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Abstract

Internal RNA modifications have been known for decades, however their roles in mRNA reg-

ulation have only recently started to be elucidated. Here we investigated the most abundant

mRNA modification, N6-methyladenosine (m6A) in transcripts from the hippocampus of HIV

transgenic (Tg) rats. The distribution of m6A peaks within HIV transcripts in HIV Tg rats

largely corresponded to the ones observed for HIV transcripts in cell lines and T cells. Host

transcripts were found to be differentially m6A methylated in HIV Tg rats. The functional

roles of the differentially m6A methylated pathways in HIV Tg rats is consistent with a key

role of RNA methylation in the regulation of the brain transcriptome in chronic HIV disease.

In particular, host transcripts show significant differential m6A methylation of genes involved

in several pathways related to neural function, suggestive of synaptodendritic injury and

neurodegeneration, inflammation and immune response, as well as RNA processing and

metabolism, such as splicing. Changes in m6A methylation were usually positively corre-

lated with differential expression, while differential m6A methylation of pathways involved in

RNA processing were more likely to be negatively correlated with gene expression changes.

Thus, sets of differentially m6A methylated, functionally-related transcripts appear to be

involved in coordinated transcriptional responses in the context of chronic HIV. Altogether,

our results support that m6A methylation represents an additional layer of regulation of HIV

and host gene expression in vivo that contributes significantly to the transcriptional effects of

chronic HIV.
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Introduction

An extensive repertoire of modifications is believed to contribute to the regulation of RNA

processing, metabolism and expression. It has long been known that transfer RNA (tRNA),

ribosomal RNA (rRNA) and both mRNA and noncoding RNA (ncRNA) contain multiple

modifications [1–5]. At least 10 distinct modified bases have now been identified in mamma-

lian mRNAs, suggesting the existence of an “epitranscriptome” [6–9]. In addition to the

7-methylguanosine cap that is added at the 5’ end of all cellular mRNAs, several internal RNA

modifications have been described, which include N6-methyladenosine (m6A), 2’-O-methyla-

denosine (Am), N6-2’-O-methyladenosine (m6Am), pseudouridine, and 5-methylcytosine,

among others [6–10]. Of these, by far the most abundant RNA modification identified is N6-

methyladenosine (m6A) [1, 2]. The occurrence of m6A in polyadenylated RNA was originally

reported in 1974 [11, 12]. While m6A has been found in mRNAs from diverse tissue types, the

brain has especially high levels of m6A [13]. mRNAs are modified by m6A preferentially in the

30 untranslated regions (UTRs), near the stop codons within mRNAs and within long internal

exons, and m6A modification appears to be conserved between humans and rodents [1].

Reminiscent of DNA epigenetics, the occurrence of both stable and dynamically regulated

m6A-modified RNA sites has been suggested [1, 2, 14–16]. mRNAs encoding housekeeping

genes are less likely to be m6A methylated, while highly regulated mRNAs often contain m6A

residues [8, 10]. RNA is m6A methylated within the consensus motifs G(m6A)C and A(m6A)C

[17]. RNA modification by m6A appears to contribute to the regulation of gene expression and

is increasingly being implicated in disease. Evidence suggests that RNA m6A methylation con-

tributes to the regulation of splicing, nuclear RNA export, mRNA stability, and translation

[18–23]. RNA m6A methylation is at least in part dynamically regulated and potentially revers-

ible [6–8]. Multiple proteins are involved in the regulation of m6A RNA methylation and the

fate of m6A methylated RNA [6–8]. The fat mass and obesity associated gene (FTO), a m6A

demethylase, has been linked to a variety of biological processes including dopaminergic neu-

ron regulation [24] and a variety of human diseases including obesity, type 2 diabetes (T2DM),

cancer, attention-deficit/hyperactivity disorder, and Alzheimer’s disease [25–31]. The m6A

contents in the RNAs of T2DM patients and diabetic rats are significantly lower than controls,

while the level of FTO in T2DM patients was significantly higher [31]. Loss of ALKBH5, the

other known mammalian demethylase, is associated with increased m6A content in mRNA

and impaired fertility [32].

