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Protein O-fucosylation in Plasmodium falciparum
ensures efficient infection of mosquito and
vertebrate hosts
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Sara M. Erickson1,2, Nicole C. McKenzie1,2, Charlie Jennison1,2, Lachlan W. Whitehead 1,2, Donna N. Douglas4,

Norman M. Kneteman4, Ethan D. Goddard-Borger 1,2 & Justin A. Boddey 1,2

O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently

identified, but the role of this modification in the parasite life cycle and its relevance to

vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase

(POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in

Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito

midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature

into salivary gland sporozoites although they are impaired for gliding motility, cell traversal,

hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver

mice. These defects can be attributed to destabilization and incorrect trafficking of proteins

bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria

parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of

a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control

mechanism.
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P lasmodium spp. lack many genes necessary for conventional
N- and O-glycosylation1, 2 and the N-glycan-dependent
protein folding quality control pathways found in

most eukaryotes3, 4. This has fuelled debate about whether these
protozoan parasites glycosylate their proteins1, 2, 5. Recent
advances have begun to resolve this issue6, 7. Blood stage
Plasmodium falciparum parasites, which cause the most severe
form of human malaria, N-glycosylate proteins with Asn-linked
N-acetylglucosamine or chitobiose6. While this minimalistic
N-glycan likely plays a thermodynamic role in protein folding8, it
remains unclear which parasite proteins are N-glycosylated and
whether it occurs in other stages of the Plasmodium lifecycle. In
contrast, O-glycosylation has only been detected outside of the
blood stages: the P. falciparum sporozoite antigens circumspor-
ozoite protein (CSP) and thrombospondin-related anonymous
protein (TRAP) both bear an O-linked hexosyl-deoxyhexose
disaccharide on their thrombospondin repeat (TSR) domains7.

CSP9 and TRAP10, 11 are essential for infection of the human
host and abundant on the sporozoite surface, making them prime
vaccine candidates. Indeed, the only malaria vaccine approved
to date RTS,S/A0112, is based on the CSP TSR domain. Simple
O-glycans can enhance antigenicity and comprise part of T-cell
epitopes13, making this parasite glycan of great relevance to the
design of next-generation malaria vaccines. However, before
pursuing this idea the precise chemical nature of the O-glycan
must be determined, as should its function in the malaria parasite.

The chemical identity of the P. falciparum O-glycan is most
likely the same as the O-linked β-D-glucosyl-1,3-α-L-fucose
disaccharide found on metazoan TSR domains14–16. In these
systems, O-glycosylation of the cysteine-rich TSR domain occurs
in the endoplasmic reticulum (ER) on correctly folded proteins

at the CXX(S/T)C sequon in a stepwise manner: protein
O-fucosyltransferase 2 (POFUT2)17 O-fucosylates Ser/Thr of the
protein using GDP-fucose, then β-1,3-glucosyltransferase
(B3GLCT)16 utilizes UDP-glucose to glucosylate the 3-OH of the
fucose residue (Supplementary Fig. 1)18. This process comprises
part of a non-canonical protein folding quality control mechan-
ism18. Ablation of POFUT2 or B3GLCT in mammals affects
folding and trafficking of proteins with TSR domains, though the
extent to which this occurs varies from protein to protein18–23.
POFUT2 disruption in mice has an embryonic lethal phenotype22

while mutations in human B3GLCT cause Peters-Plus
syndrome18. The identification of glycosylated TSR proteins in
P. falciparum suggests a similar protein quality control mechan-
ism is present in the malaria parasite, an idea supported by the
observation that heterologous expression of CSP24 and TRAP25

TSR domains in mammalian cell lines yield proteins modified
with the same β-D-glucosyl-1,3-α-L-fucose disaccharide.

Here, we identify and characterize the protein
O-fucosyltransferase 2 (POFUT2) conserved in all Plasmodium
spp. Genetic disruption of POFUT2 in P. falciparum results in
attenuation of both ookinete and sporozoite infection of
their respective mosquito and vertebrate hosts. The defects are
attributable to destabilization and incorrect trafficking of proteins
with TSRs. This suggests that POFUT2 plays an important role in
parasite transmission to mosquitoes and infection of the human
host by ensuring trafficking of TSR proteins following glycosy-
lation in the parasite ER.

Results
In vitro characterization of Plasmodium POFUT2. To investi-
gate whether malaria parasites encode a POFUT2, a BLAST
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Fig. 1 O-Fucosylation of TSR domains by POFUT2 in P. falciparum. a O-Fucosylation of TSR domains by GDP-fucose, as catalyzed by POFUT2, (illustration
generated using 4HQO)25. b Deconvoluted intact ESI mass spectrum of recombinant P. falciparum TRAP TSR domain treated with GDP-fucose in the
absence (blue) and presence (red) of P. vivax POFUT2. c Deconvoluted intact ESI mass spectrum of recombinant P. falciparum CSP TSR domain treated with
GDP-fucose in the absence (blue) and presence (red) of P. vivax POFUT2. d Multiple sequence alignment of all TSR domain sequences from P. falciparum
revealing the proteins that are likely to be O-fucosylated (red) and in what parasite stage they are expressed
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search of the P. falciparum genome using Homo sapiens POFUT2
(CAC24557.1)26 as a search term led to the identification
of PF3D7_0909200 as the putative malarial POFUT2 enzyme.
Highly homologous syntenic orthologs were present across
the Plasmodium genus (Supplementary Fig. 2). The putative
P. falciparum and P. vivax (PVX_098900.1) POFUT2 share
considerable sequence similarity with H. sapiens and
Caenorhabditis elegans (NP_001255070.1) POFUT2 and retain
the catalytic residues of these enzymes (Supplementary Fig. 3).
A homology model constructed from the P. falciparum
POFUT2 sequence has a very similar predicted structure to
H. sapiens and C. elegans POFUT2 (Supplementary Fig. 4A),
sufficient to allow the GDP-fucose and TSR domain substrates to
be docked into the model to reveal an alignment of catalytic
residues and substrates that is reminiscent of a Michaelis complex
(Supplementary Fig. 4B, C)26, 27.

