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Abstract

The 2015–2016 Zika virus (ZIKV) outbreak in Brazil was remarkably linked to the incidence

of microcephaly and other deleterious clinical manifestations, including eye abnormalities, in

newborns. It is known that ZIKV targets the placenta, triggering an inflammatory profile that

may cause placental insufficiency. Transplacental lipid transport is delicately regulated dur-

ing pregnancy and deficiency on the delivery of lipids such as arachidonic and docosahexa-

enoic acids may lead to deficits in both brain and retina during fetal development. Here,

plasma lipidome profiles of ZIKV exposed microcephalic and normocephalic newborns were

compared to non-infected controls. Our results reveal major alterations in circulating lipids

from both ZIKV exposed newborns with and without microcephaly relative to controls. In

newborns with microcephaly, the plasma concentrations of hydroxyoctadecadienoic acid

(HODE), primarily as 13-HODE isomer, derived from linoleic acid were higher as compared

to normocephalic ZIKV exposed newborns and controls. Total HODE concentrations were

also positively associated with levels of other oxidized lipids and several circulating free fatty

acids in newborns, indicating a possible plasma lipidome signature of microcephaly. More-

over, higher concentrations of lysophosphatidylcholine in ZIKV exposed normocephalic

newborns relative to controls suggest a potential disruption of polyunsaturated fatty acids

transport across the blood-brain barrier of fetuses. The latter data is particularly important

given the neurocognitive and neurodevelopmental abnormalities observed in follow-up stud-

ies involving children with antenatal ZIKV exposure, but normocephalic at birth. Taken

together, our data reveal that plasma lipidome alterations associated with antenatal expo-

sure to ZIKV could contribute to identification and monitoring of the wide spectrum of clinical

phenotypes at birth and further, during childhood.

Author summary

Antenatal exposure to Zika virus (ZIKV) is linked to a wide range of clinical presentations

at birth, from asymptomatic cases to microcephaly, and other neurocognitive and
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neurodevelopmental abnormalities manifested in the early childhood. Stratification of

these clinical phenotypes in newborns with suspected antenatal ZIKV exposure is chal-

lenging, but critical to improve early assessment of rehabilitative interventions. In this

study, plasma lipidome profiling of 274 lipid species was performed in both normocepha-

lic and microcephalic newborns with antenatal ZIKV exposure and compared to non-

infected controls. Multiple lipid species were independent predictors of antenatal ZIKV

exposure. More specifically, microcephaly was strongly associated with an oxidized free

fatty acid and ZIKV exposed normocephalic newborns exhibited higher plasma concen-

trations of lysophosphatidylcholine relative to controls. These findings emphasize the

need for studies focused on the role of individual lipids in neuropathogenesis of ZIKV

and raise the potential of plasma lipidome profiling for early diagnosis of newborns with

suspected antenatal ZIKV exposure. To validate the predictive ability of this approach,

prospective studies with a larger cohort of newborns are now required.

Introduction

Exposure of newborns to Zika virus (ZIKV) during pregnancy has been linked to congenital

ZIKV syndrome (CZS), resulting in severe neurodevelopmental abnormalities in infants, most

prominently microcephaly, with other associated clinical presentations such as seizures, hear-

ing and visual abnormalities, dysphagia and fetal death [1–6]. A case series study with 182

symptomatic ZIKV-infected pregnant women in Brazil revealed an expressive 42% of fetuses

presenting abnormal clinical or brain imaging outcomes, regardless of the trimester of infec-

tion [1]. In a larger study (>2,000 pregnancies) including all the United States territories, an

overall estimate of 5% of fetuses or infants with birth defects was also reported independently

of the trimester of infection [7]. Antenatal ZIKV exposure may not manifest as CZS in infants,

as a broad spectrum of clinical presentations from asymptomatic to microcephaly may occur.

Longitudinal cohort studies with CZS-affected children followed for 8 to 24 months after birth

have shown that the majority of participants had major abnormalities related to, among others,

irritability, seizure disorders and severe motor impairment [8,9]. Normocephalic ZIKV

exposed newborns may also develop significant abnormalities 1 to 3.5 years after birth as

revealed by brain imaging, neurodevelopmental, neurocognitive and ophthalmological evalua-

tions [2,10–13].

