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Phase demodulation from a single carrier-frequency fringe pattern is becoming increasingly important 
particularly in areas of optical metrology such as dynamic interferometry, deflectometry and 
profilometry. The Fourier transform (FT) method and the spatial-carrier phase-shifting technique (SCPS) 
are two popular and well-established approaches to demodulation. However FT has the drawback 
of significant edge errors because of the Gibbs effect, whilst detuning errors for the local phase shift 
occur when SCPS is applied. A novel demodulation method based on pixel-level Lissajous figure and 
ellipse fitting (PLEF) is presented in this paper. Local demodulation in the spatial domain makes PLEF 
more flexible than the FT method, without spectral leakage. Based on a more adaptable approach, 
account is taken of variations in illumination and phase distribution over a few neighboring pixels. The 
mathematic demodulation model is of interest and has been demonstrated via simulation. Theoretical 
phase extraction error is as low as 10−4 rad. Experiments further corroborate the effectiveness of the 
proposed method. In conclusion, various influencing factors, e.g. variations of background/modulation, 
phase amplitude, carrier frequency, additive noise that may affect the precision of PLEF are discussed in 
detail.

Interferometry, deflectometry and profilometry are diagnostic tools frequently used in optical metrology to 
achieve highly accurate, non-contact and full-field measurements. Since the relevant physical information is usu-
ally encoded in the fringe phase, phase demodulation always plays a very critical role in fringe analysis. Temporal 
phase shifting (TPS) is a phase demodulation method, which has been used extensively in optical metrology since 
its introduction1.

Phase shifting interferometry (PSI), for example, has already become a standard configuration of a modern 
high accuracy interferometer2. A well-calibrated phase shifter and stable environment are crucial factors to TPS 
due to equal steps conventionally used in phase-shifting algorithms (PSA)3,4. Though various kinds of general-
ized PSI have been put forward in recent years as a means of coping with random phase shift error caused by 
vibration5–9, it remains difficult to achieve real time phase demodulation in dynamic measurement operations 
since at least three interferograms are usually required in order to record and process data. Dynamic measure-
ment is an attractive option not only in optical shop testing, e.g. high-aperture and long-distance primary mirror 
testing10 but also in many other phase-demodulation operations, e.g. visual monitoring of cell culture in the 
biomedical domain11. With the exception of simultaneous phase shifting interferometry (SPSI)12, which is not 
our concern in this contribution, demodulation of a single shot fringe pattern is an attractive option. The spatial 
carrier-frequency (SCF) method is a good choice since implementation of spatial carrier-frequency interferome-
try (SCFI) is relatively easily accomplished on most advanced laser interferometers. The retrace error is the main 
disadvantage of SCFI but can be calibrated out in advance. For a carrier-frequency interferogram (CFI), the FT 
method, first proposed in 1982 by Takeda M. et al.13 is a mainstay technique used to perform phase demodulation. 
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Due to the global operation mechanism in the frequency domain, a lack of spatial localization might lead to 
spectral overlapping, rendering it almost impossible to extract the first-order component accurately14. The win-
dowed FT(WFT) method15 was therefore suggested as a way of improving spatial localization, but the automatic 
selection of a window remains a major problem for dynamic measurement. The TPS technique is well known for 
single-point-level spatial localization, and it is possible to transfer the TPS concept to spatial CFI analysis, which 
is called the spatial carrier-frequency phase shifting (SCPS) technique16. It uses the phase increment of adjacent 
pixels in intra-frame to approximate the carrier frequency. Based on this approximation, which also assumes that 
the background intensities and modulation amplitudes of adjacent pixels are equal, the single CFI can be decom-
posed into a series of temporal phase shifted interferograms. Hereafter, the classic SCPS demodulates the phase 
using conventional PSAs with the predetermined carrier frequency of π/2 rad/pixel17. With the development of 
generalized PSA in temporal PSI, especially the advanced iterative algorithm (AIA)7 and the principle component 
analysis method (PCA)18, the CFI can now be demodulated without pre-calibrating the carrier frequency19–22. 
However, variations in background/modulation and local phase shift over adjacent pixels are still the main error 
sources leading to distinct detuning errors in all modified algorithms, except for the iterative least squares method 
(ILSM) proposed by Xu et al.19. Even though ILSM can compensate for variations in illumination and local phase 
shift between adjacent pixels, the iterative strategy requires considerable computation. Additionally, the conver-
gent problem is tricky when the fringe tilt angle in the interferogram approximates zero or 90 degree. Though 
PCA-based SCPS20 can demodulate the CFI at very high speed, there is no compensation for local phase shift and 
the PCA itself is less accurate when both the number of interferograms and the phase shifts between them are 
small23–26. In terms of accuracy and speed, ILSM is sluggish, e.g. it costs 27.6 s if the size of CFI is 400 × 40020 and 
PCA-based SCPS, is less accurate, e.g. the demodulation error is 0.041 rad (RMS) even the noise level is zero; all 
have deficiencies in relation to the need for high accuracy dynamic measurement.