Multiple viral RNAs have long been known to be m6A modified. Classic studies by Shatkin

and associates in the 70s showed specific patterns of m6A modification in transcripts from

both DNA and RNA viruses such as influenza virus, adenovirus, papovavirus, and flavivirus,

among others [3, 7, 33–35]. Retrovirus transcripts have also been found to be m6A modified

[36, 37]. The phenotypic consequences of these modifications have recently begun to emerge

and involve regulation of viral expression and infectivity, reviewed in [7, 38–41]. Recent stud-

ies showed m6A modification in HIV-1 transcripts contributes to regulate HIV-1 mRNA in
vitro [42–44]. Another possible role of m6A modification of viral RNAs appears to be antiviral

innate immune evasion, since the presence of m6A on viral RNA has been shown to reduce its

activation of toll-like receptor 3 signaling [45].

Here we investigated m6A methylation of RNA in the hippocampus of HIV Tg rats. HIV-1

Tg rats harbor a non-replicating HIV-1 transgene and express multiple HIV-1 proteins under

the viral LTR in macrophages, lymphocytes and disease-relevant glial cells, such as microglia

and astrocytes, but not in neurons [46, 47]. HIV-1 Tg rats exhibit deficits in working memory

[47], spatial [48] and reversal learning [49, 50], before the onset of motor deficits [47–49]. This

is reminiscent of HAND in the cART era, which primarily impacts learning and executive
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functioning in a shift from the prominent slowed motor and speed of processing deficits in the

pre-cART era [51].

We observed that distribution of peaks of m6A RNA methylation in HIV transcripts in HIV

Tg rats largely corresponds to the ones reported for HIV transcripts in cell lines and T cells in
vitro [42–44]. Further, we observed that host genes in HIV Tg rats show significant differential

m6A methylation of genes involved in several pathways related to neural function, suggestive

of synaptodendritic injury and neurodegeneration, consistent with our previous observations

in both HIV Tg rats and humans with HIV [52, 53]. Transcripts with significant differential

m6A methylation and expression are also involved in immune response and inflammation,

also consistently with gene expression changes in HIV Tg rats and humans with HIV [52, 53].

We also observed differential m6A methylation in transcripts of pathways involved in RNA

splicing and processing, which are processes previously implicated in the role of m6A RNA

methylation [6–10].

Results

RNA m6A methylation in viral and host transcripts from the hippocampus

of HIV Tg rats

We carried out MeRIP from poly-A selected RNA extracted from the hippocampus of HIV Tg

and control rats using an antibody specific for m6A. As shown in Fig 1A and 1B, the number

of transcripts with significant increased and significant decreased m6A methylation was simi-

lar, although a slightly larger number of genes with down-regulation of m6A methylation was

observed than genes with up-regulated methylation in the hippocampus of HIV Tg rats (201

genes with down-regulated methylation and 172 genes with significant up-regulated methyla-

tion; p-value<0.05, S1 Table). Analysis of the distribution of m6A peaks within host mRNAs

in HIV Tg and control rat showed that m6A peaks were enriched (fold change of average cov-

erage equals to 2.3) in the distal CDS and 3’UTR of the mRNAs and especially in the immedi-

ate vicinity of the stop codon (Fig 1A). Differential m6A methylation in poly-A selected

transcripts mostly showed either positive correlated changes in m6A and mRNA levels or were

not differentially expressed (Fig 1C and 1D).