The molecular mechanisms by which ZIKV harms the developing brain remain unknown,

but it is well established that ZIKV infection impairs multiplication and migration of the

human cortical neural progenitor cells [14–16]. Transmission of ZIKV to fetuses must occur

via placenta [17,18], and there exist robust clinical and experimental evidence for ZIKV target-

ing placental cells, including trophoblasts, Hofbauer macrophages and fetal endothelial cells

[19–25]. The maternal-fetal interface is of critical importance for embryonic development

given the transfer of energy, signals and nutrients (e.g. glucose, amino acids and lipids) from

the mother’s bloodstream [26]. Alterations in placental inflammatory profiles due to ZIKV

infection have been reported in cell culture studies [19,24,27] and elevated concentrations of

inflammatory markers have been detected in cord blood plasma of newborns exposed to ZIKV

[28]. ZIKV infection may also trigger placental metabolic reprogramming, resulting in de novo
lipogenesis with a remarkable accumulation of cytosolic lipid droplets [29].

Changes in placental lipid metabolism are likely to impact the embryonic/fetal develop-

ment, especially the brain and eye that are highly depend on the transfer of polyunsaturated

fatty acids, such as docosahexaenoic acid (DHA), across the placenta. Any disruption in the
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Laboratórios de Referência, Brazilian Ministry

of Health (CVSRL-Fiocruz to AMBF), Fundação
Carlos Chagas Filho de Amparo à Pesquisa do

Estado do Rio de Janeiro (FAPERJ, grant number

E-26/2002.930/2016 to AMBF), Horizon 2020

through ZikaPlan and ZikAction (grant agreement

numbers 734584 and 734857), the International

Development Research Centre Canada (IDRC,

108411-001 to AMBF), the National Council for

Scientific and Technological Development (CNPq,

440685/2016-8 and 443875/2018 to ICS), and

the São Paulo Research Foundation (FAPESP,

CEPID-Redoxoma 2013/07937–8 to SM). Postdoc

fellowships were received from the Coordination

for the Improvement of Higher Education

Personnel (MYY), IDRC (NRCF) and FAPESP

(ABC-F). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0009388


uptake of these polyunsaturated fatty acids may lead to several brain and eye damage in infants

[30–32]. For instance, inactivating mutations of the human major facilitator superfamily

domain-containing protein 2 (Mfsd2a)–a major transporter of DHA to the brain [33]–were

reported to cause lethal to mild microcephaly in humans [34,35]. Interestingly, ZIKV was

recently reported to disrupt Mfsd2a both in human brain endothelial cell cultures and neonatal

mouse brain, causing fetal growth restriction and microcephaly in the latter [36].

This study sought to provide insights into the detection of clinical phenotypes derived from

antenatal ZIKV exposure. For this purpose, plasma lipidome profiles of ZIKV exposed new-

borns with microcephaly and normocephaly were compared to those of non-infected controls.

Methods

Ethics statement

The study was approved by the Institutional Review Board of the Oswaldo Cruz Foundation

(FIOCRUZ), Rio de Janeiro, Brazil (CAAE: 90249218.6.1001.5248) and by Gonçalo Moniz

Institute, FIOCRUZ local Ethics Committee (CAAE: 51889315.7.0000.0040). The legal guard-

ians of all newborns enrolled in this study provided written informed consent.

Subjects’ recruitment, sample collection and ZIKV diagnosis

Participants were recruited from a previous neonatal surveillance for congenital Zika infection

from January to December 2016 at the José Maria Magalhães Netto public maternity hospital

located in Salvador [37], one of the most relevant Brazilian cities during the microcephaly

outbreak.

Thirty participants were enrolled in this study: 10 control/healthy newborns without ZIVK

infection (G1), 9 normocephalic newborns exposed to ZIKV (G2) and 11 newborns with

ZIKV-induced microcephaly (G3). Clinical and epidemiological data of newborns were

obtained through interviews with mothers and review of medical records. Data storage and

management was performed using the REDCap 6.18.1 (Vanderbilt University, Nashville, TN).

