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CaMuS: simultaneous fitting 
and de novo imputation of cancer 
mutational signature
Maria Cartolano1,2,5, Nima Abedpour1,2,5, Viktor Achter3, Tsun‑Po Yang1,2, 
Sandra Ackermann2,4, Matthias Fischer2,4 & Martin Peifer1,2*

The identification of the mutational processes operating in tumour cells has implications for cancer 
diagnosis and therapy. These processes leave mutational patterns on the cancer genomes, which 
are referred to as mutational signatures. Recently, 81 mutational signatures have been inferred 
using computational algorithms on sequencing data of 23,879 samples. However, these published 
signatures may not always offer a comprehensive view on the biological processes underlying 
tumour types that are not included or underrepresented in the reference studies. To circumvent 
this problem, we designed CaMuS (Cancer Mutational Signatures) to construct de novo signatures 
while simultaneously fitting publicly available mutational signatures. Furthermore, we propose to 
estimate signature similarity by comparing probability distributions using the Hellinger distance. We 
applied CaMuS to infer signatures of mutational processes in poorly studied cancer types. We used 
whole genome sequencing data of 56 neuroblastoma, thus providing evidence for the versatility of 
CaMuS. Using simulated data, we compared the performance of CaMuS to sigfit, a recently developed 
algorithm with comparable inference functionalities. CaMuS and sigfit reconstructed the simulated 
datasets with similar accuracy; however two main features may argue for CaMuS over sigfit: (i) 
superior computational performance and (ii) a reliable parameter selection method to avoid spurious 
signatures.

A cell encounters several sources of DNA damage throughout its life cycle that can result into a mutation. The 
exposure to exogenous mutagens is a renowned cause of DNA damage. Similarly, endogenous processes intrinsic 
to DNA replication, chemical modification, and repair can cause DNA damage when not correctly  functioning1. 
Often these mutational processes leave a distinct fingerprint on the DNA of the cancer cells. A classic example 
is the enrichment in C>T nucleotide transitions induced by UV light exposure in skin  cancers2. Likewise, the 
genome of lung cancer patients with a history of tobacco smoking shows C>A transversions induced by carcino-
gens  exposure3. Generally, the straightforward identification of the mutation patterns in cancer cells (henceforth 
called mutational signatures) can be hampered by the presence of multiple mutational processes each contribut-
ing its own spectrum of somatic mutations. To address this problem, nonnegative matrix factorization (NMF) 
has been initially applied to deconvolute somatic mutations in to mutational  signatures4,5. Within this frame-
work, single nucleotide variants (SNVs) are classified based on their type (C>A, C>G, C>T, T>A, T>C, T>G, 
when strand symmetry is assumed) and their genomic context (5′ and 3′ neighbour of the mutated nucleotide). 
Upon NMF, such data is clustered into non-negative probability distributions (i.e., mutational signatures) and 
their contribution to each sample analysed. This concept has been recently extended to doublet base substitu-
tions (DBSs), and small insertions and deletions (IDs)6. To date, a reference catalogue of 81 SNVs, DBSs, and 
IDs mutational signatures extracted across multiple human cancer types is available, including the presumable 
aetiology for a subset of  them6. Since several mutational processes may have clinical implications, scientists have 
proposed additional computational methods to improve the identification of the mutational  signatures7. These 
approaches can be broadly classified into two main types: (i) methods to infer mutational signatures, and (ii) 
algorithms aimed at linearly fitting reference signatures to mutation  data5,6,8–11. While unsupervised clustering 
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provided by methods of type (i) has the advantage of describing potentially novel mutational signatures, it may 
introduce biases during signature estimation if the sample size is small. In this setting, it may be preferable to 
determine the contribution of the reference signatures in each sample by linear fitting.