In our previously published works9,27, the Lissajous figure and ellipse-fitting (LEF) was shown to be effective in 
the correction of phase extraction errors in TPS and was successfully extended to a generalized PSA by combining 
with AIA. This differs from the PCA or other temporal PSA-based SCPS methods, which simply transfer the tem-
poral PSA into SCPS to perform demodulation. In this report, we propose a pixel-level Lissajous figure and ellipse 
fitting (PLEF) method, which does not require the construction of four or nine temporal, phase-shifted inter-
ferograms. The CFI will be demodulated pixel by pixel, thereby permitting variations in background/modulation 
and local phase shift to be fully considered and well compensated. It also differs considerably from our previous 
LEF-based methods (ETC27, ETCI9) the pixel-level Lissajous figure here is created using nonuniform illumi-
nation points. The background/modulation and even the local phase shift at each pixel can be simultaneously 
demodulated. Using these parameters, the final encoded phase can be reconstructed in many different ways, e.g. 
it can be integrated with local phase shift (without phase unwrapping process)21, demodulated directly from two 
sinusoidal expressions27 and the least squares fitting method can also be applied21,22. Detailed characteristics and 
the capability of the method proposed in this paper will be discussed and corroborated in the following sections.

Methods
It is well known that the Lissajous figure, typically an ellipse, can be expressed as two sinusoidal signals:

N t a b t D t a b t( ) sin[ ( )], ( ) cos[ ( ) ] (1)ϕ ϕ δ= + ⋅ = + ⋅ + .

where a is the offset, b is the modulation and δ is the quadrature phase shift error. ϕ(t) is the encoded phase which 
varies with t. If the variable t modifies ϕ(t) over a whole phase period, i.e. 2π, then the Lissajous figure is closed. 
The offset a, modulation b and quadrature phase shift error δ can all be demodulated using an ellipse fitting algo-
rithm (EFA). Note that the ellipse is only error free when a, b and δ stay the same while t varies, it is called the 
perfect condition (PC). The process is known as Lissajous figure and ellipse fitting (LEF) in literature27–29.

We also know the intensity of a CFI can be expressed mathematically as,

I x y A x y B x y x y k x k y( , ) ( , ) ( , ) cos[ ( , ) ] (2)x yϕ= + ⋅ + ⋅ + ⋅

where A(x, y), B(x, y) represent the background intensity and the modulation amplitude of the fringe respectively, 
x, y denote the pixel coordinate. ϕ(x, y) is object phase, kx, ky are the spatial carrier-frequencies along x and y 
directions.

Since the intensity of a CFI can be regarded as a two-dimensional (2D) sinusoidal signal, the background, 
modulation and phase distribution at pixel (x, y) thus can be demodulated by LEF. For example, as shown by the 
blue and red restrictions in Fig. 1(a), by plotting intensities of CFI at pixels [1 2 3 4 5] against that at pixels [2 3 4 5 
6] a Lissajous figure can be created and subsequently fitted by EFA. The number here only denotes the index of the 
pixel, and a region of five pixels is the minimum requirement since at least five points are needed to fit an ellipse. 
We see the creating mode of Lissajous figure in Fig. 1(a) is one-dimensional (1D), therefore CFI with only one 
directional carrier is possible to demodulate using PLEF.

It is also easy to derive other means of producing the Lissajous figure at pixel (x, y). The one shown in Fig. 1(b) 
is a 2D mode which can be used for relatively lower carrier frequencies and higher noise levels. The first one, i.e. 
Figure 1(a) is used as an exemplary scheme in the following analysis of PLEF for the demodulation of CFI.