All enrolled newborns were classified according to the International Fetal and Newborn

Growth Consortium for the 21st Century (INTERGROWTH-21st) charts, taking into account

the newborn’s gender, gestational age and head circumference at birth [38]. Microcephaly was

defined as head circumference measuring less than two standard deviations below the average,

while severe microcephaly was considered if head circumference measurements were less than

three standard deviations below the average. Newborns were considered normocephalic, if

their head circumference measurements were within two standard deviations. These data are

reported in S1 Table.

All samples were collected at birth from the umbilical cord vein. Blood samples were

obtained in ethylenediaminetetraacetic acid (EDTA) tubes and plasma was obtained by centri-

fugation and stored at −80˚C. Serological analyses and molecular diagnosis for ZIKV were per-

formed according to previously described methods [37,39,40]. Congenital ZIKV infection was

defined as newborns whose serological testing (anti-ZIKV immunoglobulin M) or a qualitative

reverse-transcription polymerase chain reaction assay for ZIKV was positive. Healthy controls

had negative serological and molecular results for ZIKV (see S1 Table). All newborns’ samples

were negative when tested for syphilis, HIV, toxoplasma (IgM) and cytomegalovirus (IgM).

Plasma lipidome analysis

An aliquot of 20 μL of plasma or 20 uL of water (extraction blanks) were spiked with 50 μL of

an internal standard mixture (Table 1) and total lipid extraction was performed as previously
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described [41] (see details in S1 Methods). Simultaneously, a pooled aliquot of all samples was

extracted and used as quality controls for reproducibility test.

Lipid analysis was performed by an untargeted lipidomics approach [42,43] using an ultra

high-performance liquid chromatography (UHPLC Nexera, Shimadzu, Kyoto, Japan), electro-

spray ionization tandem time-of-flight mass spectrometry (ESI-Q-TOFMS, Triple TOF 6600,

Sciex, Concord, US). Chromatographic and mass spectrometry conditions are provided in

Supplementary Methods. In brief, the MS operated in both positive and negative ionization

modes, with a scanning range of 200–2000 Da, and samples were randomly analyzed (1μL

injection volume) with a control and a blank sample analyzed within each batch of 5 experi-

mental samples. At least two samples per group were used for MS/MS identification, with

inspection of 400 and 300 ions in negative and positive ionization modes, respectively. Lipid

molecular species were manually annotated exclusively based on their exact masses coupled to

specific MS/MS fragments and/or neutral losses obtained by Information Dependent Acquisi-

tion (IDA) as outlined elsewhere [44]. The exceptions were free fatty acids and free cholesterol

from which MS/MS data is poorly observable and therefore were identified based on exact

masses and retention time.

Quantification of lipid molecular species was performed by comparison of chro-

matographic peaks of precursor ions (MS1) to those of the corresponding internal standard

(Table 1), using 5 mDa as limit for attribution. The integral lipidomics dataset is provided in

S2 Table as area ratio. Results were expressed in mg/dL of plasma to facilitate comparison with

the literature or ng/μL otherwise, while fatty acid composition of total lipids and classes were

calculated in molar concentrations. Data are presented as average ± standard error of the

Table 1. Lipid classes, number of lipid species and internal standards used for semi-quantification by untargeted lipidomics.

Lipid classes # species Internal standards

Monohexosyl ceramide (1H-Cer) 4 Cer (d18:1/17:0)

Dihexosyl ceramide (2H-Cer) 1 Cer (d18:1/17:0)

Trihexosyl ceramide (3H-Cer) 1 Cer (d18:1/17:0)

Ceramides (Cer) 18 Cer (d18:1/17:0)

Sphingomyelin (SM) 20 SM (d18:1/17:0)

Lysophosphatidylcholine (LPC) 8 LPC (17:0)

Alkanyl-phosphatidylcholine (oPC) 6 PC (17:0/17:0)

Phosphatidylcholine (PC) 30 PC (17:0/17:0)

Alkenyl-phosphatidylcholine (pPC) 5 PC (17:0/17:0)

Lysophosphatidylethanolamine (LPE) 2 LPE (17:1)

Alkanyl-phosphatidylethanolamine (oPE) 1 PE (17:0/17:0)

Phosphatidylethanolamine (PE) 9 PE (17:0/17:0)

Alkenyl-phosphatidylethanolamine (pPE) 10 PE (17:0/17:0)

Phosphatidylinositol (PI) 8 PC (17:0/17:0)�

Free fatty acids (FFA) 21 FFA (13:0)

Oxidized fatty acids (Oxy-FA) 3 FFA (13:0)

Acylcarnitines (AC) 13 LPC (17:0)��

Free cholesterol (FC) 1 CE (22:0)

Cholesteryl esters (CE) 14 CE (22:0)

Triglycerides (TG) 99 TG (17:0/17:0/17:0)

Total: 20 classes Total: 274 All standards at 10 μg/mL

�a response factor of 0.65 was applied for PI concentrations based on an external calibration (see S1 Methods).