In order to combine both approaches we have developed CaMuS. Our algorithm initially fits reference sig-
natures to mutation data (i.e., SNVs, DBSs and IDs) and subsequently performs NMF on the unexplained data 
to infer potentially novel patterns of mutational processes. Furthermore, CaMuS measures signature similarity 
by the Hellinger distance, which is specifically designed to compare probability distributions. To our knowledge, 
there is only one other method, called sigfit, combining signature fitting and extraction in a single inferential 
 process12. Recently, sigfit has been successfully applied to describe the mutational processes underlying the evo-
lution of canine transmissible venereal  tumour13. By using synthetic data, we demonstrate that CaMuS is able to 
reconstruct the simulated data with a superior computational performance. Furthermore, sigfit does not offer a 
straightforward functionality for parameter selection, which may potentially lead to signature overfitting. Finally, 
we applied CaMuS to treatment naive neuroblastoma (NB) genomes to show its versatility in a setting of small 
sample sizes of poorly characterised tumours.

Methods
Implementation. CaMuS is implemented in C++ and as a command line tool. An overview of its workflow 
is presented in Fig. 1. Input data can be provided in the form of variant call format (VCF) files or as a count 
matrix of the different mutation types. In case of SNVs, such a matrix can be generated directly by CaMuS. For 
IDs and DBSs, the corresponding matrix can be calculated using  SigProfilerMatrixGeneratorR14. CaMuS outputs 
emissions, signatures as well as Hellinger distance matrices of the selected mutation profiles to reference signa-
tures. CaMuS also generates a variety of graphs displaying the signatures of mutational processes as mutational 
probabilities, stacked bar graphs and hierarchical clustering of the signatures contributions. CaMuS source code 
together with a user manual can be downloaded under: https ://www.uni-koeln .de/med-fak/camus /camus .tgz. 
An example of how to run CaMuS is given in the user manual.

Linear fitting of a reference panel of mutational signatures to the somatic mutations. The 
matrix of somatic mutation counts A (columns are the nt combinations of mutation types and each of the ng rows 
is referring to a sample) is represented as product of two non-negative matrices W and H: A ≈ W ·H . Here, H is 
the mutational signature matrix and is of dimension nk × nt , where nk is the number of signatures. In addition, 
each row of H sums to one. The ng × nk matrix W is the so-called emission matrix that reflects the number of 
mutations associated to each signature of every sample. CaMuS initially infers the contribution W of the refer-
ence signatures H from the somatic mutation counts A. Thus, as A and H are provided, only W has to be imputed. 
Reference signatures H are fitted to the input data A by minimising the sample size normalised Frobenius norm 
C = n−1

g · � A−W ·H �F (i.e., cost function). This optimisation is performed by solving a non-negative least-
squares problem (NNLS) while maintaining the constraint Wij ≥ 0 (i = 1, . . . , ng and j = 1, . . . , nk)

15. In order 

Figure 1.  Schematic representation of CaMuS’ workflow. CaMuS is a command line based tool consisting of 
3 modules: fasta2nib, matgen, and modelfit. fasta2nib converts any reference genome in to binary formatted 
individual chromosomes. matgen uses the chromosomes generated by fasta2nib and the variant call files (vcf) 
to extract the sequence context of each variant and generate a matrix of SNV counts. modelfit uses the somatic 
mutations counts and the reference signatures to perform three types of analyses: (i) NMF-based de novo 
signature extraction, (ii) linear fitting of the somatic variants to the reference signatures, (iii) de novo signature 
extraction of the somatic variants left unexplained by linear fitting to reference signatures.

https://www.uni-koeln.de/med-fak/camus/camus.tgz
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to prevent overfitting either forward or backward selection of reference signatures is applied. Forward selection 
starts with an empty model and reference signatures having the strongest impact on the cost function are itera-
tively added to the model. In contrast, backward feature selection starts with the full model and the reference 
signatures contributing least to the cost are iteratively discarded. Both forward and backward feature selection 
is terminated when all signatures have been evaluated. The user is then required to select the set of reference 
signatures (of size nkref  ) that notably reduces the cost function C (see below in the "Results" section).