We sought to recombinantly express putative POFUT2 and
TSR domains from the Plasmodium genus to demonstrate
enzymatic activity in vitro and support the notion that the
deoxyhexose observed previously by MS on P. falciparum CSP
and TRAP7 is in fact L-fucose and is localized on the threonine of
the CXXTC sequon. All attempts to express P. falciparum and
P. vivax POFUT2 in Escherichia coli and Pichia pastoris were
unsuccessful. Recombinant P. vivax POFUT2 was obtained by
secretion as a SUMO fusion protein from Sf21 insect cells using a
baculovirus expression system (Supplementary Fig. 5), though
this strategy failed for P. falciparum POFUT2. The TSR domains
of P. falciparum TRAP and CSP were expressed in E. coli as a
GST fusion protein and the GST tags removed using HRV C3
protease (Supplementary Fig. 5). Recombinant P. vivax POFUT2

and GDP-fucose were incubated with each TSR domain (Fig. 1a)
and analyzed by intact electrospray ionisation mass spectrometry
(ESI-MS) to reveal a mass shift of + 146 for both TRAP (Fig. 1b)
and CSP (Fig. 1c), indicating the addition of a single L-fucose to
the proteins. This mass shift was not observed in the absence of P.
vivax POFUT2. LC-MS/MS analysis of GluC-digested samples of
the O-fucosylated TRAP enabled the localization of this
glycosylation to the threonine residue of the CXXTC motif
(Supplementary Fig. 6). This confirmed that Plasmodium
parasites possess a conserved syntenic POFUT2 capable of O-
fucosylating TSR domains on the canonical serine/threonine
residue of the CXX(S/T)C motif.

We proceeded to inspect the sequence of every P. falciparum
protein with a TSR domain for this O-fucosylation sequon
(Fig. 1d) to and found that, in addition to CSP and TRAP,
potential POFUT2 substrates include: circumsporozoite- and
TRAP-related protein (CTRP), expressed in ookinetes28, 29, as
well as TRAP-like protein (TLP)30, thrombospondin-related
sporozoite protein (TRSP)31 and thrombospondin-related protein
1 (TRP1)32 from the sporozoite stages. No blood stage proteins
with a TSR domain possessed the consensus site, suggesting that
O-fucosylation was not important to this stage of the parasite’s
life cycle.

Plasmodium POFUT2 localizes to the ER. To identify the
subcellular location of POFUT2 in P. falciparum, transgenic
NF54 parasites were produced in which the POFUT2 gene
encoded triple hemagglutinin (HA) epitopes in-frame at the
C-terminus such that expression was still driven by the
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Fig. 2 POFUT2 is important for P. falciparum transmission to Anopheles stephensi mosquitoes. a Parasite load in mosquito midguts 27 h post-bloodmeal,
measured by qRT-PCR of transcripts for Pf18S (total parasites), Pfs25 (gametes, zygotes, ookinetes), and PfCTRP (ookinetes) relative to Anopheles stephensi
ribosomal protein, rps7 (AsrpS7). No significant differences were observed relative to NF54 for Pf18S (P= 0.4973), Pfs25 (P= 0.3513), and PfCTRP
(P= 0.2547). b Oocyst counts per mosquito midgut 7 days post-bloodmeal. Data are mean± 95% confidence interval from three independent
experiments. c Salivary gland sporozoite count per mosquito 17 days post-bloodmeal. d Salivary gland sporozoite count divided by oocyst count
(P= 0.9945). Data is the mean± S.E.M. from three independent experiments. P-values are for both mutant clones compared to NF54, calculated
using the Kruskal–Wallis one-way ANOVA
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endogenous promoter (Supplementary Fig. 7A). Integration
of the HA epitope cassette was validated by Southern blot
(Supplementary Fig. 7B) and POFUT2-HA expression confirmed
by immunoblot using anti-HA antibodies. POFUT2-HA migrated
as a single species of circa 60 kDa in asexual parasites, consistent
with a predicted mass of 59 kDa (Supplementary Fig. 7C).
Immunofluorescence microscopy revealed puncta of POFUT2-
HA expression that co-localized with plasmepsin V33, consistent
with an ER localization in P. falciparum (Supplementary Fig. 7D).
The punctate distribution pattern within the ER suggests that
POFUT2-HA localizes within sub-domains of the ER, the pre-
sence of which has been described previously34. Detection of
POFUT2 expression in asexual parasites is consistent with reports
that GDP-fucose is biosynthesized in blood stage P. falciparum
parasites35, though it does not appear to be essential36. It is
unclear what, if any, protein(s) might be O-fucosylated by
POFUT2 in the blood stage (Fig. 1d).

Generation of POFUT2-deficient P. falciparum. To study the
function of POFUT2 in P. falciparum, isogenic NF54 parasites
were generated in which the POFUT2 locus was excised by double
cross over homologous recombination (Supplementary Fig. 8A).
Two independent clones of ΔPOFUT2 parasites (D3 and G8)
were generated by limiting dilution and validated by Southern
blot analysis (Supplementary Fig. 8B). Both mutant clones
developed within erythrocytes at the same rate as NF54 parasites,

indicating that POFUT2 is not essential for asexual blood stage
growth (Supplementary Fig. 8C), in agreement with GDP-fucose
being dispensable36 and the absence of predicted substrates in this
stage (Fig. 1d). The ΔPOFUT2 parasites were differentiated into
gametocytes and no significant difference in stage V gametocy-
temias were observed compared to NF54, demonstrating that
POFUT2 is not essential for gametocytogenesis (Supplementary
Fig. 8D).

POFUT2 facilitates P. falciparum infection of the mosquito. To
examine the function of POFUT2 in other P. falciparum lifecycle
stages, mature gametocytes were fed to female Anopheles
stephensi mosquitoes by membrane feeding. Parasite load and
differentiation within the mosquito was determined by real-time
quantitative reverse-transcription PCR (qRT-PCR) of infected
midguts 27 h post-bloodmeal. Quantification of Pf18S transcripts
revealed that total parasite load in the mosquitoes did not differ
between NF54 and ΔPOFUT2 parasites (Fig. 2a). Pfs25 tran-
scripts, which are produced by gametes, zygotes and ookinetes37

and CTRP transcripts, which are expressed in ookinetes28, were
also statistically equal between parasite strains. This implies that
POFUT2 is not essential for formation of ookinetes within the
mosquito. However, the number of oocysts developing at the
basal lamina of mosquito midguts was reduced for
both ΔPOFUT2 clones relative to NF54 (range 63–87% reduction;
P< 0.0001 using the Kruskal–Wallis one-way analysis of variance
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Fig. 3 POFUT2 facilitates P. falciparum liver infection. a Percentage of traversed (FITC-dextran positive) human HC-04 hepatocytes by salivary gland
sporozoites. b Percentage of HC-04 cells with intracellular parasites 24 h after addition of sporozoites to cells. Data is the mean± S.E.M. from
three (a) and two (b) independent experiments. c Parasite liver load measured by qPCR showing the fitness of ΔPOFUT2 versus parental NF54 sporozoites
following coinfection of three humanized chimeric liver mice. Each symbol corresponds to the same coinfected mouse. Data are mean± S.E.M. d Percent of
sporozoites that are non-motile in a two-dimensional gliding motility assay. e Number of circles per trail produced by gliding sporozoites (non-motile
parasites removed). Data in d, e is mean± S.E.M. or 95% confidence interval, respectively, from two independent experiments. P-values are for both
mutant clones compared to NF54, calculated using the Kruskal–Wallis one-way ANOVA, except panel c, which compared one mutant clone to NF54 in
each of three mice using the paired t-test
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(ANOVA)) (Fig. 2b). This indicates that POFUT2 is required
for normal infection of the mosquito vector by P. falciparum
ookinetes. The sole predicted TSR protein expressed in ookinetes
is CTRP (Fig. 1d), which is essential for ookinete motility
and invasion of the midgut28, 29. Our results are, therefore,
consistent with perturbed glycosylation and function of CTRP,
resulting in defective midgut invasion. P. falciparum ookinetes
could not be successfully cultured in vitro to confirm this by
proteomic analysis.