��AC were quantified based on LPC (17:0) as reference.

https://doi.org/10.1371/journal.pntd.0009388.t001
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mean. Note that internal standards for some lipid classes (e.g. mono- and di-hexosyl ceramides,

coenzyme Q10 and acylcarnitines; Table 1) were unavailable in the laboratory and thus their

concentrations are not comparable to other compounds, but largely comparable among sam-

ples. Values for each lipid class were calculated as the sum of the individual lipid species.

Statistical analysis

Statistical analyses of data obtained from untargeted lipidomics were performed with Meta-

boanalyst (www.metaboanalyst.ca; according to [45]). Prior to statistical analyses data, the

coefficient of variance (CV) was calculated for each quantified lipid in quality control samples,

and lipid species displaying CV values above 20% were excluded from further analyses. The

data were log-transformed, and pairwise comparisons performed by multivariate (orthogonal

partial least square discriminant analysis) and univariate (unpaired t-test) analyses. After

checking for data distribution, a Spearman’s rank correlation analysis was applied.

Results

In this study, a total of 30 participants belonging to three groups were enrolled: 10 control/

healthy newborns without antenatal ZIVK exposure, 9 normocephalic newborns exposed to

ZIKV and 11 newborns with ZIKV-induced microcephaly (denominated G1, G2 and G3,

respectively). The characteristics of the participants are delineated in S1 Table. The present

study identified and quantified 274 individual species of lipids in plasma that were distributed

into 20 classes/subclasses according to Table 1. In terms of concentrations, major lipid pools

were represented by cholesteryl esters (CE), followed by triglycerides (TG), phosphatidylcho-

line, sphingomyelin and free fatty acids (FFA), and displayed a considerable variation in lipid

concentrations within groups (S1A Fig). Concentrations of both TG and CE were comparable

to the values reported in the literature [46], with significantly reduced amounts of both CE and

particularly TG in newborns relative to mothers’ plasma in normal pregnancy [47].

Pairwise comparisons were performed with the 274 lipids by multivariate and univariate

analyses. Prior to these statistical routines, we excluded 13 lipids that displayed coefficient of

variation higher than 20% in quality control samples. Orthogonal partial least square discrimi-

nant analysis provided a clear separation of groups based on the composition of plasma lipi-

dome (Fig 1). As a common trend in the ZIKV-infected groups G2 and G3, we found lower

concentrations of several CE and glycerophospholipids species (mainly phosphatidyl-ethanol-

amine and -inositol) and higher concentrations of FFA relative to the non-infected group G1

(Fig 1A and 1B). The ZIKV exposed groups also displayed a trend for elevated concentrations

of TG species linked to docosahexaenoic (22:6) and arachidonic (20:4) acids relative to G1,

whereas G1 was enriched in TG species linked to linoleic acid (18:2) relative to G2 and G3

(loadings plot in Fig 1A and 1B). The latter differences, however, were not confirmed by uni-

variate analysis of specific fatty acids esterified to total lipids or specific classes such as TG and

FFA (S1B and S1C Fig). A particular feature of G2 relative to G1 and G3 was the elevated con-

centrations of lysophosphatidylcholine (LPC) species (Fig 1A and 1C), while G3 displayed

higher concentrations of both FFA and oxidized free fatty acids (Oxy-FA) species relative to

the other groups (Fig 1B and 1C).