De novo signature inference from data unexplained by the fitting procedure. CaMuS recon-
structs de novo signature on the data left unexplained by the reference signatures. To this end, the matrix A′ of 
residual SNV counts is defined as A′ = A−W · H . Furthermore, the matrix H ′ of dimension (nkref + nknew )× nt 
is defined consisting of the fixed nkref  reference signatures and nknew de novo signatures. The NMF algorithm is 
thus applied such that A′ ≈ W ′ · H ′ . To avoid overfitting, cross-validation is performed: for each nknew , ng/k 
models are trained by leaving k samples out and imputing W ′

−k and H ′
−k , where the index −k denotes that k 

samples were left-out. Next, contributions W ′
k of the left-out samples is inferred from A′ ≈ W ′

k ·H
′
−k , where A′

k 
is residuals of the SNV counts of the k left-out samples. Finally, the cost is computed from A′

k −W ′
k · H

′
−k and 

averaged over all samples. Similarly, the cost for the training set is determined from A′
−k −W ′

−k ·H
′
−k . Of note, 

for nkref = 0 , CaMuS only performs de novo signature reconstruction.

Estimation of signature similarity. To estimate signature similarity between the reference set (e.g., from 
the COSMIC database) and the inferred de novo signatures, CaMuS uses the Hellinger distance. This distance 
measure is specifically designed to compare probability distributions, which is suited to mutational signatures 
given that they sum up to one. The Hellinger distance results in values between zero and one. Two mutational 
profiles are called identical when the Hellinger distance is zero (Fig. S1).

Data simulation. Simulated data were generated to test CaMuS performance. We simulated three instances, 
where six mutational processes (the Cosmic v2: Signature.1, Signature.3, Signature.5, Signature.11, Signature.18, 
and Signature.22) were used with varying signature contributions: (i) one dominant mutational process and five 
low contributing signatures (referred to as Simulation A); (ii) two dominant mutational processes and four low 
contributing signatures (Simulation B); (iii) all signatures equally contributing (Simulation C). Each instance has 
been simulated with varying sample size (15, 25, and 50 samples) and number of mutations (500, 1000, 2500, 
5000 for signature fitting and 20,000 and 35,000 mutations for de novo signatures inference). In our simulations, 
we assume that SNVs generated from the mutational processes follow a multinomial probability distribution. 
Here, success probabilities are chosen to be proportional to the emission of each mutational process. The R script 
used for generating these simulations and the used data sets are available in the Supplementary Material.

Analysis of the simulated data with sigfit. Sigfit was applied to the simulated data using 1000 warmup 
iterations and 2000 sampling iterations. For de novo inference we used the “NMF” method.

Runtime comparison. To assess the computational performance of CaMuS and sigfit we measured wall-
time and memory usage. The analysis was carried out on a single core of an Intel Xeon X5650, 2.67-GHz proces-
sor. All results are provided as averages together with their standard deviations calculated from running each 
setting 50 and 30 times for CaMuS and sigfit, respectively. The simulated datasets used for this analysis can be 
found in the Supplementary Materials and the results are showed in Figs. 3, 4, and Table S1.

Results
Fitting reference signatures: backward versus forward parameter selection. In the first step, 
CaMuS is fitting a panel of reference signatures to the spectrum of somatic mutations using a stepwise parameter 
selection (forward or backward) (Fig. 1). To assist the user with parameter selection, CaMuS outputs a curve 
where the cost associated to adding (forward procedure) or removing (backward procedure) signatures is dis-
played. Typically, the cost drops fast in the beginning followed by a tail towards the end of the curve. Signatures 
selected beyond the elbow of the curve are not notably modifying the cost and should not be included in the 
model, as they would probably lead to overfitting (Fig. 2). Thus, in comparison to other computational tools 
that do not offer a clear solution of how to select parameters, CaMuS is less prone to call spurious signatures 
(Fig. S2A, S2B)12,16.

