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ABSTRACT: While utilizing price signals to affect charging
behaviors has been identified as a promising strategy to manage
charging loads, few studies discuss their impacts comprehensively.
We investigate how different charging price strategies can affect the
spatial and temporal distribution of charging activities at the
individual level and the required charging infrastructure system.
We utilize an integrated optimization platform for electric vehicle
(EV) charging management and infrastructure placement in home
and nonhome locations in San Diego, CA, that include charging
price strategies, infrastructure costs, and mobility demand patterns.
We evaluate three pricing scenarios and demonstrate that the time-
of-use pricing scheme results in the highest emissions and the real-
time one the lowest, which are 20.2% higher and 0.7% lower than
the annual emissions under the flat rate scenario, which is about 8,787 MtCO2e. Our results show that the charging load profile is the
result of various determinants including the dynamic electricity price, price elasticity of charging demand, travel and dwelling
constraints, carbon price, as well as exclusive home and shared nonhome charging patterns. The effectiveness of changing charging
behavior through internalizing climate damage to obtain environmental benefits depends largely on charging price strategies,
implying that policymakers should consider charging price strategies in conjunction with carbon pricing rather than independently.
KEYWORDS: charging behavior, price elasticity, optimization, GHG emissions, grid impact

■ INTRODUCTION

The transportation sector is the largest source of emissions in
the United States, accounting for 28.6% of total greenhouse gas
(GHG) emissions in the year of 2019.1 Vehicle electrification
has been identified as one of the most important ways to
reduce transport-related GHG emissions due to the higher
efficiency of electrified powertrains and lower emission rate of
electricity.2,3 Individual travel and charging patterns not only
determine how much electricity is used, but the timing of the
charging decides whether base or peak electricity will be used
to charge the battery. Some studies find that plug-in electric
vehicle (PEV) charging will not impact the generation and
transmission of the electric grid in the short term but may need
to be managed when the vehicles are deployed in greater
numbers.4 However, other studies show uncoordinated PEV
charging could significantly change the shape of the aggregate
residential demand, with impacts for electricity infrastructure,
even at low adoption levels.5 Proper management is critical
because charging strategies may also significantly impact the
environmental outcome of charging electric vehicles.6,7

Previous research points to the promising prospect of
managing EV charging load through price mechanisms to
achieve a safe, reliable, and affordable electricity service while
advancing system efficiency, enhancing environmental sustain-

ability, and facilitating renewable resources integration.8,9

Recent studies have discussed the EV driver’s response to
the charging price in order to shift the charging loads to the
off-peak time period10−14 or to reduce the expenditure of
distribution grid operators and/or the charging cost of EV
owners.15−20 However, few studies have been explicitly
designed to explore the environmental benefit of shifting
consumers’ charging loads with various price signals. Some
studies examined the GHG emissions of several charging
strategies considering the variation in electricity emissions but
ignored the impact of electricity prices on charging
behaviors.21,22 Additionally, many EV charging optimization
models fail to consider the travel and dwelling constraints of
EV drivers.15,16 It is unrealistic to expect the EV drivers to
charge the vehicles during the time when they are not available
or at the places where they are not there only to accommodate
with the grid needs. Moreover, managing EV charging loads
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without considering the availability of electric vehicle charging
infrastructure is also inappropriate.
Another research gap in the existing literature is that they

take a naive approach in assuming that EV owners are
completely rational in changing their charging behaviors in
response to price changes.9,15,19 While some studies have
shown that electricity consumption is relatively inelastic,23−25

there are studies demonstrating that the availability of smart
technology can increase price elasticity and grid efficiency.26,27