We then investigated the distribution of m6A modification in HIV-1 transcripts in HIV Tg

rats (Fig 2). The HIV-1 Tg rats used in the present study harbor a gag/pol-deleted HIV-1 pro-

virus under the control of the long-terminal repeat (LTR) promoter [46], resulting in the co-

expression of multiple HIV-1 proteins in disease-relevant central nervous system (CNS) cells

such as microglia and astrocytes, but not in neurons [46, 52, 54]. The organization of the HIV

transgene in HIV Tg rats is shown in Fig 2A. The m6A methylation in HIV transcripts in the

hippocampus of HIV Tg rats showed enrichment in the 5’ and 3’ of the provirus most promi-

nently corresponding to the 5’ and 3’ UTRs and LTRs and the nef open reading frame (ORF),

which partially overlaps with the 3’ LTR (Fig 2B). The location of this 3’ cluster of m6A methyl-

ation in the HIV genome can affect most of the virus transcripts [55]. The present distribution

of m6A methylation is in general overall agreement with the pattern of m6A methylation of

HIV transcripts in cell lines and lymphocytes acutely infected or transfected with replication-

competent HIV-1 [42–44]. In particular, m6A RNA methylation corresponding to the nef ORF

was observed in 3 studies using cell lines and lymphocytes in vitro [42–44]. Two of these stud-

ies also observed significant m6A methylation over the ORF of rev and/or env genes, among

others [42, 44]. This pattern of m6A methylation was also seen in in vitro-infected CD4+ T cell

lines and primary human CD4+ T cells [42, 44]. However, a previous study did not detect m6A

methylation signal at the 5’ of the virus transcript in in vitro-infected human CD4+ CEM-SS T

cell line [43]. RT-PCR validation of host genes with differential m6A methylation between
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PLOS ONE | https://doi.org/10.1371/journal.pone.0203566 January 17, 2019 3 / 16

https://doi.org/10.1371/journal.pone.0203566


HIV Tg and wild-type rats are shown in Fig 2C and 2D. Altogether, these results show that

both HIV and host transcripts are differentially m6A methylated in HIV Tg rats.

Pathway analysis of differential m6A RNA methylated genes in the

hippocampus of HIV Tg rats

We used the Gene Set Enrichment Analysis (GSEA) algorithm [56] to identify molecular path-

ways that are differentially regulated by m6A RNA methylation in HIV-1 Tg rats (Fig 3, S2

Table). A total of 74 significantly differentially regulated pathways was observed (p-

value < 0.05, and absolute normalized enriched score (NES) > 2, S2 Table) of which 44

showed increased m6A RNA methylation and 30 showed decreased m6A methylation (S2

Table). The top 40 differentially regulated pathways are shown in Fig 3. In host genes of HIV

Tg rats, significant differential m6A methylation was seen in pathways relevant to neural func-

tion, suggestive of synaptodendritic injury [57–60], Fig 4. Other transcripts with significant

differential m6A methylation were identified as involved in inflammation and immune

Fig 1. Distribution of genes with differential m6A RNA methylation in the hippocampus of HIV Tg rats. A) A larger number of genes with down-regulation of m6A

methylation was observed in HIV Tg rats than the number of genes with up-regulated methylation, in particular, 201 genes with significant down-regulated methylation

(p-value<0.05) while 172 genes were found with significant up-regulated methylation (p-value<0.05). Inset: Distribution of m6A peaks within hippocampal mRNAs of

HIV Tg and control rat. Transcript architecture is shown underneath: 5’ untranslated region (UTR); coding sequence (CDS); and 3’ UTR. The density of m6A peaks was

greater on the distal CDS and 3’UTR and showed the greatest enrichment in the immediate vicinity of the stop codon at the CDS-3’UTR boundary. B) The distribution

of log2 fold change (log2FC) of genes with up-regulated and down-regulated methylation C,D) Correlation between the methylation and expression changes for genes

with up-regulated and down-regulated methylation (Pearson correlation = 0.67 and 0.58 respectively). Among the 201 genes with down-regulated methylation, the

expression of 127 genes are also down-regulated while the rest remain unchanged; Among the 172 genes with up-regulated methylation, the expression of 83 genes are

also up-regulated while expression of 89 genes remain unchanged.

https://doi.org/10.1371/journal.pone.0203566.g001
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response, also consistently with previous observations both in humans and HIV Tg rats [52,

53], Fig 4. Other genes belong to pathways involved in RNA splicing and processing (Fig 4).