Further comparisons of newborns by unpaired t-test corroborated results obtained by mul-

tivariate analysis. Remarkable plasma lipidome alterations were noticed comparing the control

group G1 to the ZIKV exposed groups (Fig 2). For instance, concentrations of LPC (16:1, 20:3

and 20:4) and a single TG were significantly elevated in G2 relative to G1. In contrast, free cho-

lesterol and 13 TG (10 of them linked to at least one chain of linoleic acid) displayed lower

concentrations in G2 relative to G1. Several saturated FFA (14:0, 15:0, 17:0 and 18:0) as well as
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acylcarnitine (AC 8:0), hydroxyoctadecadienoic acid (HODE) and TG (18:0/18:0/18:1) dis-

played higher concentrations in G3 relative to G1. Conversely, a single TG (16:1/18:1/18:2)

was found in reduced concentrations in G3 as compared to G1.

Among the ZIKV exposed groups, higher concentrations of free cholesterol, FFA (20:1),

HODE and 3 TG were found in G3 relative to G2 (Figs 2 and S2). The normocephalic ZIKV

exposed group G2 showed higher concentrations of TG (18:2/20:4/20:4) and lower concentra-

tions of free cholesterol and 3 TG (all linked to at least one linoleic acid chain) relative to the

other groups. Importantly, elevated concentrations of HODE were observed in G3 relative to

the other groups, suggesting this oxidized lipid derived from linoleic acid as a potential meta-

bolic signature of ZIKV-induced microcephaly.

Because our untargeted lipidomic method was not designed to precisely estimate the abun-

dance and composition of Oxy-FA, and given their importance in this study, we conducted a

Fig 1. Multivariate analysis by orthogonal partial least square discriminant analysis (oPLSDA) revealing discriminant features in umbilical cord plasma lipidome

among the groups of newborns in pairwise comparisons. The groups were composed of non-infected controls (G1), ZIKV-infected without and with microcephaly (G2

and G3, respectively). The upper and lower panels display, respectively, score and loadings plots of the oPLSDA for G1 versus G2 (A), G1 versus G3 (B) and G2 versus G3

(C). In lower panels, selected lipid classes leading to contrasting plasma lipidome composition among groups of newborns are highlighted. Abbreviations for lipid classes

are depicted in Table 1.

https://doi.org/10.1371/journal.pntd.0009388.g001
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G2 x G1

TG 16:0/16:0/16:0
TG 16:0/16:0/18:0

0-3 -2 -1 34- 21 4

Fold change

Significantly altered lipid species

AC 8:0
FC

FFA 14:0
FFA 15:0
FFA 17:0
FFA 18:0
FFA 20:1

HODE*
LPC 16:1
LPC 20:3
LPC 20:4

TG 10:0/18:1/18:1
TG 10:0/18:1/18:2
TG 12:0/18:1/18:2
TG 14:0/16:1/18:2
TG 14:0/18:2/18:2
TG 15:0/18:2/18:2

TG 16:0/17:1/18:2

TG 16:1/18:1/18:2
TG 16:1/18:2/18:2
TG 17:0/18:1/18:2
TG 18:0/18:0/18:1
TG 18:2/18:2/18:2
TG 18:2/20:4/20:4

TG 16:0/18:0/18:0

G3 x G1 G3 x G2

Fig 2. Major alterations in plasma lipidome of newborns caused by ZIKV infection. Fold-change of significantly

altered lipids in pairwise comparisons (t-test; p<0.05). Lipid species in bold represent features that displayed

significant differences in concentration in more than one contrast (G2 x G1 and G3 x G2). Concentrations of selected

lipid species are shown in S2 Fig for comparison. HODE� emphasizes that this Oxy-FA was elevated in G3 relative to

the other groups. Abbreviations for lipid classes are depicted in Table 1 or in the main text. Fatty acyl chains are

represented by X:Y, where X denotes the number of carbons and Y the number of double bonds.

https://doi.org/10.1371/journal.pntd.0009388.g002
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targeted oxilipidomic analysis to assess the contribution of different isomers of HODE and

hydroxyeicosatetraenoic acid (HETE) (see details in S2 Methods). The results evidenced

higher concentrations of total HODE (defined by the sum of 9- and 13-HODE isomers) in G3

relative to the other groups (Figs 3A and S3), confirming our preliminary assessment. The data

further revealed that 13-HODE not only displayed higher concentrations than 9-HODE, but

also accounted for the most significant differences between G3 and the other groups. In con-

trast, HETE isomers concentrations displayed no significant alterations among the groups (Fig

3A). A Spearman’s rank correlation analysis (Fig 3B) indicated a positive correlation of total

HODE with a number of oxidized lipids (including the Oxy-FA, and oxidized linoleic acid

linked to TG and cholesteryl esters), several FFA, free cholesterol and 6 TG, the latter mostly

linked to saturated or mono-unsaturated fatty acids. Moreover, negative association of total

HODE was evidenced for PC (16:0/20:4).