A recent empirical study by San Diego Gas & Electric
Company (SDG&E) shows that EV consumers are responsive
to price signals, especially the on-peak and off-peak prices, and
the own-price elasticities were estimated in the range of −0.3
to −0.5.28
We develop a unique approach that simulates EV charging

behaviors to internalize environmental damages (across diverse
sets of electricity rates and GHG intensities) while
simultaneously optimizing for electric vehicle charging infra-
structure planning and respecting the dynamics of individual
mobility demand. The purpose of this study is to understand
the energy, economic, and environmental performance of
various pricing strategies based on data from San Diego, CA.
Our paper is unique in the literature because it (1) utilizes a
comprehensive optimization model platform to manage
charging activities while identifying optimal EV charger
placement and (2) improves upon a large body of literature
that treats charging behavior independent from electricity
pricing but instead employs price elasticity of charging demand
into the optimization model.

■ MATERIALS AND METHODS
We utilize an electric vehicle infrastructure planning and
charging management model platform to investigate the
implications of charging price strategies when integrating
climate damage and price elasticity of charging demand in
emission reductions, grid impacts, costs breakdown, as well as
infrastructure deployment. The optimization model platform
was designed based on a previous study29 to determine the
optimal strategy for electric vehicle charging infrastructure
placement at different levels for home and nonhome locations
simultaneously, as well as the optimal charging time slots and
locations at individual level given a set of constraints including
travel demand and dwelling patterns. Our overall modeling
framework (Supporting Information Figure S1) consists of
four modules: travel demand, infrastructure characteristics,
charge pricing, and impacts evaluation. Charge pricing and
impacts evaluation are the core modules of this model. The
charge pricing is determined by a specific pricing scenario that
is related to the electricity price and the carbon price
internalized.
EV Charging Demand. We simulate individuals’ daily

travel and dwelling patterns by employing the activity-based
travel diary data from the 2010−2012 California Household
Travel Survey (CHTS),30 which provides the start and end
times as well as the location of individuals’ daily activities taken
by a sample of individuals across California, which can then be
used to calculate the dwell time of each sampled individual at
each stop. We subset sample individuals with trip destinations
in San Diego, CA, from CHTS: 2,452 sampled individuals,
representing 15,789 BEV drivers with daily travel and dwelling
patterns across 614 census tracts of San Diego. Travel distance
is calculated as the shortest driving distance between origins
and destinations using Google API. We assume the average

efficiency as 33.3 kWh per 100 miles for electric vehicles based
on fuel economy data from FuelEconomy.gov31 and EV sales
data reported by the Transportation Research Center at
Argonne National Laboratory.32 Daily dwelling locations and
travel distance of those BEV drivers within the study area are
shown in Supporting Information Figure S2.

Infrastructure Characteristics. Charging equipment is
classified by the rate at which the batteries are charged, and
three main categories of EV chargers are in the United States:
level 1, level 2, and direct current (DC) fast. Level 1 chargers
provide charging through a 120 V (V) alternating current
(AC) plug, adding 3−4 miles per charging hour. Level 2 offers
charging through 208−240 V with a charging speed of 10−20
miles/hour. DC fast chargers (400−1,000 V DC) enable rapid
charging of 150−1000 miles per charging hour. Generally, level
2 and DC fast chargers (DCFC) are potentially available at all
nonhome locations while home chargers are restricted to level
1 and 2. The equipment and installation costs of charging
infrastructures are assumed based on a study estimating electric
vehicle charging infrastructure across major U.S. metropolitan
areas from the International Council on Clean Trans-
portation33 and data from the Rocky Mountain Institute.34

We annualize the charging stations capital costs assuming a
lifespan of 10 years and a discount rate of 3% and assume the
charging stations have no maintenance cost. The assumptions
for each type of charging infrastructures can be found in
Supporting Information Table S1. We also conduct a
sensitivity analysis on the cost and power of charging
infrastructures to ensure the robustness of the model results,
and the assumptions can be found in the Supporting
Information.