However, we did not observe significant differential expression of key transcripts involved in

the regulation of m6A methylation by RT-PCR including FTO, Mettl3, Alkbh5, Ythdf1,

Ythdf2, and Wtap (p>0.05 by t test; Supplementary Fig 1).

Representative differentially methylated m6A pathways related to neural function include

“Reactome Neuronal Systems”, “KEGG Axon Guidance”, and “Reactome Trafficking of Glur2

containing AMPA Receptors” (Fig 4) and “Reactome Developmental Biology” (Fig 5), among

others (S2 Table). These pathways are indicative of synaptodendritic injury and reduced tro-

phic support [57–60], and are consistent with differential expression of genes in these ontology

classes in both humans with HIV and HIV Tg rats [52, 53]. Among pathways involved in

inflammation and immune response, differentially m6A methylated pathways are “MIPS TNF-

alpha NF Kappa B Signaling Complex”, “PID IFNG Pathway”, “Reactome Class I MHC Medi-

ates Antigen Processing and Presentation”, “PID IL8CXCR1 Pathways” (among others Figs 4

Fig 2. Pattern of m6A methylation in HIV and host transcripts of HIV Tg rats. A) Outline of HIV genome organization and gag/pol

deletion in HIV Tg rats. B) m6A methylation in HIV RNA from HIV Tg rats (HIV-1 MeRNA-IP) is enriched in transcripts corresponding to

the 5’ and 3’ of the virus with a similar overall distribution as observed in HIV transcripts in vitro [42–44]; signal obtained from RNA-Seq of

input RNA from the hippocampus of HIV Tg rats (HIV-1 Input). C) Distribution of m6A methylation in representative host genes with

significant differential m6A methylation (�significantly differentially methylated peaks). D) PCR validation of significantly differentially

methylated intervals in the genes in D (�p<0.05, �p<0.01 by t test).

https://doi.org/10.1371/journal.pone.0203566.g002
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and 5 and S2 Table). Genesets related to HIV infection were also differentially methylated,

such as Biocarta HIVNEF Pathway and Reactome HIV Infection (Fig 4). Additional pathways

up-regulated in HIV Tg rats were pathways related to apoptosis (Fig 5). These pathways are

consistent with previous observations of inflammation and immune dysregulation in both

humans and HIV Tg rats [52, 53]. Interestingly, other differentially m6A methylated gene

Fig 3. Pathway analysis of differential m6A RNA methylation in the hippocampus of HIV Tg rats. Top 40 differential m6A methylation pathways in the

hippocampus of HIV Tg rats by Gene Set Enrichment Analysis (GSEA) (Complete list in S2 Table).

https://doi.org/10.1371/journal.pone.0203566.g003
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transcripts were in pathways involved in RNA splicing, metabolism and processing (Figs 4 and

5). Examples of the latter pathways are “Reactome Pol II Transcription”, Kegg Spliceosome,

Reactome 3 UTR Mediated Translational Regulation”, “Reactome mRNA Splicing” (Figs 4

and 5 and S2 Table). These pathways are suggestive of a key role of m6A RNA methylation in

RNA splicing, metabolism and processing [6–10].

Correlation of differential m6A RNA methylation and expression in

pathways of the hippocampus of HIV Tg rats

Next we investigated the correlation of differential m6A RNA methylation and expression in

pathways of the hippocampus of HIV Tg rats. As shown in Fig 5A, pathways that showed both

significant differential m6A RNA methylation and expression by GSEA were either directly or

inversely correlated with changes in m6A RNA methylation and gene expression. In particular,

9 pathways showed both increased m6A RNA methylation and transcription (Fig 5A, 5B and

5C); 6 pathways showed both decreased m6A RNA methylation and transcription (Fig 5A, 5B

and 5D); and 10 pathways showed increased m6A RNA methylation but decreased transcrip-

tion (Fig 5A, 5B and 5E). Pathways showing increased m6A RNA methylation and expression

included some pathways involved in apoptosis and tissue responses, pathways showing

decreased m6A RNA methylation and expression included some pathways involved in neuro-

nal trophisms and function, while pathways showing increased m6A RNA methylation and

decreased expression included pathways involved in RNA processing and metabolism (Fig

5A–5E).