POFUT2 supports P. falciparum sporozoite infectivity and
fitness. To investigate the function of POFUT2 in sporozoites,
parasites were propagated through mosquitoes and dissected
from salivary glands. Mosquitoes infected with ΔPOFUT2 para-
sites harboured 45–55% fewer sporozoites in their salivary glands,

depending on the clone, than mosquitoes infected with the NF54
parental line (P= 0.0160 using the Kruskal–Wallis one-way
ANOVA; Fig. 2c). Since ΔPOFUT2 parasites produce fewer
oocysts, this result was expected. When standardizing for oocysts,
the number of salivary gland sporozoites was not different
(Fig. 2d), suggesting that POFUT2 function may not be critical
for P. falciparummaturation in oocysts or salivary gland invasion.
Next, we assessed whether sporozoites in the salivary glands were
infectious. Cell traversal activity is required for liver infection and
was measured by incubation of sporozoites with human HC-04
hepatocytes in the presence of FITC-dextran and quantifying
dextran-positive cells38, 39. ΔPOFUT2 parasites were reduced
for cell traversal by 30–42%, depending on the mutant clone
(P< 0.0001 using the Kruskal–Wallis one-way ANOVA)
(Fig. 3a). The ability for sporozoites to invade hepatocytes, which
is critical for liver infection, was investigated by quantifying the
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number of parasites inside HC-04 hepatocytes 24 h post-addition
of sporozoites to cells. This revealed a strong defect in the number
of intracellular ΔPOFUT2 parasites (P= 0.0145 using the
Kruskal–Wallis one-way ANOVA) (Fig. 3b), consistent with a
defect in invasion into the cells. To examine the effect of POFUT2
activity on parasite fitness in vivo, coinfection experiments were
performed in which an equal inoculum of NF54 and mutant
sporozoites was mixed and injected intravenously into humanized
chimeric liver mice40. Loss of POFUT2 function resulted in a
severe fitness cost, as demonstrated by an approximate
80% reduction in parasite liver load compared to NF54 parents
(P= 0.0155 using the paired t-test; Fig. 3c). Therefore, POFUT2
activity is important for liver infection by P. falciparum
sporozoites.

Gliding locomotion is obligatory for infectivity of sporo-
zoites10, 41. We, therefore, assessed whether POFUT2 plays a role
in gliding motility by measuring sporozoite trails on a solid
substrate42. Loss of POFUT2 function caused a reduction in
gliding motility, reflected by an increase in non-motile spor-
ozoites (Fig. 3d) and concomitant decrease in the number of trail
circles produced by ΔPOFUT2 sporozoites that could glide
(Fig. 3e) (P< 0.0001 using the Kruskal–Wallis one-way
ANOVA). Therefore, POFUT2 is required for normal gliding

motility in P. falciparum, which provides a mechanistic explana-
tion for why mutant sporozoites were less infective in vitro and
less fit in vivo.

POFUT2 assists stabilization and trafficking of TSR proteins.
Given the important function of POFUT2 in protein quality
control in metazoans18, we examined whether proteins were
destabilized or trafficked differently following loss of POFUT2
activity. Since the two TSR proteins reported to be O-fucosylated
in sporozoites are CSP and TRAP7, we investigated these two
proteins by immunofluorescence microscopy using antibodies
directed to these proteins (Fig. 4a). While we observed no
decrease in CSP pixel intensity between NF54 and ΔPOFUT2
sporozoites, the total TRAP pixel intensity was dramatically
reduced in POFUT2-deficient sporozoites (P< 0.0001 using
the Mann–Whitney test) (Fig. 4b). Furthermore, the intensity
of TRAP pixels at the sporozoite membrane was also significantly
reduced in ΔPOFUT2 parasites (P< 0.0001 using the
Mann–Whitney test) and TRAP was commonly observed inside
parasites, indicating that trafficking to the sporozoite membrane
was impaired by loss of POFUT2 function (P< 0.0001 using
the Mann–Whitney test) (Fig. 4c). Analysis of protein expression
levels by immunoblotting indicated that levels of TRAP
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Fig. 5 POFUT2 stabilizes TSR proteins in P. falciparum. a Western blot analysis of 30,000 salivary gland sporozoites per lane using antibodies to
PfTRAP and PfCSP. Anti-PfPLP1 was used as a loading control. The same blot was probed consecutively with each antibody. b Densitometry of PfTRAP
and PfCSP levels in sporozoites measured by immunoblotting and standardized to the PfPLP1 loading control. Data are mean± S.E.M. and pooled from
three independent immunoblots. c Abundance of PfTRAP and PfCSP mRNA transcripts in salivary gland sporozoites relative to Pf18S, measured by
qRT-PCR. No differences were observed for either ΔPOFUT2 clone compared to NF54 for PfTRAP (P= 0.5003) and PfCSP (P= 0.3104) mRNA.
Data is the mean± S.E.M. of four independent experiments. P-values are for both mutant clones compared to NF54, calculated using the Kruskal–Wallis
one-way ANOVA
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(P= 0.0250) but not CSP (P= 0.3571) (P-values were determined
using the Kruskal–Wallis one-way ANOVA) were reduced in
ΔPOFUT2 sporozoites (Fig. 5a, b). To confirm that the difference
was due to protein destabilization rather than decreased gene
expression, qRT-PCR was performed on sporozoites. This
demonstrated no significant difference in the relative abundance
of PfTRAP or PfCSP messenger RNA (mRNA) transcripts
between NF54 and ΔPOFUT2 sporozoites (Fig. 5c). Therefore,
POFUT2 activity is required for the stabilization and trafficking
of some TSR proteins in P. falciparum, although TRAP is more
dependent than CSP on O-fucosylation for stabilization and
trafficking (Fig. 5). This may be because the TSR domain of CSP
possesses just two disulfides, while that of the TRAP domain
contains three and is likely more susceptible to misfolding
and subsequent degradation due to erroneous disulfide bond
formation.