Charging Price Scenarios. We propose three residential
charging price scenarios based on the existing charging price
strategies in San Diego. The first one refers to the residential
EV Time-of-Use (TOU) rates of SDG&E.35 BEV drivers
within the service territory have the option to join in the plan
for home charging. The second scenario is the tier two
residential flat rate (FR) of electricity from SDG&E Co.36 The
tier two flat price will be charged when the energy in each
billing period of the resident hits 130% of the baseline
allowance (234 kWh during summer and 343 kWh during
winter in San Diego). The last one is constructed as real-time
(RT) pricing, which is estimated based on the daily average
real-time dispatch locational marginal price (LMP) over the
entire year of 2019 in California ISO.37 Since the LMP does
not include upstream electricity distribution and transmission
costs, it is an underestimate of retail rates and ultimately real
charging costs. As a result, LMP cannot be directly compared
with other pricing scenarios which are based on retail rates.
Therefore, we estimate the RT price with eqs 1−3 to ensure
that the utility would net revenue at whatever the RT price
would be compared to the flat rate and that electricity
generation accounts for about 56%38 the price of electricity. In
this way, our RT price both captures the dynamics of the
electricity generation distribution and transmission in the
system while maintaining identical level of revenue for the
operating utility under flat rate strategy. Nonhome charging
prices are the same across the three scenarios. Charging rates at
the public level 2 stations is based on the electricity rates for
small business set by SDG&E Company. Direct-current (DC)
fast charging rates refers to the “Pay As You Go” rates of EVGo
(a charging network provider) for the San Diego area39
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where RTt is the real-time price in time t; electricityt is the load
of the grid in time t; FR is the flat rate; LMPt is the locational
marginal price in time t; and c and d are fixed coefficients over
time.
To investigate the environmental, energy, and economic

impacts of internalizing the climate damage, we incorporate
two carbon prices into the total cost. We utilize a social cost of
carbon (SCC) of $50/MtCO2e

40 (in 2020 dollars) and a
carbon price of $1000/MtCO2e for calculating climate change
damages. While such a high pricing level of carbon does not
indicate any realistic policy implementation, we demonstrate
the effect of the extreme case as well as the trend of potential
change of charging behavior. The total social cost, which is the
sum of charging cost, infrastructure cost, and environmental
damage, indicates the total cost that the whole society needs to
pay for the charging system.
Figure 1 compares the pricing strategies for charging in our

model. In the base cases (carbon price = 0), joining the
residential EV-TOU plan of SDG&E is more economical if
avoiding home charging during 16:00 to 20:00, when tier two
residential flat rate is lower, for BEV drivers. Real-time pricing
reflects the temporal change of electricity with trend aligning
with its generation and transmission costs. Compared to the
residential strategies, DCFC has the highest pricing most of the
day except during 15:00 to 20:00, when residential TOU and
RT reach the peak pricing. Public level 2 pricing is cheaper
than any other strategies except during the lowest pricing
period of residential TOU, which is between midnight and
5:00. In the cases where a carbon price exists, charging during
the daytime period when emission factors are lower becomes

more attractive, and the relative prices for home vs nonhome
charging change accordingly.

EV Charging Optimization. The EV charging optimiza-
tion platform is based on our IEVCO model,29 which is
formulated as follows: there are n EV drivers (i = {1, 2, 3, ...,
n}), each deciding the amount of time to recharge the vehicle
in each of their available time slots t among m regions (r = {1,
2, ..., m}), based on their daily activity patterns. The objective
is to minimize total costs with respect to the home and
nonhome charging time during a specific time slots in certain
region for each BEV driver, as well as the number of home and
nonhome chargers. The total system cost, which, in the base
pricing scenarios, is the sum of costs from fulfilling the
charging demand of BEV owners and building the charging
stations, reflects the expenditure that we need at least to afford
in constructing and running the charging infrastructure system.
When internalizing the climate damage, the total cost should
also include the associated carbon cost and the total cost
becomes the total social cost, which indicates the total cost
that the whole society need to pay for the charging system. The
objective function for our model is provided in eq 4
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where ytotalCost is total costs; xirtl
homeTime and xirtl