Mutational signature inference tools such as deconstructSigs10 and Mutalisk17 use forward selection. To assess 
which parameter selection procedure (forward or backward) performs best in CaMuS, we simulated three muta-
tional profiles as previously described (“Methods”). Each of the three profiles vary by its relative contribution 
of six Cosmic v2 mutational signatures: 4 ’’sparse’’ and 2 ’’noisy’’ signatures (Fig. S3). Signature.1 has the highest 
contribution in Simulation A, Signature.1 and Signature.3 are predominant in Simulation B, and all six signa-
tures have comparable contributions in Simulation C (Fig. 2 and Fig. S3). We found that backward selection 
correctly assigned Signature.1 as being the feature, which mostly influences the cost in Simulation A. In contrast, 
during forward selection, Signature.1 is picked only in 6 of the 12 datasets as being the most influential feature 
(Fig. 2A,B). Within Simulation B, Signature.1 and Signature.3 are confidently called by the backward selection 
as the signatures best explaining the model (12 out of 12 datasets). Again, forward selection performed worse 
because it repeatedly missed Signature.3 (Fig. 2C,D). Lastly, forward parameter selection performed also poorly 
in Simulation C, as it assigned incorrect signatures in 5 out of 12 simulated datasets, whereas spurious signatures 
were assigned in only 2 datasets during backward selection process (Fig. 2E,F).
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Figure 2.  Comparison between backward and forward feature selection. The analysis is shown for three 
synthetic datasets: Simulation A (top), Simulation B (centre), Simulation C (bottom). Each simulation consists 
of 12 datasets. Diagram of the cost curve generated by CaMuS at the end of the backward (A,C,E left) and of the 
forward fitting procedure (B,D,F left). At the right of each data point of the cost curve, the signatures and the 
frequency at which they are scored across all simulated datasets is indicated. For simplicity, the cost calculated in 
(A,C,E left) is rearranged to appear decreasing as in (B,D,F left). Signature contribution is estimated upon fixing 
the first six signatures called by the backward (A,C,E right) and the forward (B,D,F right) feature selection. The 
graph shows the average contribution calculated within each simulated dataset: from top to bottom, 15 samples 
bearing n = 500, 1000, 2500 and 5000 mutations, 25 samples bearing n = 500, 1000, 2500 and 5000 mutations, 
and 50 samples bearing n = 500, 1000, 2500 and 5000 mutations. Signatures for which the contribution has been 
estimated are listed at the bottom of the heatmap: signatures included in the simulated datasets are shown in 
black and erroneously called signatures are shown in grey.
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Figure 3.  Performance of CaMuS on simulated data. (A–C) Simulation A, 25 samples and 35,000 mutations. 
(D–F) Simulation B, 25 samples and 20,000 mutations. (G–I) Simulation C, 25 samples and 35,000 mutations. 
(A,D,G) represent the cost associated to fit the reference signatures to the simulated datasets using the backward 
selection procedure. (B,E,H) represent the cost associated to inferring de novo signatures from the SNVs left 
unexplained upon fixing 4 reference signatures. The elbow of the test set indicates that adding signatures further 
does not improve model accuracy. (C,F,I) are heatmaps of the signature emissions. In (C), (F), and (I) the 
similarity of CaMuS signatures to the reference panel is estimated by selecting the smallest Hellinger Distance 
Score (HDS). In (C), Camus_1 is similar to Sig.3 (HDS = 0.31) and Camus_2 is like Sig.5 (HDS = 0.20). In (F), 
Camus_1 is similar to Sig.3 (HDS = 0.27) and Camus_2 is comparable with Sig.5 (HDS = 0.21). In (I), Camus_1 
is like Sig.5 (HDS = 0.17) and Camus_2 is similar to Sig.3 (HDS = 0.26). The run time of each process is indicated 
on top of (A,B,D,E,G,H).
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Figure 4.  Performance of sigfit on simulated data. (A,B) Simulation A, 25 samples and 35,000 mutations. (C,D) 
Simulation B, 25 samples and 20,000 mutations. (E,F) Simulation C, 25 samples and 35,000 mutations. (A,C,E) 
Bar graphs showing the mean signature emissions of the reference signatures upon fitting. Error bars indicate 
95% highest posterior density intervals. Grey bars indicate non-significant signature exposures. (B,D,F) are 
heatmaps of the signatures emissions: four reference signatures and two extracted de novo, SF_1 and SF_2. In 
(B), (D) and (F) the similarity of sigfit signatures to the reference panel is estimated by selecting the smallest 
Hellinger Distance Score. In (B), SF-1 is similar to Sig.3 (HDS = 0.14) and SF_2 is like Sig.5 (HDS = 0.15). In (D), 
SF_1 is like Sig.3 (HDS = 0.12) and SF_2 is similar to Sig.5 (HDS = 0.15). In (F), SF_1 is like Sig.3 (HDS = 0.13) 
and SF_2 is similar to Sig.5 (HDS = 0.13). The run time of each process is indicated on top of each graph.
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In conclusion, backward selection was more stable in our simulation study. However, both feature selection 
modes are implemented in CaMuS and the choice is left as an option to the user.