To demodulate CFI0 by PLEF, where CFI0 hereafter denotes a CFI that Eq. (2) represents for simplicity, the 
two sinusoidal signals of the Lissajous ellipse represented in Fig. 1(a) can be expressed in a more general way:

N A B D A B isin[ ], cos[ ] 1, 2 5 (3)i i i i i i i i iφ φ ρ= + ⋅ = ′ + ′ ⋅ + = ...

here subscript i denotes the index of the pixel (x, y), and
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N I x i( , ),i =

A A x i( , ),i =

B B x i( , ),i =

φ ϕ π= + + +x i k x k i( , ) /2 ,i x y

it is straightforward that

= +D N ,i i 1

′ = +A A ,i i 1

B B ,i i 1′ = +

ρ ϕ ϕ π= + − + − .x i x i k( , 1) ( , ) /2i y

In the small region of CFI0, e.g. the green box shown in Fig. 1(a), if the background, modulation and phase of 
all pixels are constants, i.e.,

A A A B B B i, , , 1, 2 5 (4)i i i i i iρ ρ ρ= ′ = = ′ = = ′ = = ...

where ρ = k y − π/2. This is exactly the assumption of most SCPS methods. The exact expression of the ellipse, i.e. 
coefficients A, B and ρ that created from points (Ni, Di) i = 1, 2...5 can be calculated27. Then the phase at pixel i can 
be demodulated correctly via the following equation:
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The final phase distribution can be demodulated by performing PLEF pixel by pixel over the entire CFI0. The 
demodulation process above, is represented as PLEF0.

The problem is, that in most cases, background A(x, y), modulation B(x, y) and ϕ(x, y) vary in a small region, 
that is Eq. (4) in CFI can be hardly satisfied in reality. The demodulated phase from Eq. (5) will, therefore, contain 
a detuning error caused by nonuniform illumination and local phase shift, which is also called local frequency or 
instantaneous frequency in some literatures15.

Though, background, modulation and phase may vary over five pixels, they are more likely to vary linearly 
in the small region15. Therefore, we can assume that variations of A(x, y), B(x, y) and ϕ(x, y) in a small region are 
constants,

δ δ ϕ δϕ= = == = =dA x y A dB x y B d x y( , ) , ( , ) , ( , ) (6)y y y1,2,3,4,5 1,2,3,4,5 1,2,3,4,5

where,
dA(x, y) = A(x, y + 1) − A(x, y), dB(x, y) = B(x, y + 1) − B(x, y), dϕ(x, y) = ϕ(x,y + 1) − ϕ(x, y).
Assuming the validity of Eq. (6), we can deduce that ρ ρ ρ= ′ =i i  is still tenable in a small region of CFI0, 

nevertheless here ρ = δϕ + k y− π/2 which indicates PLEF0 actually can compensate the local phase shift. 

Figure 1.  The 1D mode (a) and 2D mode (b) of producing Lissajous figure at pixel 3.
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However, nonuniform illumination namely variations in background and modulation are residual error sources 
that adversely affect the accuracy of PLEF0.

To address this problem, we propose to calculate the intensity difference between two adjacent pixels of CFI0. 
The intensity of an adjacent pixel, for example I(x, y + 1) is,

I x y A x y B x y x y k x k y( , 1) ( , 1) ( , 1) cos[ ( , 1) ( 1)] (7)x yϕ+ = + + + ⋅ + + ⋅ + ⋅ +

Subtracting two adjacent pixels, i.e. Eqs (2–7) yields

I x y x y x y x y k x k y x y( , ) ( , ) ( , ) sin[ ( , ) ( , )/2] (8)x yα β ϕ= + ⋅ + ⋅ + ⋅ + Δ

where,

α ϕ= + ⋅ Δ ⋅ + ⋅ + ⋅ + Δx y dA x y dB x y x y x y k x k y x y( , ) ( , ) ( , ) cos[ ( , )/2] cos[ ( , ) ( , )/2] (9)x y

β = + + ⋅ Δx y B x y B x y x y( , ) [ ( , ) ( , 1)] sin[ ( , )/2] (10)

x y d x y k( , ) ( , ) (11)yϕΔ = +

Equation (8) represents another CFI, referred to here as CFI1, which is also encoded with the object phase. Eqs 
(9–11) denote the background, modulation and local phase shift of CFI1 respectively.