nonhomeTime are the
home and nonhome charging time during a specific time slot t
in region r with level l charger for BEV driver i; xrl

homeCharger and
xrl
nonhomeCharger are the number of level l chargers being built in
region r; ctl

homeChargingPrice and ctl
nonhomeChargingPrice are the price to

charge during time t with level l chargers, and pl
homePower and

pl
nonhomePower are their power; c l

homeCharge rPr i ce and
cl
nonhomeChargerPrice are the annualized hardware and installation
costs for home and nonhome chargers; ccarbonPrice is the carbon

Figure 1. Pricing strategies for charging in the hourly manner.
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price; gt is the 2019 average GHG intensity of electricity in
CAISO;41 and wi is the weight of sample individual i. The total
cost is on an annual base to make the three cost components
consistent.
To capture the charging behaviors of BEV drivers more

precisely, we also consider the price elasticity of charging
demand of BEV drivers. Based on a recent study that observes
a 3.6% decrease in probability of home charging while a 1.5%

increase in the probability of workplace charging when the cost
of home charging increases by 10% from a cohort survey of
BEV owners in California,42 our model uses −0.36 and 0.15 as
the pricing elasticities of charging demand for home and
nonhome charging respectively with the tier two flat rate of
SDG&E as the baseline. Then the new charging demand for
each BEV driver in each region xir

chargingDemand under each
alternative pricing scenario could be expressed in eq 5

∑ ∑
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Figure 2. (a) Energy impacts,(b) GHG impacts, and (c) cost breakdown on electricity charging, infrastructure installation, and climate change
damage as carbon price increases.
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where xitl
nonhomeTime,flatRate and xitl

homeTime,flatRate are the nonhome
and home charging time for individual i during time t at level l
charger under the baseline tier two flat rate scenario; βhome and
βnonhome are the pricing elasticity of charging demand for home
and nonhome locations; ctl

homeChargingPrice and ctl
flatRate are the

customers’ alternative home charging price and the tier two flat
rate during time t with level l charger, respectively.
The model is subject to major constraints: first, charging

activities happening both at home and nonhome locations
should meet the average daily energy demand of BEV driver i;
second, charging time should be within the available dwelling
time slots, which means charging activities should happen only
when the drivers are available; finally, nonhome chargers are
shared among users while each home charger is exclusive to an
individual. Major constraints for the optimization model are
shown in Supporting Information Table S2, and more details
of the optimization platform can be found in the paper.29 The
optimization model is a Mixed Integer Linear Programming
(MILP) problem, which we solve in GAMS with the Cplex
solver.
Impact Evaluation. Evaluating the impacts of various

charging pricing strategies relies on other information from the
grid side. Specifically, the GHG impacts of charging are based
on the hour-of-day average emissions factors for CAISO in
2019 (Supporting Information Figure S3). Since the extra
charging load is relatively small compared to the overall load of
the grid,43 we do not account for any changes in emission
factor due to vehicle electrification. The “green” period from
7:00 to 18:00 with low electricity carbon intensity aligns with
the second off-peak period in net load of the grid, indicating a
“win−win” for reducing the risk of the grid and GHG impacts

of charging together with appropriate charging management
strategy through pricing.