Identification of novel signatures from unexplained data. Signature fitting has the benefit to esti-
mate the contribution of the reference signatures in a small dataset. However, in presence of previously unde-
termined mutational processes this may lead to spurious results. To circumvent this problem, CaMuS allows 
the user to evaluate whether additional de novo signatures can be extracted from mutation counts that are left 
unexplained during the fitting procedure (Fig. 1). Cross-validation is used to determine the number of de novo 
signatures that have to be added to the model. To demonstrate this functionality of CaMuS we used simulated 
data and prepared a reference panel signature based on Cosmic v2 but lacking Signature.3 and Signature.5 (Cos-
mic v2m). To this end, we initially fitted the Cosmic v2m to the simulated data (Fig. 3A,D,G). This step returned 
four simulated reference signatures accounting for most of the mutations in our datasets (i.e., Signature.1, Sig-
nature.11, Signature.18, and Signature.22, Fig. 3A,D,G). Next we evaluated the cost of adding de novo signatures 
(Fig. 3B,E,H). We found that across all simulated profiles, CaMuS could robustly predict and infere  the two 
remaining signatures by the de novo inference procedure (see the elbow of the line in Fig. 3B,E,H and signature 
emissions in Fig. 3C,F,I and Fig. S4).

To assess minimal sample size to robustly infer mutational signatures, we tested simulated datasets with a 
varying number of mutations. To this end, we used the signature profile of Simulation A with a mutational burden 
from 2500 to 875,000 mutations. We found that with 2500–25,000 mutations it is possible to infer one de novo 
signature, while fitting up to four signatures. Increasing the size of the dataset to 62,500–125,000 mutations, 
CaMuS could robustly infer up to five de novo signatures, depending on how many reference signatures would 
be initially fitted to the data (Fig. S5A). Importantly, the prediction of novel parameters through the cost curve 
improved with sample size as well. Thus, we found that 875,000 mutations were necessary to confidently predict 
the presence of four fitted and two de novo signatures (Fig. S5, S6).

We next evaluated the computational performance of CaMuS (“Methods”). The run time required to perform 
the linear fitting procedure ranged from 0.95 to 1 s, while it took 33.40 to 35.10 s to evaluate the cost of adding 
de novo signatures (Fig. 3). Running the complete procedure took 0.06 GB of memory. Therefore, CaMuS is a 
computationally efficient tool to simultaneously fit and infere de novo mutational signatures.

Comparison of CaMuS with sigfit. We benchmarked CaMuS against sigfit, a recently published method 
that, similarly to our tool, is able to simultaneously fit and extract novel  signatures12,13. To this end, we used 
our previously simulated datasets (Fig. 3). While sigfit provides both NMF-equivalent and alternative Bayesian 
probabilistic model, we only assessed the performance of the NMF extraction method to have a direct compari-
son with CaMuS.