HODE (sum)*

0 10.5
Spearman’s rank

correla�on coefficient

13-HODE*
9-HODE*
11-HETE*
12-HETE*
HDHA
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CE (18:2-OH)
CE (18:2-OOH)
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FFA 16:0
FFA 17:0
FFA 18:0

FFA 22:4
TG (10:0/16:0/18:2)
TG (12:0/14:0/18:1)
TG (16:0/17:0/18:1)
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Fig 3. Relationship between plasma levels of hydroxyoctadecadienoic acid (HODE) and ZIKV-induced microcephaly. (A) Oxilipidomic analysis of

HODE (see also S3 Fig) and hydroxyeicosatetraenoic acid (HETE) isomers (modified from [48]; S2 Methods). HODE (sum) represents summed

concentrations of 9- and 13-HODE isomers. Concentrations are displayed as area ratio (bars indicate average ± standard error of the mean) and

comparisons were determined by unpaired t-test (p<0.05 shown in italics). (B) Significant association of HODE (sum) with lipid species (p<0.001 filled

bars; p<0.05 empty bars) by Spearman’s rank correlation analysis. Bars are color coded for oxidized lipids (red), free cholesterol (black), FFA (gray), TG

(green) and phospholipid (blue). Oxidized linoleic acid linked to TG and CE is represented by 18:2-OH or -OOH, where OH denotes monohydroxyl and

OOH hydroperoxyl groups. � = lipids quantified by oxilipidomics; HDHA = hydroxydocosahexaenoic acid. Abbreviations for lipid classes are depicted in

Table 1 or in the main text.

https://doi.org/10.1371/journal.pntd.0009388.g003
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In summary, our results revealed major alterations in newborns’ plasma lipidome linked to

ZIKV exposure, particularly modulations involving the linoleic acid. In the ZIKV-infected

normocephalic G2, concentrations of several TG esterified to linoleic acid were reduced in

comparison to G1, apart from lower free cholesterol and higher LPC. Plasma from newborns

with ZIKV-induced microcephaly (G3) was enriched in HODE, particularly the 13-HODE iso-

mer, relative to normocephalic newborns (G1 and G2). In addition, total HODE was signifi-

cantly correlated with several circulating FFA and oxidized lipids.

Discussion

Lipids play a central role in metabolism, membrane structure and signaling during early brain

development [49]. Their importance may be better exemplified by the cognitive and visual

capabilities of infants linked to maternal or cord docosahexaenoic acid (DHA) status in obser-

vational studies (reviewed in [50]). The maternal-fetal interface is a major contributor to the

quality of lipids delivered to embryos/fetuses. The striking differences in lipid content between

the mother’s blood plasma and the umbilical cord plasma is a testament of its importance in

the transport of lipids across the placenta. For instance, cord blood plasma is enriched by 1.5

to 4 fold in arachidonic acid and DHA content of major lipid classes as compared to mother’s

plasma [51]. Placental sufficiency is thus vital for a healthy early brain development. While

congenital ZIKV syndrome has been attributed to increased death of neural progenitor cells in

cellular and mice models [14–16,52–54], the mechanisms of ZIKV infection leading to brain

defects in newborns remain unknown. Nonetheless, a staggering number of observational and

experimental studies have documented that ZIKV targets the placental cells, resulting not only

in increased systemic inflammation [19,23–25], but also significant changes in placental lipid

metabolism [29]. The present study is consistent with the latter observations and suggests that

antenatal ZIKV exposure leads to significant changes in umbilical cord plasma lipidome of

newborns that may reflect neurodevelopmental, neurocognitive and ophthalmological abnor-

malities beyond microcephaly.