■ RESULTS

Energy and Grid Impact. We investigate how different
charging pricing scenarios may change the mix of energy
required for different levels of home and nonhome charging, as
well as the temporal impacts to the electricity grid. Figure 2a
shows the results for the energy requirement from BEV drivers
under the three base pricing scenarios with a comparison of
carbon price changes in San Diego. The total amount of energy
demand is fixed (determined by the total travel distance of all
drivers in the study domain), but the distribution of charging
load over time across the four categories−level 1 home, level 2
home, level 2 nonhome, and DCFC, are totally different
according to pricing scenarios. The dynamic charging price and
the price elasticity of charging demand in different locations
are two main reasons. The dynamic charging prices affect
charging behaviors, and different price elasticities for home and
nonhome charging changes the charging demand in different
locations disproportionally. In the base TOU scenario
(without carbon price), level 1 and level 2 home charging
contributes to 72.8% of total energy demand. However, the
portion of home charging is only 25.5% in the base RT case,
and it becomes even lower in the base FR scenario due to the
higher residential charging cost compared to charging with
public level 2 chargers. We should note that a massive public
charging infrastructure system that provide enough availability
is necessary under FR and RT scenarios. The required
deployment of charging infrastructures under each price
scenario could be found in Supporting Information Figure

Figure 3. Temporal change in charging loads of the three charge pricing scenarios with carbon price change. Cluster effect of carbon prices is
observed in all three base scenarios, but the magnitude of the effect varies.
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S4. After internalizing climate change damages by applying
carbon rates, the share of nonhome charging in the FR and RT
cases has no room to improve even with an extreme high
carbon price. An obvious increase from 27.2% to 69.9% in the
share of nonhome charging is only witnessed in the case of
TOU with a high carbon price of $1000/MtCO2e, suggesting
the maximum potential for shifting overnight home charging
(especially level 1 home) to shared public level 2 charging
during the day when the GHG intensity of electricity is lower.
We further break down the energy demand by hour-of-day

for each of the charging scenarios in Figure 3. In the TOU

scenario, level 1 home charging is the major charging strategy,
accounting for 48% of the total EV charging demand and
dominates the energy requirement from midnight to 5:00
when TOU is always the lowest. However, we still observe a
small fraction of nonhome charging during that period. DCFC
contributes to charging demand during daytime periods 9:00−
11:00 and 13:00−17:00, even when level 2 public charging is
always preferable in price, indicating that the empirical travel
and dwelling pattern of EV drivers constrains the availability
and capacity of pricing management of charging loads. In the
case that BEV drivers employ the tier two residential flat rate as

Figure 4. Temporal change in charging emissions with carbon price change for (a) flat rate scenario, (b) real time pricing scenario, and (c) time-of-
use scenario.
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home charging price, we are not able to observe a flat home
charging load. Instead, the total home charging load from level
1 and level 2 outlets tends to peak in the evening, which
emphasizes the importance of considering the staying and
travel constraints into the charging strategies optimization
again. In the real-time pricing scenario, we see two peaks of
home charging: the first one happening during the daytime
from 8:00 to 13:00 and a secondary peak during nighttime
hours from midnight to 5:00 with level 1 home charging being
the main source, aligning with the two off-peak periods of the
grid. This indicates the impact of a dynamic electricity rates in
managing EV charging loads relative to a flat rate. Among the
three base charging scenarios, the local distribution system in
San Diego is affected most in the TOU scenario with the extra
charging load as high as around 15 MW during 1:00 to 2:00
with the biggest contribution from home charging.
More importantly, we also observe a clustering effect on the

charging load profiles by integrating the carbon prices, which
makes charging activities more concentrating around daytime
hours when the GHG intensity of the grid is lower. We name it
as “carbon price clustering effect” in the following paragraphs.
We observe the carbon price clustering effects in all the three
pricing strategies, but the magnitude of this effects depends
heavily on the base pricing strategies. For example, only a
carbon price of $50/MtCO2e can shift the home charging load
into the daytime hours from 8:00 to 18:00 dramatically in the
flat rate scenario, while the increase of home charging load in
daytime hours is still limited even under an extreme high
carbon price. In the TOU scenario, a carbon price of $50/
MtCO2e does not change the share of daytime home charging
load, but the extreme high carbon price of $1000/MtCO2e
lead to an increase of level 1 home charging during daytime
hours from 9:00 to 15:00. Internalizing the climate change
damage will not only decrease the environmental impact of EV
driving, but also help smooth the grid by shifting EV charging
loads toward off-peak hours in the net load profile.
It seems there is a concern that minimizing costs will simply