Discussion
The recent discovery of O-glycosylation on CSP and TRAP in
P. falciparum sporozoites represents a very important advance
in our understanding of Plasmodium glycobiology7 and comple-
ments recent work on the biosynthesis of sugar nucleotides
in P. falciparum35, 36. We have significantly built on these
findings by identifying the ER-resident enzyme responsible for
O-glycosylation in P. falciparum and confirming that POFUT2 is
a fucosyltransferase that modifies parasite TSR domains specifi-
cally with L-fucose at the conserved serine/threonine residue
within the CXX(S/T)C sequon. Our study also demonstrates that
this enzyme plays an important role in stabilizing TRAP in
sporozoites and possibly other TSR proteins, such as CTRP in
ookinetes, to ensure successful infection of the mosquito vector
and human liver cells.

It is not clear why POFUT2 and GDP-fucose are produced in
the blood stages of P. falciparum. While MTRAP, SPATR, and
PTRAMP are expressed in asexual stages and contain TSRs, they
lack the critical CXXS/TC O-fucosylation sequon suggesting they
are not fucosylated. Nonetheless, our study indicates that
POFUT2 is not essential for parasite growth in the asexual or
sexual blood stages. This is supported by recent studies showing
that disruption of genes involved in GDP-fucose biosynthesis,
GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase, had
no impact on asexual or sexual development36 and are also
expressed in mosquito stages43, 44.

Conversely, O-fucosylation is important in parasite stages that
develop within the mosquito. Our analyses of infected mosquitoes
suggest that O-fucosylation is not essential for P. falciparum
differentiation into ookinetes but the formation of fewer oocysts
implies it is important for ookinete infection of mosquito midgut
epithelial cells. An obvious role for POFUT2 in ookinetes is the
O-fucosylation of five of the seven TSR domains of the essential
motility-associated adhesin CTRP (Fig. 1d)28, 29. Given that
POFUT2 proteins play a key role in protein quality control and
trafficking in metazoans18, it is tempting to speculate that CTRP
is reliant on POFUT2 for stabilization and trafficking. A dearth of
appropriate antibodies and methods for the production of large
quantities of P. falciparum ookinetes has prevented us from
experimentally confirming this hypothesis, which might be better
examined in a P. berghei system using in vitro ookinete culture45.

POFUT2-deficient parasites produced oocysts, albeit less than
wild type, and this provided the opportunity to study sporozoites.
POFUT2 mutants produced fewer salivary gland sporozoites
within the mosquito than their NF54 parents, as expected based
on the formation of fewer oocysts. When the number of salivary
gland sporozoites was standardized for oocysts, no defect was
observed suggesting the levels of CSP, TRP1, and TRAP

remaining in ΔPOFUT2 sporozoites was sufficient to allow their
important functions in sporulation, oocyst egress and salivary
gland invasion9, 10, 32, 46. Indeed, our analysis of protein levels in
sporozoites showed that TSR proteins are impacted differently by
the loss of POFUT2 function, which is reminiscent of observa-
tions made in metazoans, where some proteins are impacted
far more than others18. We could not demonstrate statistically
significantly destabilization of CSP but TRAP was substantially
destabilized by loss of POFUT2 activity, though not fully
degraded. Given the essential roles of CSP in so many aspects of
sporozoite biology, it is plausible that its TSR domain (with only
two disulphide bonds) has evolved to be more stable than the
TRAP TSR domain (with its three disulphide bonds) and classical
TSR topology25.

Our study has also shown that POFUT2 function extends to
sporozoite interactions with human hepatocytes both in vitro
and in humanized mice with chimeric livers and is therefore
implicated in P. falciparum transmission to humans. ΔPOFUT2
sporozoites were defective for cell traversal activity, invasion of
human hepatocytes and for fitness of sporozoites in vivo. These
phenotypes can be attributed to functional destabilization of
TRAP and CSP but may also include other TSR proteins that
mediate sporozoite motility and invasion of hepatocytes, such as
TLP and TRSP, respectively10, 30, 31, 47. Our observations of
reduced gliding motility of POFUT2-deficient sporozoites
strongly support this hypothesis. Further study is needed to verify
that these other TSR proteins are O-glycosylated and reliant on
POFUT2 for correct folding and trafficking.

The discovery of O-glycosylation in Plasmodium parasites is an
important advance in our understanding of parasite biology and
the significant defects we describe illustrate the relevance of this
modification to propagation of the parasite through its lifecycle.
Loss of POFUT2 function abrogated protein stabilization and
impaired protein trafficking, impacting on both the transmission
of ookinetes to mosquitoes and the infectivity of sporozoites. This
demonstrates that the ER protein glycosylation process in malaria
parasites confers a significant survival advantage and is important
for malaria transmission. It appears unlikely that O-fucosylation
is dispensable to parasites, and so incorporation of these glycans
into vaccines based on CSP, TRAP, CTRP, and possibly other
TSR proteins are well worth investigating. The production of such
antigens should be relatively straight forward, since mammalian
glycosyltransferases can recognize and modify heterologously
expressed Plasmodium TSR domains24, 25.

Methods
POFUT2 enzyme assay. Details of recombinant protein expression are provided
in the Supplementary Methods. Reactions (10 μl total volume) containing recom-
binant P. falciparum TRAP TSR (10 μM), recombinant P. vivax POFUT2 (10 ng),
GDP-Fuc (50 μM), MgCl2 (5 mM) in buffer (20 mM Tris, 150 mM NaCl, pH 7.4)
were incubated for 16 h at 25 °C. Negative controls included reactions without
P. vivax POFUT2. Samples were snap-frozen and stored at –80 °C until analysis by
mass spectrometry, as detailed in the Supplementary Methods.

Parasite maintenance. P. falciparum NF54 asexual stages were maintained in
human type O-positive erythrocytes (Melbourne Red Cross) in RPMI-HEPES
supplemented with 10% heat-inactivated human serum (Melbourne Red Cross),
at 37 °C. Gametocytes for transmission to mosquitoes were generated using the
“crash” method48 using daily media changes.

Transgenic parasites. P. falciparum NF54 (kindly provided by the Walter Reid
Army Institute of Research) was used to generate all transgenic parasites. Details
for cloning, transfection, selection, and validation of transgenic lines are provided
in the Supplementary Methods.