First, we fitted the Cosmic v2m reference signatures to our simulated data. Unlike CaMuS, the fitting proce-
dure with sigfit resulted in the prediction of 9 significantly active signatures, including the four present in our 
simulated dataset (Fig. 4A,C,E). Next, having fixed these four signatures, sigfit suggested up to four de novo 
signatures to be added to the model (Fig. S8). Thus, in a real case scenario, it is likely that sigfit may potentially 
lead to signature overfitting.

Interestingly, when we let sigft infere only two mutational signatures, the Hellinger distance score (HDS) indi-
cates that sigfit is able to reconstruct Signature.3 and Signature.5 with slightly higher precision than CaMuS, with 
an HDS ranging from 0.12–0.15 and 0.31–0.17, respectively. However, the cost of the full model was consistently 
smaller when four fitted signatures and two de novo ones were inferred with CaMuS (Fig. S7). We next evaluated 
the computational performance of sigfit. The time to perform the fitting procedure in sigfit ranged from 103.18 
to 121.17 seconds, and is therefore considerably longer than CaMuS (Fig. 3A,D,G). Similarly, the inference pro-
cedure used considerably higher amount of time (from 89.41 to 106.89 s on average) and of computer memory 
(0.58 GB) than CaMuS (Figs. 3B,E,H, 4B,D,F ). Thus, by applying the NMF method on synthetic data, we showed 
that the performance of CaMuS and sigfit is in a comparable range. However, we found two main advantages of 
CaMuS over sigfit: (i) CaMuS computational performance is superior to that of sigfit, as it has a shorter run time 
and uses considerably less computer memory (Figs. 3, 4, Table S1), (ii) CaMuS outputs a cost curve assisting the 
user with parameter selection to avoid overfitting. Parameter selection is not as straightforward in sigfit (Fig. S8).

Application of CaMuS to whole genome sequencing data of neuroblastoma. Neuroblastoma is 
a paediatric tumour of the sympathetic nervous system. Its clinical course ranges from spontaneous regression 
to aggressive progression and  metastasis18. We recently showed that mechanisms of telomere maintenance are 
a key feature of neuroblastoma tumours with poor  prognosis19,20. Next, we wanted to study whether mutational 
signatures associated with the divergent clinical phenotypes were also in place. Thus, we applied CaMuS to our 
pre-treatment cohort of 56 genomes representing all clinical  subtypes20. Signature fitting was performed using 
the novel reference signature panel recently published by the PCAWG  consortium6. Backward parameter selec-
tion identified the following SNV-based signatures: Signature.18 and Signature.40 (Fig. S9A). Signature.18 has 
been previously identified in neuroblastoma, breast and stomach carcinomas  datasets4,21. Recently, the aetiology 
of Signature.18 has been associated to DNA damage caused by reactive oxygen species (ROS) and a defective 
base excision repair. In fact, Signature.18 has been consistently reported in tumours carrying a germline bi-
allelic mutation in the MUTYH gene, encoding a DNA glycosylase involved in the repair of oxidative DNA 
 damage21,22. Signature.40 has been reported in many tumour types: it correlates with patient age in some tumours 
and it is similar to the age-related Signature.5 (HDS = 0.23)6. However, the exact aetiology of this signature is 
yet to be  elucidated6. Cross-validation was next performed by fixing Signature.18 and Signature.40 and revealed 
that three de novo signatures (referred to as: Camus_1, Camus_2, and Camus_3) could be added (Fig. S9C). 
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Camus_1 and Camus_2 mutation profiles resembled Signature.18 and Signature.5 with an HDS of 0.29 and 0.2, 
respectively (Fig. S9F, S9G). Camus_3 mutational profile was very similar to Signature.43 (HDS = 0.2), which has 
been previously described as a potential sequencing  artefact6 and is therefore not included in the initial reference 
signatures  panel6 (Fig. S9H). These observations led us to conclude that no substantially novel signatures could 
be discovered in our neuroblastoma dataset. However, the application of CaMuS highlighted the presence of 
mutational components that are private to our dataset and not present in the reference panel (i.e., Camus_1 and 
Camus_2). Furthermore, the inference of Camus_3 offered an example in real data of inferring signatures that 
are not included in the reference panel by our algorithm.