cause individuals to charge their vehicles during times
corresponding to the cheapest electricity prices. However,
there are multiple signals in the model that may lead to
different outcomes. If individuals were to charge over short
periods of time (if they do not dwell at a particular location for
a long period), this would require substantially more charging
infrastructure to be available at multiple locations which would
increase costs to the system. It is often more efficient for the
model to build infrastructure in locations with long dwell times
despite higher charging prices since the costs incurred by
installing additional infrastructure often outweigh the increased
costs from charging price differentials. In sum, the charging
load profile with our optimized charging platform is the result
of various determinants including the dynamic electricity price,
travel and dwelling constraints, carbon price clustering effect,
as well as the relative prices for charging through the exclusive
home versus shared nonhome charging.
Climate Change Impact. Figure 2b shows the effect of

applying different carbon prices on the environmental outcome
for EV charging load. Overall, the environmental impact of EV
charging load in San Diego under the base time-of-use scenario
is the highest and the real-time pricing scenario is the lowest.
They are 20.2% higher and −0.7% lower compared with the
annual GHG emissions under the flat rate scenario, which is
about 8,787 MtCO2e. Charging behavior of EV drivers is
changed when the climate change damage is internalized. The

climate change impact from EV charging under TOU scenario
with extreme high carbon price of $1000/MtCO2e is similar to
that under FR or RT scenario with only a carbon price of $50/
MtCO2e. We define GHG mitigation from applying carbon
prices as the decrease in GHG emissions under the carbon
price scenarios compared to their respective base pricing
scenario. We find that the effectiveness of carbon price in
mitigating GHG emissions depends on the base pricing
strategy largely. When a carbon price of $50/MtCO2e is
applied, the total GHG emissions decreases by 0.8%, 4.7% and
2.8% for TOU, FR and RT scenarios respectively, and GHG
mitigation expands to 21.0%, 13.7% and 13.8% as carbon price
increases to $1000/MtCO2e.
In Figure 4a, the red line, which shows the hourly GHG

emissions under the base time-of-use scenario, generally
follows the trend of its charging load profile. We do not see
an obvious “carbon price cluster effect” in the daytime hours
when applying a carbon price of $50/MtCO2e. As the carbon
price increases to an extreme value of $1000/MtCO2e, the
carbon price cluster effect becomes obvious. The reason is that
there is a dramatic shift from overnight home charging toward
daytime nonhome charging since the benefit of charging
during the low emissions daytime hours offsetting the loss from
a relative higher level 2 public charging price. The shapes of
hourly emission profile of the base flat rate and real-time
scenarios (Figure 4b,c, red lines) are similar in a way that they
are generally consistent with the hourly GHG intensity of the
grid−daytime charging peak aligning with the off-peak period
in GHG intensity. Therefore, the shape of the emission profile
in these two scenarios does not change too much after
introduction of carbon prices, and an extremely high carbon
price of $1000/MtCO2e lowers the secondary peaks of carbon
emissions during the nighttime hours and enhances the
primary peak in the late morning.

Cost Impact. Figure 2c compares the cost impact among
charge pricing scenarios. The flat rate scenario has the highest
total costs, which is 11.79 million dollars annually. Real time
pricing and time-of-use scenario are 4.5% and 17.5% lower.
The higher total cost in the flat rate scenario comes from a
higher average charging cost (total charging cost divided by
total charging demand), which is $0.26/kWh in the flat rate
scenario while about $0.25/kWh and $0.21/kWh in the real-
time and time-of-use scenarios. This result implies that the
volatility of charging price structure and the flexibility of
charging locations provide opportunities for BEV drivers to
change their charging behaviors and find the optimal time and
locations to charge.
We also see a balance among charging cost, infrastructure