Discussion

Here we report for the first time patterns of RNA m6A methylation, the most abundant inter-

nal mRNA modification, in vivo in an animal model of HIV. Available data on m6A methyla-

tion of eukaryotic and HIV transcripts are primarily from in vitro studies. In particular, we

Fig 4. Representative host pathways involving differentially m6A methylated genes in HIV Tg rats. A-D) Several pathways containing genes differentially m6A

modified are involved in neural function and are indicative of synaptodendritic injury [57–60], consistent with differential expression of genes in these ontology classes

[52, 53]; E-G) pathways involved in inflammation and immune response were also differentially m6A methylated, consistent with previous observations both in humans

and HIV Tg rats [52, 53]; H,I) differentially m6A methylated gene transcripts also included pathways related to HIV infection; J-L) and RNA metabolism and

processing, e.g. splicing, which are processes in which m6A RNA methylation has been previously implicated [6–10]. Significance is indicated in each plot (Complete list

in S2 Table).

https://doi.org/10.1371/journal.pone.0203566.g004
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profiled RNA m6A methylation in the hippocampus of HIV Tg rats, a small animal model of

concomitant low level expression of multiple HIV-1 products in disease-relevant cells in the

CNS [47], which also characterizes HIV-associated neurocognitive disorder (HAND) in the

setting of viral suppression.

We found that both HIV and host transcripts of HIV Tg rats contain m6A methylation. The

distribution of m6A peaks within host mRNAs in the hippocampus of HIV Tg and control rat

was greater in the distal CDS and 3’UTR of the mRNAs with the greatest density in the immediate

vicinity of the stop codon, reminiscent of the distribution of m6A peaks observed in cell lines in
vitro and total brain RNA [1, 2, 61]. The distribution of m6A methylation in HIV transcripts of

HIV Tg rats largely corresponded to the ones described for HIV transcripts in vitro in cell lines

Fig 5. Correlation of m6A methylation and gene expression. A) The normalized enrichment scores (NES) of pathways showing both significant differential m6A RNA

methylation (NES of pathway methylation) and gene expression (NES of pathway expression). RNA m6A methylation was either directly or inversely correlated with

gene expression. Pathways with increased m6A RNA methylation and expression are shown in red; pathways with decreased m6A RNA methylation and expression are

shown in blue; pathways with increased m6A RNA methylation and decreased expression are shown in orange. B) Pathways showing increased differential m6A RNA

methylation and expression included some pathways involved in apoptosis and tissue responses (red); pathways showing decreased differential m6A RNA methylation

and expression included some pathways involved in neuronal trophisms and function (blue); pathways showing increased differential m6A RNA methylation and

decreased expression included pathways involved in RNA processing and metabolism. C) Example of pathway showing increased differential m6A RNA methylation

and expression, “KEGG Apopotosis”; D) Example of pathway showing decreased differential m6A RNA methylation and expression, “Reactome Developmental

Biology”; E) Example of pathway showing increased differential m6A RNA methylation and decreased expression, “Reactome mRNA Splicing”.

https://doi.org/10.1371/journal.pone.0203566.g005
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and lymphocytes acutely infected or transfected with replication-competent HIV-1 [42–44].

Minor differences with those studies as well as among them likely reflect the acute nature of the

infection or transfection used in those studies vs. the chronic expressions of HIV transcripts in Tg

rats in an in vivo setting and different cell lines or lymphocytes used in those studies vs. brain

parenchyma in the present study where HIV is expressed in microglia and astrocytes [52].