In light of our previous observations, we decided to directly apply the NMF algorithm to the neuroblastoma 
genomes. This resulted in three mutational signatures (Fig. 5A): Camus_1d (Signature.18: HDS = 0.18, Fig. 5B,E), 
Camus_2d (Signature.43: HDS = 0.2, Fig. 5C,F) and Camus_3d (Signature.5: HDS = 0.2, Fig. 5D,G). Three de 
novo signatures similar to Camus_1d-Camus_3d were also detected with the R package SomaticSignatures23 
(Fig. S2C, S2D). Unexpectedly, Camus_3d is not correlating with patient age using robust linear regression 
(p-value = 0.9539). Camus_1d, on the other hand, is strongly associated to patient cases with active telomere 
maintenance mechanisms (Fig. 5B–D). Furthermore, its contribution is effectively increased in those tumours 
also carrying the amplification of the MYCN proto-oncogene (Fig. 5B). Since Camus_1d is similar to Signature.18 
of the reference signature panel, we searched for germline mutations within the MUTYH gene as previously 
 suggested22. However, we could not find any germline mutation in the MUTYH coding region in our neuroblas-
toma dataset (Table S2). Therefore, our findings pose an interesting question if there is interplay between MYCN 
over-expression, ROS accumulation and active telomere maintenance mechanisms.

Conclusion
CaMuS is a novel tool designed to enable the study of mutational signatures in a small cohorts of poorly char-
acterised tumour types. Unlike most of the other tools, it offers the functionality to simultaneously fit reference 
signatures and extract novel signatures from the spectrum of somatic mutations present in cancer genomes. Hav-
ing been implemented in C++, it only requires a minimal knowledge of the usage of the command line. CaMuS 
can be used to extract SNVs, as well as IDs and DBs mutational signatures (Fig. S10). We made use of simulated 
data to show that it can achieve stable results with relatively few samples and a few thousands mutations. When 

Figure 5.  Mutational signatures in neuroblastoma. (A) The cost of inferring de novo signatures. (B–D) 
Boxplot of signatures emissions and their relative associations to neuroblastoma’s genotypes. Mycn− non 
MYCN amplified, Mycn+ MYCN amplified cases, TM− lack of an active telomere maintenance mechanism, 
TM+ presence of an active telomere maintenance mechanism. Note that, Mycn+/TM− is not present because 
MYCN amplified neuroblastomas are always TM+19,20. The number of samples is indicated by n. Total number of 
samples sums to 55 instead of 56 because the genotypic information is missing for one cancer case. All p-values, 
indicated on top of the boxplots, are calculated from pairwise comparison between groups with correction 
for multiple hypothesis testing (i.e., pairwise wilcoxon rank sum tests). (E–G) De novo mutational signatures 
extracted by CaMuS.
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compared to sigfit, an R package with similar inference functionalities, CaMuS performs similar operations in a 
considerably lower amount of time and with considerably less memory usage. Furthermore, the use of the cost 
curve as a mean for parameter selection makes CaMuS more stable against signature overfitting. Finally, using 
neuroblastoma as an example, we showed the challenges that can be encountered during the interpretation of 
real data. Thus, more flexible tools, such as ours, represent a valuable resource to parsimoniously decipher the 
underlying mutational patterns.

 Data availability
Simulated data can be found in the Supplementary materials. The whole genome neuroblastoma sequencing data 
have been deposited at the European Genome-phenome Archive (https ://www.ebi.ac.uk/ega/) under the acces-
sion number EGAS00001003244.
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