Blood stage growth assay. Synchronized trophozoite stage parasites were added
to erythrocytes to 0.2% parasitemia, 1% hematocrit. Starting parasitemia was
confirmed by flow cytometry (FACSCalibur; BD) using ethidium bromide staining
(1:1000 dilution in phosphate buffered saline (PBS))33 and final parasitemia was
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determined 96 h later. For each line, triplicate samples of 50,000 cells were counted
in each of three independent experiments. Growth was expressed as a percentage of
NF54.

Mosquito infection and analysis of parasite development. Five- to seven-day
old female Anopheles stephensi mosquitoes (this strain originally provided by M.
Jacobs-Lorena, Johns Hopkins University) were fed on asynchronous gametocytes,
diluted to 0.3–0.6 % stage V gametocytemia, via water-jacketed glass membrane
feeders. Mosquitoes were sugar starved for 2 days post-bloodmeal to enhance the
population for blood-fed mosquitoes. Surviving mosquitoes were provided
5% glucose ad libitum via paper/cotton wicks or water wicks and sugar cubes.
Oocyst numbers were obtained from midguts dissected from cold-anesthetized
and ethanol-killed mosquitoes 7 days post-bloodmeal and stained with 0.1%
mercurochrome. Salivary glands were dissected from mosquitoes (day 16–20 post-
bloodmeal), crushed using pestle and then glass wool filtered to obtain sporozoites
used in subsequent assays. Mosquito bloodmeal bolus were isolated 27 h post-feed
from mosquitoes to check for the presence of ookinetes via qRT-PCR (see Sup-
plementary Table 1). Briefly, mosquitoes were cold anesthetized and ethanol killed.
Midguts were carefully dissected and frozen immediately on dry ice. RNA was
purified using TRI Reagent (Sigma) and complementary DNA (cDNA) prepared
using a SensiFast cDNA synthesis kit (Bioline) according to the manufacturers’
instructions and qRT-PCR performed using a LightCycler 480 (Roche). All
oligonucleotides used in this study are listed in Supplementary Table 1.

Immunofluorescence microscopy. Asexual stages were fixed in ice-cold methanol
and probed with rat anti-HA (1:500; Roche 3F10) and rabbit anti-plasmepsin V
(PMV) (1:1000) antibodies33 in 3% bovine serum albumin (BSA)/PBS. Salivary
gland sporozoites were air-dried on slides, fixed in 4% paraformaldehyde and
permeabilized in 0.1% triton X-100. Primary antibodies (mouse monoclonal anti-
CSP (2A10); 1:200049) (rabbit anti-TRAP 1:50050) were diluted in 3% BSA/PBS.
Secondary antibodies were goat anti-rabbit 594 and anti-mouse or -rat Alexa 488
(1:1000; Invitrogen).Micrographs were acquired on a Deltavision Elite microscope
(Applied Precision) using an Olympus 100Å~/1.42 PlanApoN objective equipped
with a Coolsnap HQ2 CCD camera as Z-stacks. Images were deconvolved and
presented as maximum intensity projections. For quantification of mean pixel
intensity, Z-stacks of n≥ 30 sporozoites per condition per experiment were cap-
tured using the same exposure settings on the Deltavision system to allow quan-
titative analysis between different samples. The analysis was performed with a
custom FIJI macro. The sporozoite was segmented by filtering and thresholding the
sum of all three fluorescence channels, and the membrane area determined by
stepping in from the edge of the filtered segmented parasite by three pixels. Mean
pixel intensity measurements for TRAP and CSP were performed on each of these
regions in the 488 and 594 channels, respectively, and statistically compared in
duplicate independent experiments.

Sporozoite gene expression analysis. Sporozoites were dissected from salivary
glands on day 17 or 18 post-blood meal. RNA was purified using TRI Reagent
(Sigma) and cDNA prepared using a SensiFast cDNA synthesis kit (Bioline)
according to the manufacturers’ instructions and qRT-PCR performed using a
LightCycler 480 (Roche) with oligonucleotides in Supplemetary Table 1.

Immunoblotting. Proteins were separated through 4–12% Bis-Tris polyacrylamide
gels (Invitrogen), transferred to nitrocellulose membrane and probed with primary
antibodies: rat anti-HA 1:500 (Roche 3F10), mouse monoclonal anti-CSP (2A10)
1:900049, rabbit anti-TRAP 1:2000;50 rabbit anti-PLP1 (1:200)39, rabbit
anti-Aldolase (1:4000)51 followed by horse radish peroxidase-conjugated secondary
antibodies (1:1000 (mouse) and 1:4000 (rabbit); Cell Signaling Technology) and
viewed by enhanced chemiluminescence (Amersham).

Hepatocyte culturing. HC-04 hepatocytes52 were maintained on Iscove’s Modified
Dulbecco’s Medium (IMDM), supplemented with 5% heat-inactivated fetal bovine
serum (FBS) at 37 °C in 5% CO2. Cells were split 1:6 every 2–3 days once they
reached ~90% confluency.

Cell traversal assay. Cell traversal was measured using a cell-wounding
assay39, 53. HC-04 hepatocytes (5 × 104) were seeded into each well of a 48-well
plate (Corning, Sigma Aldrich) coated with rat tail collagen. After 24 h, wells were
seeded with 5 × 104 sporozoites for 2.5 h in the presence of 1 mgml−1 FITC-labeled
dextran (10,000MW, Sigma Aldrich). Cells were trypsinized to obtain a single cell
suspension for FACS analyses. For each condition, triplicate samples of 10,000 cells
were counted by FACS in each of the three independent experiments.

Hepatocyte invasion assay. HC-04 cells (5 × 104) were seeded onto rat tail
collagen-coated coverslips in 24-well plates using Dulbecco's modified Eagle
medium without glucose (Life Technologies, 11966-025), supplemented with 1 mM
sodium pyruvate (Life Technologies, 11360-070); 1% FBS (Cellgro,35-010-CV);
1 × Pen/Strep (Corning, 30-001-Cl); 1 ×MEM non-essential amino acids without
L-glutamine (Sigma-Aldrich, M5550); and 1:500 dilution of Lipid Mixture 1,

Chemically Defined (Sigma-Aldrich, L0-288)39, 54. Sporozoites (5 × 104) were
added to the cells 12 h later and incubated for 24 h. Media was replaced after 3 h
and the assay continued on for a further 21 h (to give an invasion assay of 24 h).
Coverslips were fixed in 4% paraformaldehyde for 20 min at RT and then processed
as described54. Sporozoites were detected by immunofluorescence staining using
mouse monoclonal antibodies against CSP (1:2000), anti-mouse Alexa-488
(1:1000), and anti-mouse Alexa 594 (1:1000). Multiple images were taken at
200 × magnification (Axio observer). A minimum of 270 fields with approximately
10,000 HC-04 cells were counted and the percentage of cells with intracellular
sporozoites was calculated from this data set. For each condition, duplicate samples
were manually counted in each of two independent experiments.

