
Health Institutional Review Board (Approval Number: 2017-03-01-P-A) and was performed in accordance with 
relevant guidelines and regulations. Written informed consent was obtained from all enrolled participants.

Data availability
The datasets generated and/or analyzed in the current study have been included in this article or supplementary 
files. Additional raw and processed data have been uploaded to the Open Science Framework (https​://osf.io/
zfsrd​).
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