To demodulate CFI1, PLEF can be used in much the same way as PLEF0. We will denote the process as PLEF1. 
For CFI1 however, some coefficients in Eq. (3), now should be rewritten as

N I x i( , ),i =

A x i( , ),i α=

β=B x i( , ),i

x i k x k i x i( , ) ( , )/2,i x yφ ϕ= + + + Δ

ρ π= Δ −x y( , ) /2i

We find that in the small region of CFI1, with the validity of Eq. (6), variations of background, modulation 
and phase are,

α ϕ= − ⋅ Δ ⋅ + ⋅ + ⋅ + Δd x y dB x y x y x y k x k y x y( , ) ( , ) sin[ ( , )] sin[ ( , ) ( , )] (12)x y

d x y dB x y x y( , ) 2 ( , ) sin[ ( , )/2] (13)β = ⋅ Δ

d x y( , ) 0 (14)Δ =

dα(x, y) and dβ(x, y) are very small values related both to the original variation of modulation, i.e. dB(x, y) and 
phase ϕ(x, y) but have no direct relation with the original background variation i.e. dA(x, y). Besides, local phase 
shift is still a constant in the small region of CFI1. That is to say, with the benefit of intensity difference process 
the original background variation is circumvented perfectly in CFI1. Whereas, in reality, the modulation may 
change significantly over the whole aperture, in this case the phase demodulation error is visible and therefore 
merits consideration.

With the calculated background α′(x, y) and modulation β′(x, y) by PLEF1, we propose to normalize CFI1, 
i.e.,

I x y I x y x y
x y

( , ) ( , ) ( , )
( , ) (15)
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′

where α′(x, y) = α(x, y) + Δα(x, y), β′(x, y) = β(x, y) + Δβ(x, y). Δa(x, y) and Δβ(x, y) denote the demodulation 
error of background and modulation caused by the original modulation variation. Equation (16) represents a nor-
malized CFI, referred to here as CFI2. Subsequently, PLEF is employed to demodulate CFI2 again (PLEF2). The 
final demodulation error caused by variation of modulation can be reduced effectively. The error compensation 
theory can be explained; the normalized intensity, i.e. CFI2 can be expressed as:

β β
ϕ=

Δ
′

+
+ Δ ′

⋅






+ ⋅ + ⋅ + Δ






α

β
I x y x y

x y x y x y
x y k x k y x y( , ) ( , )

( , )
1

1 ( , )/ ( , )
sin ( , ) 1

2
( , )

(16)
x y

Although the exact expressions of Δa(x, y) and Δβ(x, y) are unknown, there is no doubt that both β
Δ
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α x y

x y
( , )
( , )  and 

β
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( , )  are negligible. In the normalized fringe pattern, illuminations of the adjacent five pixels are approximately 
uniform, which ensures ultimate high accuracy phase demodulation.
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The implementation of proposed method is illustrated in Fig. 2. If both illumination and the encoded phase 
are changed significantly, the CFI0 is as shown in Fig. 2(a). At each pixel of CFI0, a Lissajous figure can be created 
directly. Figure 2(b) demonstrates the Lissajous ellipses that created at all pixels in CFI0. Error-free Lissajous 
ellipses (created by pixels with uniform illumination) are correspondingly plotted in Fig. 2(c). On comparison 
of Fig. 2(b) with Fig. 2(c), it becomes apparent that the ellipse is more likely to be error free at the center of CFI0 
where there are only slight variations in illumination and phase, whereas the error increases dramatically at 
the CFI0 border. Note that we assume the illumination obeys Gaussian distribution. PLEF0 is affected by dis-
tinct detuning error caused by background/modulation variation. If the intensity difference of CFI0, i.e. CFI1, as 
shown in Fig. 2(d) is calculated, then the Lissajous ellipses at all pixels shown in Fig. 2(e) are all centered around 
zero since the original background is deducted. Errors still exist compared with the corresponding error-free 
ellipses, i.e. Fig. 2(f), which is caused mainly by modulation variation. Figure 2(g) represents normalized CFI2 
which has approximately zero background and unit modulation. In this case the error-free ellipses at all pixels 
should be overlapped like the one shown in Fig. 2(i). The quadrature phase shift error represents the carrier fre-
quency. Because the actual local phase shift of each pixel differs, the corresponding Lissajous ellipses will not be 
completely overlapped as shown in Fig. 2(i). They bear a closer resemblance to those in Fig. 2(h), which exactly 
demonstrates the proposed PLEF has the ability of local phase shift compensation. We can see that axes in Fig. 2 
are different which is straightforward since CFI0, CFI1 and CFI2 have dissimilar Intensities.