Sporozoite gliding assay. Gliding assays were performed as described pre-
viously40, 42 with some minor exceptions. Eight-well chamber slides (Thermo
Fisher Scientific 154534) were coated with CSP antibodies (1:1000 in PBS). Twenty
thousand salivary gland sporozoites were seeded into each well and allowed to glide
for 60 min at 37 °C in 5% CO2 in IMDM supplemented with 10% heat-inactivated
human serum. Samples were fixed with 4% paraformaldehyde at 37 °C for 20 min.
Primary anti-PfCSP was applied followed by goat anti-mouse Alexa 488 at
(both antibodies were 1:1000 in 3% BSA). Sporozoites and trails were viewed on a
Deltavision Elite microscope (Applied Precision) using an Olympus 163x/1.42
PlanApoN objective equipped with a Coolsnap HQ2 CCD camera. A total range of
220 (NF54) to 840 (ΔPOFUT2) sporozoites were counted for each condition across
two independent experiments.

Humanized mice production, infection, and processing. uPA + / + -SCID mice
(University of Alberta) were housed in a virus- and antigen-free facility supported
by the Health Sciences Laboratory Animal Services at the University of Alberta and
cared for in accordance with the Canadian Council on Animal Care guidelines. All
protocols involving mice were reviewed and approved by the University of Alberta
Health Sciences Animal Welfare Committee and the Walter and Eliza Hall Institute
of Medical Research Animal Ethics Committee. uPA + / + -SCID mice at 5–14 days
old (2 male, 1 female) received 106 human hepatocytes (cryopreserved human
hepatocytes were obtained from BioreclamationIVT—Baltimore MD) by
intrasplenic injection and engraftment was confirmed 8 weeks post-transplantation
by analysis of serum human albumin39, 55. An inoculum of 4.0 × 105 P. falciparum
NF54 sporozoites and 4.0 × 105 ΔPOFUT2 G8 sporozoites freshly isolated from
mosquito salivary glands were mixed and injected by intravenous tail injection into
each of three humanized mice, as previously described40. Livers were obtained
6 days post-infection from CO2-ethanized mice and individual lobes were cut as
described56, pooled and emulsified into a single cell suspension and flash frozen in
liquid nitrogen for subsequent genomic DNA (gDNA) extraction.

Measuring exoerythrocytic development in humanized mice. To quantify
parasite load in the chimeric livers, gDNA was isolated from the single cell liver
suspensions and Taqman probe-based qPCRs were performed as previously
described39, 56, 57. To specifically differentiate NF54 from ΔPOFUT2 genomes from
the same mouse samples, the following oligonucleotides were used. For NF54
genomes: POFUT2hm_F and POFUT2hm_R, which bind internal to the POFUT2
gene in NF54 but do not amplify a product using ΔPOFUT2 parasites. For
ΔPOFUT2 genomes: hDHFRhm_F and hDHFRhm_R, which bind in the hDHFR
cassette in ΔPOFUT2 parasites but do not amplify a product using NF54. Human
and mouse genomes were quantified using oligonucleotides specific for pros-
taglandin E receptor 2 (PTGER2) from each species, as described previously57.
Sequences of primers used are provided in Supplementary Table 1. All probes were
labeled 5′ with the fluorophore 6-carboxy-fluorescein (FAM) and contain a double-
quencher that includes an internal ZEN™ quencher and a 3′ Iowa Black® quencher
from IDT. The following probes were used:

POFUT2 5′FAM AATGTTAAT/ZEN/AGGTTCAAACAATTTTG-3IABkFQ,
hDHFR FAM/TAAACTGCA/ZEN/TCGTCGCTGTG/3IABkFQ,
hPTGER2 FAM/TGCTGCTTC/ZEN/TCATTGTCTCG/3IABkFQ,
mPTGER2 FAM/CCTGCTGCT/ZEN/TATCGTGGCTG/3IABkFQ.
Standard curves were prepared by titration from a defined number of DNA

copies for P. falciparum NF54, ΔPOFUT2, human and mouse controls. PCRs were
performed on a Roche LC80 using LightCycler 480 Probe Master (Roche).

Statistics. Statistical analyses were performed using the Kruskal–Wallis one-way
ANOVA to compare two mutant clones to NF54 throughout this study. The
Mann–Whitney test was used to compare one mutant clone to NF54 (sporozoite
pixel analyses) and the paired t-test was employed to evaluate fitness of one mutant
clone versus NF54 in each of three humanized mice. Analyses were performed
using Graphpad Prism 6.

Ethics statement. All experimental protocols involving humanized mice were
conducted in strict accordance with the recommendations in the National State-
ment on Ethical Conduct in Animal Research of the National Health and Medical
Research Council and were reviewed and approved by the Walter and Eliza Hall
Institute of Medical Research Animal Ethics Committee (AEC2014.030). All
experiments involving the use of human erythrocytes and the HC-04 human
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hepatocyte cell line were reviewed and approved by the Walter and Eliza Hall
Institute of Medical Research Human Research Ethics Committee (HREC 86/17
and 15/06.

Data availability. All data supporting the findings of this study are available within
the article and its Supplementary Information files, or are available from the
corresponding authors upon request.

Received: 8 February 2017 Accepted: 11 July 2017

References
1. von Itzstein, M., Plebanski, M., Cooke, B. M. & Coppel, R. L. Hot, sweet and

sticky: the glycobiology of Plasmodium falciparum. Trends Parasitol. 24,
210–218 (2008).

2. Macedo, C. S., Schwarz, R. T., Todeschini, A. R., Previato, J. O.
& Mendonca-Previato, L. Overlooked post-translational modifications of
proteins in Plasmodium falciparum: N- and O-glycosylation—a review. Mem.
Inst. Oswaldo Cruz 105, 949–956 (2010).

3. Banerjee, S. et al. The evolution of N-glycan-dependent endoplasmic reticulum
quality control factors for glycoprotein folding and degradation. Proc. Natl
Acad. Sci. USA 104, 11676–11681 (2007).

4. Samuelson, J. & Robbins, P. W. Effects of N-glycan precursor length diversity
on quality control of protein folding and on protein glycosylation. Semin. Cell
Dev. Biol. 41, 121–128 (2015).

5. Cova, M., Rodrigues, J. A., Smith, T. K. & Izquierdo, L. Sugar activation and
glycosylation in Plasmodium. Malar. J. 14, 427 (2015).

6. Bushkin, G. G. et al. Suggestive evidence for Darwinian selection against
asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii.
Eukaryot. Cell 9, 228–241 (2010).