A common link among alterations in plasma lipidome of ZIKV exposed newborns involves

the linoleic acid. The role of linoleic acid in pregnancy relies on its concentrations in cord

blood plasma that is reduced by 10 fold relative to mother’s plasma [51], likely as a result of

intense metabolism of this fatty acid during placental development. Although displaying high

variability in concentrations of total lipid classes (S1 Fig), our data consistently revealed higher

HODE concentrations, particularly the 13-HODE isomer, in plasma from newborns with

ZIKV-induced microcephaly relative to the other groups. Oxidized fatty acids, such as HODE,

are generated by the activation of oxygenases [55,56] (cyclooxygenases and lipoxygenases

mainly, and cytochrome P450 to a minor extent) and by free radical mediated lipid peroxida-

tion [57]. Enzymatic oxidation of fatty acids plays a pivotal role during a normal reproductive

cycle and pregnancy [58]. However, elevated plasma HODE concentrations and their positive

correlation with other oxidized lipids in ZIKV-induced microcephalic newborns appears more

consistently linked to the systemic inflammatory profile and redox imbalanced environment

of the ZIKV-infected placenta [22–24,29]. A more direct link of HODE to early neurodevelop-

ment was found for elevated concentrations of 9-HODE in neural stem cells (derived from

human embryonic stem cells) infected with cytomegalovirus [59]. These authors have shown

that either high concentrations of 9-HODE generated by infected cells or treatment of non-

infected cells with 9-HODE led to increased levels and activity of the peroxisome proliferator-

activated receptor (PPAR) gamma, which in turn were associated with impaired rates of neu-

rogenesis. Immunodetection of nuclear PPAR-gamma in germinative zones of cytomegalovi-

rus-infected human fetal brain and absence in control fetuses confirmed the role of PPAR-
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gamma in congenital neuropathogenesis of cytomegalovirus infection [59]. Similar to congeni-

tal ZIKV syndrome, congenital human cytomegalovirus infection is a leading cause of perma-

nent and severe neurological sequelae, including microcephaly and hearing and vision loss

[60].

Importantly, plasma concentrations of HODE were positively associated with several FFA,

the majority of them found in higher concentrations in newborns with ZIKV-induced micro-

cephaly relative to controls. Moreover, decreased concentrations of TG esterified to linoleic

acid were observed in close association with elevated concentrations of lysophosphatidylcho-

line (LPC) species in normocephalic ZIKV exposed newborns. High circulating FFA and LPC

in plasma are in general correlated with elevated hydrolytic activities of lipases, such as the

endothelium lipase and lipoprotein lipase found in the placenta [61]. It is known since the 60’s

that microcephaly is associated with a remarkable accumulation of neutral lipids as cytosolic

lipid droplets in glial cells [62]. A combination of high fluxes of FFA and a “leaky” blood-brain

barrier due to ZIKV infection [63,64] might contribute to the accumulation of neutral lipids in

the central nervous system.

More recently, ZIKV was reported to disrupt the major facilitator superfamily domain-con-

taining protein 2 (Mfsd2a), also known as a membrane bound sodium-dependent LPC sym-

porter, both in human brain endothelial cell cultures and neonatal mouse brain, causing

growth restriction and microcephaly in the latter [36]. The importance of this data lies on the

pivotal role of Mfsd2a in the transport of DHA across the blood-brain barrier via endothelium

cells [33] as well as its role in ensuring integrity of the blood-brain barrier [65]. Two case stud-

ies have reported that inactivating mutations in the Mfsd2a (full or partial loss of function)

cause human microcephaly and established a correlation between the degree of mutation and

the severity of the pathology [34,35]. Notably, both studies also found out that affected individ-

uals displayed high concentrations of circulating plasma LPC, especially those esterified to

mono- and polyunsaturated fatty acids, suggesting a major role of Mfsd2a in the transport of

these fatty acids to the brain. The increased plasma concentrations of LPC in the normocepha-

lic ZIKV exposed newborns compared to controls undoubtedly did not lead to apparent alter-

ations in head circumference at birth. However, recent data from follow up studies have

shown a high frequency of neurodevelopmental and ophthalmological abnormalities in chil-

dren with antenatal exposure to ZIKV and normocephalic at birth [2,10–13]. The clinical out-

comes are remarkable, for instance, 68% of those children affected by neurological

abnormalities on physical examination, 30% with abnormal neuroimaging, and 57% with

complications to thrive given their poor feeding neurological capabilities [13]. Our study sug-

gests that plasma lipidome profiling in newborns exposed to ZIKV may potentially contribute

to recognize clinical phenotypes linked to abnormal neurodevelopment observed at birth and

during the course of their childhood.