Results
A simulation followed by a quasi-experiment has been conducted in order to verify the correctness of the pro-
posed method and scrutinize its performance. The CFI is synchronized according to Eq. (1) here

= + = +A x y r x y B x y r x y( , ) 130exp[ ( )], ( , ) 120exp[ ( )]a b
2 2 2 2

where −1 ≤ x, y ≤ 1 and ra, rb determines the variation amplitude of the background and modulation over the 
entire CFI. ILSM19 can effectively compensate variations of background and modulation as well as the local phase 
shift error. It is, therefore always regarded as a reference when comparing the performance of SCPS methods20,22. 
In this simulation, most parameters in Xu’s simulation19 are purposely inherent to facilitate a straightforward 
comparison, thereby avoiding the personal ILSM error. Without loss of generality, the phase size is 200 × 200 
and the object phase is also set to ϕ(x, y) = 2π(x2 + y2). ra = rb = 0.1 and phase carrier is kx = ky = 1.24 rad/pixel. 
Additive noise here is zero for the convenience of theoretical error analysis.

The CFI is synchronized with the assigned parameters. First, the intensity difference of the fringe pattern, 
i.e. CFI1, shown in Fig. 3(a), is calculated. Figure 3(b) shows the Lissajous ellipses created at each pixel of CFI1. 
The corresponding error-free ellipses of Fig. 3(b) are also created and shown in Fig. 3(c) in order to demonstrate 

Figure 2.  The demodulation procedure of PLEF: the first row represents (a) CFI0 with significant variations in 
background and modulation, (b) the real Lissajous ellipses at all pixels in (a), (c) the reference Lissajous ellipses 
at all pixels in (a); similarly the second row and the third row represent the (d) CFI1, (e) the real Lissajous 
ellipses at all pixels in (d), (f) the reference Lissajous ellipses at all pixels in (d); (g) normalized CFI2, (h) the real 
Lissajous ellipses at all pixels in (g), (i) the reference Lissajous ellipses at all pixels in (g).
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theoretical error. As an example, the Lissajous ellipse created at pixel (80, 80) with real dots (blue), and the 
error-free ellipse, created with reference dots(red) are simultaneously plotted in Fig. 3(d). Clearly, the real dots 
(blue) deviate considerably from the reference dots (red), thus the fitted ellipse is both decentered (background) 
and biased (modulation) compared with the reference ellipse. That is the theoretical error of the proposed 
method. In order to quantify the theoretical error of PLEF, phase distribution, background, modulation and local 
phase shift of CFI1 are demodulated by PLEF1 and the corresponding residual error maps are also calculated by 
comparing with the nominal values according to the mathematic expressions, i.e. Eqs (9–11). Figure 4 represents 
the demodulation results and corresponding residual error maps of the method proposed. The ultimate phase 
demodulation error of PLEF2 can be further reduced to 3.5 × 10−4 rad (RMS) even though the background/mod-
ulation is highly non-uniform and the maximum local phase gradient is higher than 0.11 rad.

To further demonstrate the validity of the proposed method when background, modulation and phase vari-
ation are all small, the following experiment was conducted. An optical flat was first measured at null condition 
using a Zygo GPI interferometer. With the saved interferograms (100 frames, each frame containing only two 
fringes), the background and modulation of these interferograms were calculated using the maxim and minum 
method30. These are shown in Figs. 5(a),(b) measuring 400 × 400. A quasi practical CFI, shown in Fig. 5(d) is 
produced according to Eq. (1) with the calculated background intensity, modulation amplitude and real phase 
measured by the Zygo interferometer at null condition which is shown in Fig. 5(c). This permitted the carrier 
frequency introduced to be controlled without introducing a retrace error, here kx = ky = 1.20 rad/pixel. The local 
phase shift along the y direction of Fig. 5(c) is shown in Fig. 5(e), which demonstrates that the phase variation is 
very low (PV < 0.02 rad). The proposed PLEF0 method is first executed in order to demodulate CFI0. The demod-
ulated background, modulation and final phase distribution are shown in Figs. 5(f–h) respectively. Figure 5(j) 
shows the local phase shift. Compared with the nominal ones, PLEF0 can already demodulate the CFI correctly. 
The residual phase error is 0.035 rad (RMS), which is mainly background noise. PLEF1 was also used to demod-
ulate the phase, the phase is shown in Fig. 5(i). As shown, there’s a slight improvement in the quality of the 
retrieved phase and the phase residual error is 0.031 rad in RMS. It demonstrates that PLEF0 can be used when 
the illumination variation is small, e.g. less than 30% in reality, whereas PLEF1 or even PLEF2 can still be used to 
improve the performance of PLEF.