7. Swearingen, K. E. et al. Interrogating the Plasmodium sporozoite surface:
Identification of surface-exposed proteins and demonstration of glycosylation
on CSP and TRAP by mass spectrometry-based proteomics. PLoS Pathog. 12,
e1005606 (2016).

8. Shental-Bechor, D. & Levy, Y. Effect of glycosylation on protein folding: a close
look at thermodynamic stabilization. Proc. Natl Acad. Sci. USA 105, 8256–8261
(2008).

9. Menard, R. et al. Circumsporozoite protein is required for development of
malaria sporozoites in mosquitoes. Nature 385, 336–340 (1997).

10. Sultan, A. A. et al. TRAP is necessary for gliding motility and infectivity of
Plasmodium sporozoites. Cell 90, 511–522 (1997).

11. Wengelnik, K. et al. The A-domain and the thrombospondin-related motif of
Plasmodium falciparum TRAP are implicated in the invasion process of
mosquito salivary glands. EMBO. J. 18, 5195–5204 (1999).

12. Greenwood, B. & Doumbo, O. K. Implementation of the malaria candidate
vaccine RTS,S/AS01. Lancet 387, 318–319 (2016).

13. Wolfert, M. A. & Boons, G. J. Adaptive immune activation: glycosylation does
matter. Nat. Chem. Biol. 9, 776–784 (2013).

14. Hofsteenge, J. et al. C-mannosylation and O-fucosylation of the
thrombospondin type 1 module. J. Biol. Chem. 276, 6485–6498 (2001).

15. Gonzalez de Peredo, A. et al. C-mannosylation and o-fucosylation of
thrombospondin type 1 repeats. Mol. Cell Proteomics. 1, 11–18 (2002).

16. Kozma, K. et al. Identification and characterization of abeta1,3-
glucosyltransferase that synthesizes the Glc-beta1,3-Fuc disaccharide on
thrombospondin type 1 repeats. J. Biol. Chem. 281, 36742–36751 (2006).

17. Luo, Y., Koles, K., Vorndam, W., Haltiwanger, R. S. & Panin, V. M. Protein
O-fucosyltransferase 2 adds O-fucose to thrombospondin type 1 repeats. J. Biol.
Chem. 281, 9393–9399 (2006).

18. Vasudevan, D., Takeuchi, H., Johar, S. S., Majerus, E. & Haltiwanger, R. S.
Peters plus syndrome mutations disrupt a noncanonical ER quality-control
mechanism. Curr. Biol. 25, 286–295 (2015).

19. Wang, L. W. et al. O-fucosylation of thrombospondin type 1 repeats in
ADAMTS-like-1/punctin-1 regulates secretion: implications for the ADAMTS
superfamily. J. Biol. Chem. 282, 17024–17031 (2007).

20. Ricketts, L. M., Dlugosz, M., Luther, K. B., Haltiwanger, R. S. & Majerus, E. M.
O-fucosylation is required for ADAMTS13 secretion. J. Biol. Chem. 282,
17014–17023 (2007).

21. Niwa, Y., Suzuki, T., Dohmae, N. & Simizu, S. O-Fucosylation of CCN1 is
required for its secretion. FEBS Lett. 589, 3287–3293 (2015).

22. Benz, B. A. et al. Genetic and biochemical evidence that gastrulation defects in
Pofut2 mutants result from defects in ADAMTS9 secretion. Dev. Biol. 416,
111–122 (2016).

23. Dubail, J. et al. Impaired ADAMTS9 secretion: A potential mechanism for eye
defects in Peters Plus Syndrome. Sci. Rep. 6, 33974 (2016).

24. Doud, M. B. et al. Unexpected fold in the circumsporozoite protein target of
malaria vaccines. Proc. Natl Acad. Sci. USA 109, 7817–7822 (2012).

25. Song, G., Koksal, A. C., Lu, C. & Springer, T. A. Shape change in the receptor
for gliding motility in Plasmodium sporozoites. Proc. Natl Acad. Sci. USA 109,
21420–21425 (2012).

26. Chen, C. I. et al. Structure of human POFUT2: insights into thrombospondin
type 1 repeat fold and O-fucosylation. EMBO J. 31, 3183–3197 (2012).

27. Valero-Gonzalez, J. et al. A proactive role of water molecules in acceptor
recognition by protein O-fucosyltransferase 2. Nat. Chem. Biol. 12, 240–246
(2016).

28. Dessens, J. T. et al. CTRP is essential for mosquito infection by malaria
ookinetes. EMBO J. 18, 6221–6227 (1999).

29. Templeton, T. J., Kaslow, D. C. & Fidock, D. A. Developmental arrest of the
human malaria parasite Plasmodium falciparum within the mosquito midgut
via CTRP gene disruption. Mol. Microbiol. 36, 1–9 (2000).

30. Moreira, C. K. et al. The Plasmodium TRAP/MIC2 family member, TRAP-Like
Protein (TLP), is involved in tissue traversal by sporozoites. Cell Microbiol. 10,
1505–1516 (2008).

31. Labaied, M., Camargo, N. & Kappe, S. H. Depletion of the Plasmodium berghei
thrombospondin-related sporozoite protein reveals a role in host cell entry by
sporozoites. Mol. Biochem. Parasitol. 153, 158–166 (2007).

32. Klug, D. & Frischknecht, F. Motility precedes egress of malaria parasites from
oocysts. eLife 6, e19157 (2017).

33. Sleebs, B. E. et al. Inhibition of Plasmepsin V activity demonstrates its essential
role in protein export, PfEMP1 display, and survival of malaria parasites.
PLoS Biol. 12, e1001897 (2014).

34. Struck, N. S. et al. Spatial dissection of the cis- and trans-Golgi compartments
in the malaria parasite Plasmodium falciparum. Mol. Microbiol. 67, 1320–1330
(2008).

35. Sanz, S. et al. Biosynthesis of GDP-fucose and other sugar nucleotides in the
blood stages of Plasmodium falciparum. J. Biol. Chem. 288, 16506–16517
(2013).

36. Sanz, S. et al. The disruption of GDP-fucose de novo biosynthesis suggests the
presence of a novel fucose-containing glycoconjugate in Plasmodium asexual
blood stages. Sci. Rep. 6, 37230 (2016).

37. Kaslow, D. C. et al. A vaccine candidate from the sexual stage of human malaria
that contains EGF-like domains. Nature 333, 74–76 (1988).

38. Mota, M. M. et al. Migration of Plasmodium sporozoites through cells before
infection. Science 291, 141–144 (2001).

39. Yang, A. S. P. et al. Cell traversal activity is required for Plasmodium falciparum
liver infection in humanized mice. Cell Rep. 18, 3105–3116 (2017).