In summary, the observations reported in our study are in line with evidence that ZIKV

infection disturbs the homeostasis in placental cells, which are responsible for the selective

transport of lipids from the mother’s blood to the cord blood of their fetuses. This transport is

dictated by the stage of development of the fetuses, thus the requirements of specific lipids are

distinct in each trimester of gestation [66]. Placental insufficiency is a major cause of fetal

growth restriction with severe consequences to early neurodevelopment [67]. We suspect that

our data reflect the diverse mechanisms by which antenatal ZIKV exposure negatively impact

the neurodevelopment of fetuses/infants, especially the spatial-temporal patterns based not only

on the trimester of pregnancy, but also on the intensity of infection in each specific cells/tissues.

Our study has several limitations. Firstly, samples were taken at a single point, thus changes

occurring before birth are missing, and lack information regarding mother’s fasting or post-

prandial conditions. Moreover, major redox and inflammatory changes occurring in the
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placenta during labor [68] are expected to lead to significant fluctuations in lipid concentra-

tions in cord fluids. The great extent of variation in the concentrations of lipid classes and dis-

tribution of major fatty acids (S1 Fig) might have stemmed from the latter points. For

instance, there was a trend of lower cholesteryl esters, together with significant changes in free

cholesterol, in the normocephalic ZIKV exposed group (S1A Fig). Cholesteryl esters are the

most abundant lipid class in newborn’s plasma [46] and alterations in this pool may result in a

considerable decrease in fatty acids being transported to the infants. Secondly, quantification

of HODE isomers revealed that concentrations of 13-HODE, and to a lesser extent 9-HODE,

are elevated in plasma from newborns with ZIKV-induced microcephaly. While a direct role

of 9-HODE impairing neurogenesis in stem cells infected by cytomegalovirus has been estab-

lished [59], a causal link between HODE isomers and the neuropathogenesis of ZIKV remains

to be investigated. Thirdly, although controlling for potential confounders, the number of

individuals selected for this study was relatively small and thus a second or larger cohort is

required to validate our results. Nonetheless, our study identified significant changes in cord

plasma lipidome associated with antenatal ZIKV exposure that may contribute to detection of

the wide spectrum of clinical phenotypes observed at birth and later in childhood. Further pro-

spective studies with a larger cohort of newborns are now required for validation of the predic-

tive ability of this approach.
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S1 Fig. Quantification of major lipid classes and major polyunsaturated fatty acids compo-

sition of total lipids and lipid classes. (A) Total lipid classes concentrations in mg dL-1 in G1

(non-infected controls), G2 (normocephalic ZIKV-infected) and G3 (ZIKV exposed microce-

phalic). (B) Total concentrations of polyunsaturated fatty acids in mM, focusing on linoleic

(LA, 18:2), arachidonic (ARA; 20:4) and docosahexaenoic (DHA; 22:6) acids; (C) Distribution

of LA, ARA and DHA into major lipid classes. The data shows average ± standard error. Statis-

tical analysis by t-test revealed no alteration regarding quantity or contribution of these lipids

among groups, although several trends could be observed, such as lower quantities of CE and

total 18:2 in G2 relative to the other groups. For abbreviations of lipid classes please refer to

Table 1 and GPL = glycerophospholipids.

(EPS)

S2 Fig. Concentrations of selected lipid species displaying significant alterations among

groups (as shown in Fig 1). Bars represent the average concentration of lipids (ng/μL) ± stan-

dard error of the mean. For significance, unpaired t-test was applied with brackets indicating

p<0.05.

(EPS)

S3 Fig. Structure confirmation of HODE isomers by targeted oxilipidomics. (A) Extracted

ion chromatograms of HODE isomers as standards and in a representative experimental sam-

ple. MS/MS spectra of 13-HODE (B) and 9-HODE (C) standards used to define specific frag-

ment ions for quantification of HODE isomers.

(EPS)
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S2 Table. Integral lipidomics data in area ratio concentrations, including experimental

and quality control samples.
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