Discussion
Although the correctness of the mathematical model and the high accuracy of the proposed PLEF method were 
demonstrated in the previous simulation, theoretical errors remain. As previously outlined20,22,23, the background, 
modulation, encoded phase, phase carrier, fringe tilt angle and additive noise can all affect the accuracy of SCPS 
algorithms. Yet the proposed method performs well. Next the validity of the proposed method in a harsh condi-
tion will be demonstrated and followed by a comprehensive discussion focusing on different influencing factors. 
The encoded phase is created by the peaks function in Matlab. The variation parameters of background and mod-
ulation are set to ra = rb = 0.8, which indicate the illumination amplitude at the edge is only 20.1% of that in the 
center. The carrier frequencies are separately set to kx = 0, ky = 1.24 rad/pixel, which means the tilt angle of the 
fringe is zero. Additionally, a Gaussian white noise with the SNR of 30 dB is added by the awgn function using the 
“measured” option in Matlab, the maximum noise gray level is about 15.

Figure 6(a) is the object phase and Fig. 6(b) denotes the original synchronized interferogram CFI0. PLEF1 is 
directly executed for the dramatic variation of background. The demodulated phase distribution and local phase 
shift are shown in Fig. 6(c,d). The phase demodulation error map of PLEF1 is shown in Fig. 6(e) with the RMS of 
0.078 rad, from which we can see the high frequency noise is the main component of residual error. Therefore, a 
Gaussian low pass filter is utilized before PLEF2 is executed to reduce the effect of noise. Figure 6(f) displays the 
subsequent residual error map of PLEF2 with the RMS value of 0.027 rad.

In order to facilitate comparison, AIA and PCA based SCPS methods are also employed to perform the 
demodulation. The residual phase error maps are shown in Fig. 6(g,h). Note that since the tilt angle is zero, 9 
phase shifted interferograms need to be decomposed from CFI0 in both AIA and PCA based methods to avoid 
under-sampling20. The residual errors are 0.123 rad (RMS) and 0.138 rad (RMS) respectively and are mainly 
phase-dependent errors for less of local phase shift compensation.

As a local process, WFT has been recognized as a powerful mathematic tool for fringe patterns analysis15. 
Thus, the WFT based windowed Fourier Filtering (WFF) is selected for comparison in this simulation. According 
to the suggested frequency ranges in ref.15, the parameters are listed in the first row of Table 1, where σ, ξl, ξh, ηl, 

Figure 3.  (a) CFI1, (b) The Lissajous ellipses at each pixel, (c) the corresponding error free ones, (d) the 
comparison of the actual Lissajous ellipse and reference Lissajous ellipse at pixel (80, 80).
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ηh respectively denotes window size, low band of frequency in x, high band of frequency in x, low band of fre-
quency in y, high band of frequency in y. The demodulation error of WFF is represented by e. Table 1 indicates 
that, it is typically difficult to select the proper frequency ranges in WFF since we absolutely don’t know the carrier 
frequency of CFI previously. By attempting different ranges of frequency and window sizes, we approximate the 
parameters lead to the minimum phase demodulation error. The residual error map is shown in Fig. 6(i), it is 
obvious WFF can successfully compensate the local phase shift error. Though the RMS value of Fig. 6(i) is only 

Figure 4.  Demonstration of the correctness and theoretical error of the proposed PLEF.

Figure 5.  The experimental application of the proposed PLEF: calculated (a) background, (b) modulation 
amplitude, (c) the real phase measured by a Zygo interferometer; (d) synchronized quasi-practical CFI with 
calculated real background, modulation and real phase, (e) the reference local phase shift; the retrieved (f) 
background, (g) modulation amplitude, (j) local phase shift, (h) phase distribution by PLEF0; (i) the extracted 
phase by PLEF1.



www.nature.com/scientificreports/

8ScIEnTIFIc RePortS |  (2018) 8:148  | DOI:10.1038/s41598-017-18031-4

0.0114 rad and is smaller than proposed PLEF2, high frequency information is missing compared with Fig. 6(f). 
Actually, if a medfilt2 filter with window size of 7 × 7 is utilized for Fig. 6(f), residual phase error map of PLEF2 
with a even less RMS value will shows like Fig. 6(j). Besides, Fig. 6(i) indicates the edge error of WFF is obvious 
which is unavoidable because of the inherent characteristic of FT based methods.