cost, and carbon cost under the optimization for all scenarios.
Without carbon price, the infrastructure cost in the TOU case
is the highest among the three pricing strategies but becomes
the lowest after introducing a carbon price of $1000/MtCO2e.
This is because nighttime home charging loads shift toward
daytime hours with level 2 chargers, resulting in an increase of
shared level 2 public chargers and a large decrease of less
exclusive home charger. But in the scenario of flat rate with a
carbon price of $1000/MtCO2e, the extremely high carbon
cost makes charging in the daytime, when the grid GHG
intensity is lower, more preferable. As a result, the share of the
level 2 home and nonhome chargers increase, and the total
infrastructure becomes the highest. Generally, the total carbon
cost of the charging system is 0.42 to 0.52 million dollars by
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implementing a carbon price of $50/MtCO2e, and 7.52 to 8.34
million dollars with a carbon price of $1000/MtCO2e.
Effect of Price Elasticity. Price elasticities are unique to

the locations, and charging preferences will differ between
home and nonhome locations. To better understand the
impact of including price elasticity of charging demand, we also
run the model without price elasticity of charging demand (in
which elasticity equals one in both home and nonhome cases)
and compare the model outputs with and without price
elasticity in Table 1 below. Although its contribution in
shaping the charging load profile is subtle (since the absolute
value of price elasticities are low and the charging demand is
also constrained by many other factors), we still cannot remove
its impact completely since the model outputs are different in
some cases which are marked in bold.

■ DISCUSSION

In this study, we utilize an integrated optimization platform for
EV charging infrastructure planning and charging management
to investigate the energy, cost, and climate change impacts of
three charge pricing scenarios in San Diego: EV time-of-use
residential rate, tier two residential flat rate, and real-time price.
Additionally, we introduce the climate change damage by
applying carbon prices of $50/MtCO2e and $1000/MtCO2e in
each of the base pricing scenarios.
The results show that the charging load profile with our

optimized charging platform is determined by various factors
including the dynamic electricity price, price elasticity of
charging demand, travel and dwelling constraints, carbon price
clustering effect as well as the exclusive home and shared
nonhome charging. Price elasticities are unique to the
locationseven in the case of a flat rate, charging preferences
differ between home and nonhome locations. The model also
considers some dynamics of locations since EV owners will
spend different amounts of time at different locations. This
leads to unique infrastructure deployment decisions which in
turn influence the charging behavior of EV drivers.
Level 1 home and level 2 nonhome charging are the two

major contributors to EV charging loads in the time-of-use
scenario. Level 2 public charging accounts for the largest share
in total charging load under flat rate and real-time scenarios
with the support of a massive public charging infrastructure
system. After internalizing the climate change damage by
applying various carbon prices, we observe a carbon price
clustering effect, which means charging activities more cluster
around daytime hours when the GHG intensity of the grid is
lower. Therefore, internalizing the climate change damage will
not only decrease the environmental impact of EV driving but

also help smooth the grid by shifting EV charging loads toward
off-peak hours during the day.
Our research also shows that the GHG impacts of EV

charging depends largely on charging price strategies. The total
GHG emissions of the charging system in San Diego under the
base time-of-use scenario is the highest and the flat rate one
and the real time pricing one is 16.8% and 17.4% lower,
respectively. We also find that the effectiveness of changing
charging behavior by internalizing climate damages depends
largely on the base charging price strategy, implying the
importance of considering charging price strategies in
conjunction with carbon pricing rather than independently in
the policymaking process. This result demonstrates that the EV
time-of-use pricing scheme in San Diego is problematic in
terms of GHG mitigation since it favors overnight home
charging too much and only an extremely high carbon price
can make a significant improvement. The effectiveness of
changing charging behavior through internalizing climate
change damage to obtain environmental benefits is a
combination of carbon price and base charging price strategy,
and the optimization platform will balance among charging
price, carbon price, and infrastructure costs. The implications
of flexibility of charging behaviors, the relative magnitudes in
response to carbon price changes, and the relative potentials
for carbon reductions across different pricing strategies are
results that would extend across analyses of different EV
volumes in the near term.
The model results underestimate the number of DCFC and