Pathway analysis by GSEA of differential m6A RNA methylation and differential mRNA

expression showed that pathways affected by m6A methylation is consistent with a key role of

RNA methylation in the regulation of the brain transcriptome in chronic HIV disease [52, 53].

Host pathways identified by differential m6A methylation in the present study involve cellular

functions that are key in the pathogenesis of neuroAIDS, such as pathways indicative of synap-

todendritic injury, neurodegeneration and apoptosis as well as pathways involved in inflam-

mation and immune response, overall consistent with our previous pathway analyses of both

HIV Tg rats and humans with HIV [52, 53]. Additional pathways were involved in RNA splic-

ing and processing, consistent with the emerging roles of m6A methylation in these processes

[10, 13, 15, 62]. This suggests that m6A methylation plays a role as a broad regulator of gene

expression in fine-tuning the regulation of host genes in HIV infection.

In the present setting of chronic HIV disease, both positively and negatively regulated dif-

ferentially m6A methylated transcripts were observed. Thus, the present results do not suggest

a global, unidirectional change in the level of m6A methylation in HIV Tg rats. Rather, GSEA

pathway analysis indicates that multiple biological processes are affected by differential m6A

methylation in a bidirectional manner. In particular, changes in m6A RNA methylation

involving pathways related to neuronal function show reduced m6A RNA methylation and

mRNA levels, consistent with synaptodendritic injury, neurodegenerative processes and

reduced trophic support; conversely, pathways relevant to inflammatory processes and apopto-

sis show increased m6A RNA methylation and mRNA levels. Such direct correlation of m6A

RNA methylation and mRNA levels in pathways involved in neurodegenerative and inflam-

matory processes is in keeping with the notion that m6A methylation promotes gene expres-

sion [21], and thus may serve to amplify transcriptional control of gene expression.

Interestingly, we found changes in m6A methylation of several pathways related to RNA pro-

cessing and metabolism to be negatively correlated with mRNA levels. m6A methylation has

been shown to modulate several aspects of RNA metabolism [10, 63].

The present data suggest the regulation of genes involved in RNA processing as a possible

new mechanism by which m6A RNA methylation can indirectly regulate RNA metabolism.

The mechanisms through which m6A methylation regulates RNA processing and metabolism

remain largely unclear. Interestingly, we did not observe significant differential expression of

transcripts directly involved in the regulation of m6A methylation. This may indicate that

small changes in levels of proteins involved in RNA modifications, or changes in their transla-

tional efficiency effect changes in the regulation of m6A RNA methylation in vivo. The present

results also showed a considerable number of transcripts with differential m6A methylation

that were not differentially expressed. Since m6A RNA methylation appears to mostly increase

gene expression efficiency, these transcripts with increased m6A methylation but normal RNA

levels may be mRNAs that are poised for greater induction or down-regulation should external

stimuli result in activation or inhibition of their promoters. Alternatively, they may represent

mRNAs with gene expression regulation at the translational level [9, 21].

The available evidence provides support for bidirectional regulation of m6A modification

of mRNA. Addition and removal of m6A residues has been suggested to be dynamic, e.g. [14,

15]. This implies that modifications of RNA m6A content act as a separate layer of RNA regula-

tion. Other evidence has suggested that m6A methylation occurs at the pre-mRNA level during

transcription [16]. This scenario is consistent with coordinated differential expression and

RNA methylation and pathway dysregulation in HIV
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m6A modification of nascent mRNAs. Studies reported a direct correlation between m6A

methylation and expression of both viral [43] and host proteins [1, 21]. It has been suggested

that the coordinated actions of m6A writers, erasers and readers result in accelerating RNA

processing and mRNA transport and result in more efficient but perhaps more transient trans-

lation [9, 21]. The m6A reader YTHDF1 in HeLa cells has been shown to localize mRNA to

translation machinery and enhance translation efficiency [21]. Conversely the m6A reader

YTHDF2 has been shown to localize m6A-methylated mRNA decay sites and reduce transcript

stability [20]. Since m6A readers can play differential roles, it can be expected that the cellular

and molecular context is key in determining the consequences of differential m6A methylation.