Different parameter settings will lead directly to different results and different algorithms typically have diver-
gent responses. The performance of the proposed PLEF algorithm under a diverse range of influencing factors is 
discussed in detail in the following. The main advantages of the method proposed in comparison with AIA and 
PCA based SCPS algorithms are illustrated using graphs. Here, WFF is out of comparison since proper frequency 
ranges can not be selected automatically. Influences exerted by background variation ra, modulation variation rb, 
phase amplitude pa, phase size pr, phase carrier frequency kx, ky, and additive noise an, will be discussed individ-
ually. In the following Fig. 7, each horizontal axis denotes a different influencing factor, however all vertical axes 
represent the phase demodulation error (evaluated by RMS value, the unit is rad).

First, the influence exerted by the background was analyzed. The range of ra is 0 to 1.5 with the interval of 
0.1, rb = 0.01, pa = 0.1, pr = 200, kx = 0, ky = 1.24 and no additional noise. Please note that other factors were 
purposely set to small in order to highlight background influence. Figure 7(a) indicates that with the increase of 
ra from 0 to 1.5, PLEF2 has the smallest phase demodulation variation (dp) is only 1.4 × 10−5 rad. AIA is the most 
sensitive to background variation because of non-compensation of background.

Secondly, the influence exerted by modulation was investigated. The value rb was allowed to vary from 0 to 
1.5. Similar to the above described analysis, ra = 0.01 and other parameters stayed the same. Figure 7(b) shows 
that though PLEF1 is very sensitive to variation in modulation, PLEF2, whose response to modulation variation 
is similar to that of AIA and PCA, can significantly reduce the impact of modulation variation.

As demonstrated in Figs. 7(a) and (b), the benefit of the local phase shift compensation in the method pro-
posed, is the increase in accuracy (the RMS value of the phase demodulation error is almost one magnitude 
smaller) than AIA and PCA-based SCPS methods even at a high illumination variation level. This can be further 
underlined with Fig. 7(c,d).

In Fig. 7(c), the phase size is fixed to 200 × 200, i.e. pr = 200. The phase amplitude, pa, varies from 0.1 to 1 with 
the interval of 0.1, ra = rb = 0.1, kx = 0, ky = 1.24. No account is taken of noise. In Fig. 7(d), the phase amplitude 
pa is fixed to 0.5, the phase size, pr, varies from 100 to 550 with an interval of 50; other parameters stay the same as 
in Fig. 7(c). Figure 7(c) indicates that with increasing of phase amplitude (local phase gradient increases) the the-
oretical errors of AIA/PCA based methods undergo dramatic linear increases whereas the increase in the PLEF 
outlined here is much more gradual. Similarly, Fig. 7(d) shows that with increasing of phase size (local phase gra-
dient decreases), the theoretical error decreases regardless of the method applied. The distinct difference between 

Figure 6.  The effectiveness of proposed PLEF and comparison with AIA\PCA based SCPS methods and 
WFT based WFF: (a) object peaks phase, (b) CFI0; demodulated (c) phase and (d) local phase shift by PLEF1; 
demodulation error map of (e) PLEF1, (f) PLEF2, (g) AIA, (h) PCA, (i)WFF; (j) PLEF2 filtered by medfilt2.

index parameters σ ξ1 ξh η1 ηh e (rad)

1 10 −0.2 0.2 1 2.1 0.068

2 10 −0.5 0.5 1 2.1 0.019

3 10 −1 1 1 2.1 0.020

4 10 −1 1 0.8 2.1 0.012

5 10 −1 1 0.6 2.1 0.012

6 4 −1 1 0.6 2.1 0.014

Table 1.  Selection of proper frequency range.
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AIA/PCA based methods and the PLEF method proposed in Figs. 7(c),(d) demonstrates powerfully that the 
proposed PLEF can effectively compensate the local phase shift error whereas traditional SCPS methods cannot.