40. Yang, A. S. P. et al. AMA1 and MAEBL are important for Plasmodium
falciparum sporozoite infection of the liver. Cell Microbiol. 19, e12745 (2017).

41. Ejigiri, I. et al. Shedding of TRAP by a rhomboid protease from the malaria
sporozoite surface is essential for gliding motility and sporozoite infectivity.
PLoS Pathog. 8, e1002725 (2012).

42. Stewart, M. J. & Vanderberg, J. P. Malaria sporozoites leave behind trails of
circumsporozoite protein during gliding motility. J. Protozool. 35, 389–393
(1988).

43. Lopez-Barragan, M. J. et al. Directional gene expression and antisense
transcripts in sexual and asexual stages of Plasmodium falciparum. BMC
Genomics 12, 587 (2011).

44. Lindner, S. E. et al. Total and putative surface proteomics of malaria parasite
salivary gland sporozoites. Mol. Cell. Proteomics 12, 1127–1143 (2013).

45. Janse, C. J. et al. In vitro formation of ookinetes and functional maturity of
Plasmodium berghei gametocytes. Parasitology 91, 19–29 (1985).

46. Sidjanski, S. P., Vanderberg, J. P. & Sinnis, P. Anopheles stephensi salivary
glands bear receptors for region I of the circumsporozoite protein of
Plasmodium falciparum. Mol. Biochem. Parasitol. 90, 33–41 (1997).

47. Cerami, C. et al. The basolateral domain of the hepatocyte plasma membrane
bears receptors for the circumsporozoite protein of Plasmodium falciparum
sporozoites. Cell 70, 1021–1033 (1992).

48. Saliba, K. S. & Jacobs-Lorena, M. Production of Plasmodium falciparum
gametocytes in vitro. Methods Mol. Biol. 923, 17–25 (2013).

49. Nardin, E. H. et al. Circumsporozoite proteins of human malaria parasites
Plasmodium falciparum and Plasmodium vivax. J. Exp. Med. 156, 20–30 (1982).

50. Gilberger, T. W., Thompson, J. K., Reed, M. B., Good, R. T. & Cowman, A. F.
The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is
essential for invasion but not protein trafficking. J. Cell Biol. 162, 317–327
(2003).

51. Baum, J. et al. A conserved molecular motor drives cell invasion and gliding
motility across malaria life cycle stages and other apicomplexan parasites.
J. Biol. Chem. 281, 5197–5208 (2006).

52. Sattabongkot, J. et al. Establishment of a human hepatocyte line that supports
in vitro development of the exo-erythrocytic stages of the malaria parasites
Plasmodium falciparum and P. vivax. Am. J. Trop. Med. Hyg. 74, 708–715
(2006).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00571-y ARTICLE

NATURE COMMUNICATIONS |8:  561 |DOI: 10.1038/s41467-017-00571-y |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


53. Dumoulin, P. C. et al. Flow cytometry based detection and isolation
of Plasmodium falciparum liver stages in vitro. PLoS ONE 10, e0129623
(2015).

54. Renia, L. et al. Malaria sporozoite penetration. A new approach by double
staining. J. Immunol. Methods 112, 201–205 (1988).

55. Mercer, D. F. et al. Hepatitis C virus replication in mice with chimeric human
livers. Nat. Med. 7, 927–933 (2001).

56. Foquet, L. et al. Molecular detection and quantification of P. falciparum-
infected human hepatocytes in chimeric immune-deficient mice. Malar. J. 12,
430 (2013).

57. Alcoser, S. Y. et al. Real-time PCR-based assay to quantify the relative amount
of human and mouse tissue present in tumor xenografts. BMC Biotechnol. 11,
124 (2011).

Acknowledgements
We thank the Melbourne Red Cross for erythrocytes, the US Naval Medical Research
Centre for HC-04 cells, Fidel Zavala for PfCSP antibodies, Alan Cowman for PfTRAP
and PfAldolase antibodies and Andrew Webb, Liana Mackiewicz, Alexandra Garnham,
and Melissa Hobbs for valuable technical assistance. This work was supported by the
Australian National Health and Medical Research Council (Project Grants 1049811 and
1100164), Human Frontiers Science Program (RGY0073/2012), Ramaciotti Foundation
Establishment Grants (3197/2010 and ES2013/0111) and the University of Melbourne
Early Career Researcher Grant Scheme (603107). We also acknowledge Victorian State
Government Operational Infrastructure Support and Australian Government NHMRC
IRIISS. A.S.P.Y., A.J., and N.C.M. were supported by Australian Postgraduate Awards, N.
E.S. was supported by a NHMRC Overseas Biomedical Fellowship (1037373), E.D.G.-B.
was supported by a VESKI Innovation Fellowship and J.A.B. was supported by an
Australian Research Council QEII Fellowship (DP110105395).

Author contributions
S.L. generated P. falciparum strains, performed the molecular and cellular analyses with
A.S.P.Y. and performed humanized mouse experiments. S.M.E., M.T.O., and C.J.
helped produce sporozoites and assisted with humanized mouse experiments, A.J., J.P.L.,

and E.D.G.-B. cloned, expressed, purified, and characterized POFUT2 and TSR proteins,
N.E.S. performed mass spectrometry analyses, N.C.M. assisted in preparing antibodies.
J.A.B., M.T.O., and L.W.W. performed immunofluorescence microscopy and pixel
analyses. D.N.D. and N.M.K. generated humanized mice. Experiments were designed
and interpreted by E.D.G.-B. and J.A.B. All authors contributed to preparing this
manuscript.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00571-y.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00571-y

10 NATURE COMMUNICATIONS |8:  561 |DOI: 10.1038/s41467-017-00571-y |www.nature.com/naturecommunications

http://dx.doi.org/10.1038/s41467-017-00571-y
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts
	Results
	In vitro characterization of Plasmodium POFUT2
	Plasmodium POFUT2 localizes to the ER
	Generation of POFUT2-deficient P. falciparum
	POFUT2 facilitates P. falciparum infection of the mosquito
	POFUT2�supports P. falciparum sporozoite infectivity and fitness
	POFUT2 assists stabilization and trafficking of TSR proteins

	Discussion
	Methods
	POFUT2 enzyme assay
	Parasite maintenance
	Transgenic parasites
	Blood stage growth assay
	Mosquito infection and analysis of parasite development
	Immunofluorescence microscopy
	Sporozoite gene expression analysis
	Immunoblotting
	Hepatocyte culturing
	Cell traversal assay
	Hepatocyte invasion assay
	Sporozoite gliding assay
	Humanized mice production, infection, and processing
	Measuring exoerythrocytic development in humanized mice
	Statistics
	Ethics statement
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