Interaction of YTH domain ‘‘reader” proteins also regulates the efficiency of m6A methylated

RNA processing and translation [20, 21]. However, it is important to note that these conclu-

sions are based in part on studies of overexpression in cell lines and therefore it is possible that

different results may be observed at different ratios of the proteins involved in m6A RNA

methylation to mRNA and/or in different cell types. Changes in mRNA levels reflect the differ-

ence between transcription and degradation rates. Our results seem to indicate a role for m6A

methylation in regulating mRNA levels in concert with transcriptional regulation as we

observed a primarily positive correlation of the cellular processes affected by differential m6A

methylation and differential gene expression.

A limitation of the present study is that the present results do not allow us to determine at

what stage in the life of RNA is m6A methylation regulated or if it is the result of a dynamic pro-

cess. Another limitation of the present study is that here we explored the occurrence and regula-

tion of the most abundant of the RNA modifications of m6A, while several other chemical marks

can occur and their elucidation may reveal an epitranscriptome “code” that directs RNA process-

ing, metabolism and expression [6–9]. Additionally, the antibody used in the present study, while

highly specific, does not distinguish m6A from the highly similar m6Am modifications, which

also contain a 2’-O-methyl in the ribose moiety [64] and whose function is less characterized.

In conclusion, we used a m6A-directed antibody in conjunction with RNA-Seq to explore

RNA m6A methylation in vivo in HIV Tg rats. The density of m6A in hippocampal mRNAs

in vivo was greater in the distal CDS and 3’UTR and the greatest density was in the immediate

vicinity of the stop codon. The pattern of m6A methylation in HIV transcripts in HIV Tg

rats overall resembled the ones reported in cell lines and T cells in vitro. The function of the

host genes and pathways affected by changes in m6A in HIV Tg rats was reminiscent of the

pathways differentially regulated in both HIV Tg rats and humans with HIV in our previous

studies [52, 53]. These include pathways involved in neural function, suggestive of synaptoden-

dritic injury and neurodegeneration, immune response and inflammation, and, interestingly,

RNA splicing and processing. Correlation of m6A RNA methylation and differential expres-

sion indicates that RNA methylation is a significant contributor to gene expression regulation

in neuroAIDS in a bidirectional manner with pathway-specific differential regulation in differ-

ent categories of genes. Thus, sets of transcripts enriched in m6A appear to be involved in

coordinated transcriptional host responses in the context of chronic HIV. Overall our results

support that m6A methylation is a mechanism for widespread regulation of mRNA in vivo that

affects both HIV transcripts and host genes orchestrating host adaptive and maladaptive tran-

scriptional effects of chronic HIV.

Materials and methods

Animals

Adult male HIV Tg rats in Sprague Dawley background (Harlan Sprague-Dawley) 5–6 months

of age were housed in groups of two per cage in a temperature-controlled (20–26 oC) vivarium
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on a 12h/12h light/dark cycle with ad libitum access to food and water. Rats were sacrificed by

decapitation under deep CO2 anesthesia. All procedures adhered to the Guide for the Care and

Use of Laboratory Animals and were approved by the Institutional Animal Care and Use

Committee of The Scripps Research Institute.

mRNA isolation and m6A-modified RNA immunoprecipitation

(MeRNA-IP)

Total RNA was extracted from dissected hippocampi of the wildtype and HIV Tg rats with