Subsequently, the phase carrier-frequency is studied. Since AIA and PCA based SCPS methods behave bet-
ter when the tilt angle is 45 deg19,20, here it is set to 45 deg but it is important to bear in mind that as previously 
demonstrated, the proposed PLEF is insensitive to tilt angle. We let kx = ky vary from 0.45 rad/pixel to 1.35 rad/
pixel, ra = rb = 0.1, pa = 0.5 without noise. Disregarding the advantages of local phase shift compensation, it is 
apparent that the response of both AIA-based SCPS and the proposed PLEF to carrier frequency is more stable 
than that of PCA, as shown in Fig. 7(e), while PLEF1 and PLEF2 furthermore result in significant lower phase 
demodulation errors compared to AIA-based SCPS. Since only five consecutive points are used to create the 
Lissajous figure in the proposed PLEF, it is better when the phase carrier between adjacent pixels is higher than 
1.2 (2π/5) rad, which ensures that the Lissajous figure is closed. However, as outlined in ref.29, the ellipse fitting 
can also be complemented successfully and accurately even though the Lissajous figure is open. In this simulation 
we find that if the phase carrier-frequency exceeds 0.4 rad/pixel, which is higher than a quarter of an ellipse, the 
proposed method is effective.

Finally, additive noise is considered. The SNR of the noise varies from 20 dB to 70 dB, ra = rb = 0.1, pa = 0.5, 
kx = 0 and ky = 1.24 rad/pixel. The comparison reveals that the proposed method is much more sensitive to addi-
tive noise than AIA and PCA-based SCPSs, because PLEF is a local demodulation method and the Lissajous fig-
ure is created using only five adjacent points rendering it more sensitive than the phase shifting method. By 

Figure 7.  The performances of AIA, PCA based SCPS algorithms and proposed PLEF versus various 
influencing factors (a) background, (b) modulation, (c) phase amplitude, (d) resolution, (e) carrier frequency, 
(f) additive noise level.

Figure 8.  The computing time of AIA, PCA-based SCPS algorithms and the proposed PLEF versus different 
phase size.
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selecting more points, i.e. enlarging the size of the window to create the Lissajous figure, e.g. Fig. 1(b), it is possible 
to enhance the stability of the proposed method to noise. Additionally, the averaging N measurements can effec-
tively reduce the residual error by N  times to the theoretical error limit. As shown in Fig. 6(f), an image denois-
ing process can also significantly improve the accuracy of the proposed method. PLEF will, therefore, ultimately 
achieve high accuracy whereas AIA and PCA-based SCPS methods cannot since their theoretical errors are 
mainly phase-dependent.

From Fig. 7 one may notice that the phase demodulation error that caused by variation of background or 
modulation is very small comparing to other influencing factors, e.g. noise level. That’s why PLEF1 and PLEF2 
in Figs. 7(c–f) have almost the same response to different influencing factors. In practice therefore, if variation 
of illumination is less than 30% PLEF0 is accurate enough as Fig. 5(h) already demonstrated. However, in case of 
illumination has a considerable variation, PLEF1 or even PLEF2 is recommended to achieve a higher precision of 
phase demodulation if the fringe can be denoised in advance.

In addition to phase-demodulation accuracy, computing speed is also of interest in terms of dynamic meas-
urement. The processing time required by AIA, PCA-based SCPS methods and PLEF are calculated when the 
influence exerted by phase size is analyzed. The computing is executed by an Intel i5 CPU with 3.2 GHz frequency 
in Matlab. The bar in Fig. 8 indicates that PCA- based SCPS is the least time-consuming among the three algo-
rithms, for CFI with size of 400 × 400 it cost only 0.42 s whereas AIA based SCPS needs 36.3 s which is typically 
two magnitudes slower than PCA. For proposed PLEF, it costs 6.2 s which is also time consuming than PCA 
because each pixel requires an ellipse fitting process, nevertheless it is typically 5~6 times faster than AIA without 
the convergence problem. The PLEF method proposed here is similar with WFT method, data parallelism is pos-
sible. With the help of a multi core CPU or GPU platform, high accuracy dynamic demodulation can be achieved.

Conclusions
In this paper, we have presented a pixel-level Lissajous figure and ellipse-fitting (PLEF) method to demodulate 
the phase distribution from a single-phase carrier fringe pattern. The flexibility and accuracy achieved are higher 
than the levels achieved using the FT method. With a more generic assumption, the intrinsic character of the 
Lissajous figure makes it more tolerant to the local phase shift caused by the phase gradient. Variations in back-
ground and modulation are two further error sources for SCPS. The phase demodulation errors thereby caused, 
can be reduced separately by subtracting adjacent pixels (PLEF1) and by normalizing the fringe with the calcu-
lated background and modulation (PLEF2). Greater accuracy can be achieved within an acceptable timeframe 
using the method outlined in this paper than that expected using AIA and PCA-based SCPS methods. It should, 
therefore, be a better candidate for single-phase carrier fringe pattern analysis in terms of both accuracy and 
speed.
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