the associated impacts because we only subsample the EV
drivers who have home address within the area of San Diego,
failing to consider the charging demand from drivers passing
through the study domain. They often have long distance trips,
but short dwell times in San Diego and pass-through trips may
be a main contributor to extra demand for fast charging.
Another limitation of our model is that we assume that
individuals within the system have perfect information on the
charging behavior of other electric vehicle drivers. This, in
turn, will lead to an underestimate of required charging
infrastructure since no queueing is required and individuals can
guarantee availability of charging to satisfy their charging
requirements. Nevertheless, this study still reveals the
minimum impacts of the local charging infrastructure system
under various charging price strategies. Moreover, the charging
strategies under certain pricing scenarios from our model
provide a way to manage all the charging activates and install
the required charging infrastructures from a social system point
of view. The management could be possible through a
centralized system that sends signals to electric vehicles to

Table 1. Model Outputs with and without Inclusion of Price Elasticity

flat rate
FR

+CP50
FR

+CP1000 RT
RT

+CP50
RT

+CP1000 TOU
TOU
+CP50

TOU
+CP1000

Modeling Outputs with Price Elasticity
energy home % 12.6% 12.1% 12.9% 25.5% 24.6% 26.4% 72.8% 73.5% 30.1%

nonhome % 87.4% 87.9% 87.1% 74.5% 75.4% 73.6% 27.2% 26.5% 69.9%
annual GHG (MtCO2e) 8,787 8,372 7,579 8,725 8,481 7,521 10,562 10,476 8,344
total cost (million dollars) $11.79 $12.19 $19.81 $11.25 $11.69 $19.26 $10.03 $10.07 $19.15
Modeling Outputs without Price Elasticity
energy home % 12.6% 12.1% 12.9% 25.6% 24.7% 26.4% 72.8% 73.7% 30.1%

nonhome % 87.4% 87.9% 87.1% 74.4% 75.3% 73.6% 27.2% 26.3% 69.9%
annual GHG (MtCO2e) 8,787 8,372 7,580 8,707 8,495 7,522 10,561 10,483 8,344
total cost (million dollars) $11.79 $12.19 $19.81 $11.25 $11.69 $19.26 $10.03 $10.09 $19.15
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notify the right time and place to charge once the technology is
available. In this study, we regard the EV drivers as price takers
since the extra charging load from existing EV fleet are too
small to affect generator dispatching. However, California has
set a state target of having 5 million ZEVs on California roads
by 2030 and deploying 250,000 charging stations, including
10,000 fast-charging stations, by 2025.44 The next step in our
research is to investigate the potential impacts of charge
pricing mechanism in future scenarios in which the EV fleet is
large.
This paper provides new insights to both policymakers and

researchers on how to evaluate the impacts of various charge
pricing strategies with an integrated optimization model which
assesses the charging behaviors and planning for the required
charging infrastructure system simultaneously. Results of this
research not only provide policy guidance for charging
management and infrastructure planning in San Diego, CA,
but may be applicable to other regions for which similar data
are available. However, we recommend that future studies with
different study domains, especially those without empirical
data on the price elasticity, should take the uncertainties on the
elasticity into consideration.
Compared to previous studies, this study is the first of this

kind to combine both individual mobility dynamics and
charging pricing mechanism and consider charging activities
management and infrastructure planning together in a
comprehensive optimization to explore the economic, energy,
and environmental impacts. Considering the price elasticity of
EV charging demand into the price strategy impacts analysis is
another innovation aspect of our study. This study is based on
the mobility of current light-duty vehicle drivers, but it can be
easily converted to new mobility with changing vehicle
occupation rates under different scenarios such as shared
mobility.
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