RNEasy kit (Qiagen) and poly-A selected with Dynabeads Oligo(dT)25 (Thermo Fisher Scien-

tific) following manufacturer’s instructions. Poly-A enriched RNA was recovered by ethanol

precipitation overnight, fragmented using RNA Fragmentation Reagents (Thermo Fisher Sci-

entific) and ethanol precipitation overnight. An aliquot of fragmented RNA was set aside serv-

ing as input or control for RNA sequencing. Twenty μg of fragmented RNAs were denatured

at 75˚C for 5 min, cooled on ice for 3 min, and then incubated for 2h at 4˚C with 3 μg of pre-

equilibrated anti-m6A (Synaptic Systems), which was pre-immobilized to M-270 Epoxy using

the Dynabeads Antibody Coupling kit (Thermo Fisher Scientific) for easy capture of the m6A-

modified RNA in subsequent elution with a Proteinase K-containing buffer. Eluate with the

anti-m6A captured RNA was extracted by phenol/CHCl3 followed by ethanol precipitation.

RNA sequencing

Libraries for the anti-m6A-captured and control (fragmented, non-immunoprecipitated)

RNAs were generated for next gen sequencing, following the protocol recommended in the

ScriptSeq v2 RNA-Seq Library Preparation Kit (Illumina), and uniquely barcoded with the

ScriptSeq Index PCR Primers (Illumina) to run a 16-library sample multiplex in a single flow-

cell on a NextSeq500 platform (Illumina) to generate ~30M 1x75 bp reads/sample.

Data analysis

Reads pre-processing and mapping. Sequences were first trimmed using Trimmomatic

with default setting (version 0.33). All the samples passed the quality control by fastQC (ver-

sion 0.11.3). Fastq files were aligned to a combined rat genome (Rnor_6.0) and HIV-1 genome

(NC_001802) using STAR (v2.4) with default setting. The overall mapping rate range from

79.78% to 85.79% (S3 Table)

Detecting RNA methylation sites. RNA methylation sites were detected using exome-

Peak (R package, version 2.10.0) in HIV infected rat samples and control samples separately.

Aligned bam files of m6A treated samples and non-treated samples were directly passed to

exomePeak to test for statistically significant enrichment. A total of 9696 and 9051 consist

RNA methylation sites with at least 100 bp were identified in HIV infected samples and control

samples respectively (p-value < = 0.05, S4 Table). For the mapping of the distribution of m6A

peaks within host mRNAs, per base coverage was generated for all the m6A treated samples

using R package “RiboProfiling” for a fixed interval of 400 bases around the start codon and

stop codon.

Identifying genes with differential methylation and expression in HIV Tg rats vs. wild-

type control rats. RNA-seq counts of 6,757 genes with at least one methylation site identified

in the previous section Detecting RNAMethylation Sites were retrieved from m6A treated HIV

infected samples and m6A treated controls using htseqcount2 with union mode. The rat

genome was first humanized using ‘biomaRt’ package from R, only the gene with the highest

counts were kept when multiple rat genes matched to one human gene. We then kept only the

genes with an average raw count greater than 10. Differential methylation analysis was then
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performed using ‘DESeq2’ package in R (Wald method was used). 201 genes were identified

with significant changes of methylation (p-value < 0.05) (S1 Table). Differential expression

analysis was performed in a similar fashion for a total of 13,114 genes, where 383 genes were

identified with significant differential expression (p-value < 0.01) (S5 Table). A set of 24 genes

was both significantly modified in expression and methylation (S6 Table).

Identifying gene sets with enriched methylation and expression in HIV Tg rats vs. wild-

type control rats. A total of 1,452 well-known gene sets from the MSigDB collection was

tested with the GSEA algorithm. 166 gene sets were significantly changed in expression (p-

value<0.05, 76 genes sets were up regulated in HIV infected samples while 90 gene sets were

down regulated) (S7 Table) and 74 gene sets were significantly changed in methylation (p-

value<0.05, 44 gene sets were up regulated in HIV infected samples while 30 gene sets were

down regulated) (S2 Table). Among these gene sets, 6 were identified as significantly down

regulated both at the level of expression and methylation while 9 were up regulated. The top 40

most enriched genes set are shown in Fig 3.
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