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We examined whether the effects of practice on visual
detection are stimulus specific and whether practice
alters response bias. Eighty-four subjects performed
yes-no detection of band-limited noise patterns
(textures) in two levels of external noise, on two
consecutive days. On day 2, one-half of the observers
switched to novel textures. Texture contrast was varied
on signal-present trials using the method of constant
stimuli. The signal was present on 50% of the trials. We
measured d′ , detection thresholds, and two measures of
response criterion: a global criterion that was based on
sensitivity at all signal levels (Jones et al., 2015) and a
local criterion computed at a hit rate of 70% or 80%
(Wenger & Rasche, 2006). Performance improved for
both groups on day 2, indicating that improvement
transferred to novel textures. Increases in d′ were
associated with a decrease in false alarms across days.
The global criterion became less liberal and became
more optimal (i.e., less biased) with practice; however,
this effect was small and was not statistically significant
in all conditions. The local criterion measure also
became slightly less liberal with practice in most
conditions, becoming more or less optimal depending
on the hit rate at which it was computed. Overall, the
effects of practice on sensitivity in a visual detection task
generalized to novel patterns. In addition, we found that
practice had relatively small effects on response
criterion, and the precise effects on response bias
differed between global and local measures of criterion.

Introduction

The effects of practice on performance in visual
discrimination and identification tasks frequently
are specific to the trained stimuli. For example,
improvements often are largely abolished when stimuli
are rotated or moved to a different location in the visual
field, or when the task is performed with novel items
from the trained stimulus class (Fiorentini & Berardi,
1981; Fahle et al., 1995; Schoups et al., 1995; Crist et al.,

1997; Hussain et al., 2009, 2011, 2012). Stimulus-specific
effects in discrimination and identification tasks may
arise from observers learning to use particular,
informative spatial features to discriminate stimuli
(Gold et al., 2004; Li et al., 2004; Kurki and Eckstein,
2014). Consequently, the resulting perceptual learning
is diminished when the patterns are rotated or reversed
in contrast (Hussain et al., 2009). Here, we consider the
effects of learning in a visual detection task, in which
stimulus features are not clearly visible on most trials.
In this situation, it is unlikely that observers could
learn to use a particular feature to perform the task.
Therefore, the effects of learning might generalize to
stimuli that share the general spatial characteristics of
the signal regardless of feature location, size and other
attributes. We examined this possibility for detection of
textures in noise. Observers practiced yes-no detection
of band-limited noise patterns (textures), in two
levels of Gaussian noise over 2 consecutive days, with
one-half of the observers switching to new textures on
day 2. We examined whether improvements in detection
transferred to novel textures.

Previous work examining perceptual learning of
detection of simpler patterns such as sine-wave gratings
and Gabors patterns has produced mixed findings.
For example, Sowden et al. (2002) found that learning
of grating detection generalized across stimulus
orientation, but not across retinal location or changes
in spatial frequency of more than 1.5 octaves. Mayer
(1983) reported that learning to detect oblique gratings
partially transferred to orthogonal orientations but
not to cardinal orientations for which thresholds were
presumably already at floor. Practice with detection
of cardinal orientations did not benefit detection of
oblique orientations (Mayer, 1983). Dorais and Sagi
(1997) reported that decreases in Gabor contrast
masking thresholds with practice were specific to the
orientation and phase of the targets and to the phase
of the mask. Therefore, improvements in detection
occasionally generalize across orientation, but may be
tuned to properties such as spatial frequency and phase.
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Figure 1. Texture stimuli. Each texture was created by applying an isotropic, bandpass (2-4 cy/image) ideal spatial frequency filter to
Gaussian white noise. Top row shows textures comprising set A. Bottom row shows textures comprising set B.

An additional goal of this work was to examine
practice effects on response bias. Some evidence
suggests that improvements in perceptual performance
are affected by changes in response bias (Wenger &
Rasche, 2006; Wenger et al., 2008; Aberg & Herzog,
2012; Jones et al., 2015). For instance, threshold
improvements in a visual contrast detection task were
accompanied by liberal shifts in the response criterion,
decreasing the improvement that might have been
achieved otherwise (Wenger and Rasche, 2006). In
another study that used an auditory detection task,
participants became less liberal with practice, and the
decreases in bias were correlated with performance
improvements (Jones et al., 2015). We measured
sensitivity (d′) and response bias to assess whether
criterion shifts could account for learning in this yes-no
detection task, and whether such shifts varied with
stimulus novelty.

Methods

Subjects

Eighty-four subjects between the ages of 18 and
38 years (M = 21.1 years) took part in the experiment
either for remuneration ($10/hour) or for course credit.
Fifty-three subjects were female. Subjects were students
and staff at the University of Nottingham, UK, and
McMaster University, Canada. The Nottingham
subjects were run first (n = 24; December, 2013). The
experiment was then replicated twice at McMaster
University, first in March, 2014 (n = 29) and then
in October, 2019 (n = 31). Seven subjects (one
from Nottingham, two from the first replication at
McMaster, and four from the second replication) were
excluded from the analyses (see details in Results).
Hence, the total sample size was 77 subjects. All subjects
had normal or corrected-to-normal visual acuity as

measured by the Early Treatment Diabetic Retinopathy
Study (ETDRS) visual acuity chart.

Apparatus and stimuli

Stimuli were generated on a PowerMac G4 computer
using Matlab (The Mathworks, version 5.2.1) and the
Psychophysics and Video Toolboxes (Brainard, 1997;
Pelli, 1997). Stimuli were displayed on CRT monitors
(McMaster: Sony Trinitron GDM-F520; Nottingham:
Trinitron Dell P1130) set to a resolution of 1280 ×
1024 pixels and a frame rate of 85 Hz (non-interlaced).
Average luminance was 73 cd/m2 (McMaster), and
52.4 cd/m2 (Nottingham). The monitor calibration
data were used to build a 1,779-element lookup table
(Tyler et al., 1992), and customized computer software
constructed the stimuli on each trial by selecting the
appropriate luminance values from the calibrated
lookup table and storing them in the display’s eight-bit
lookup table.

The textures were band-limited noise patterns created
by applying an isotropic band-pass (2-4 cycles/image)
ideal spatial frequency filter to Gaussian noise (see
Figure 1). The textures subtended 4.8◦ × 4.8◦ of visual
angle from the viewing distance of 114 cm. The stimuli
were shown in one of two levels of two-dimensional
static, white Gaussian noise created by sampling from
distributions with contrast variances of 0.01 and 0.1.
During the experiment, signal contrast in each noise
condition was varied across trials using the method
of constant stimuli. For the signal present condition,
the signal was shown at one of seven levels of contrast
spaced equally on a logarithmic scale. For the signal
absent condition, signal contrast was set to zero. Hence,
there were eight contrast levels in all, and 16 different
stimulus conditions (eight contrasts × two external
noise levels). Table 1 gives the contrasts used for each
of the two noise levels. Two sets of five textures were
created, set A and set B.
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Low Noise (0.01) High Noise (0.1)

0.00 0.00
0.0038 0.0092
0.0043 0.0106
0.0050 0.0122
0.0058 0.0141
0.0066 0.0162
0.0076 0.0187
0.0088 0.0216

Table 1. RMS contrasts used in the detection tasks in both noise
levels. Zero contrast corresponds with the signal absent
condition, comprising 50% of trials.

Procedure

All subjects performed two sessions of a yes-no
detection task at roughly the same time on two
consecutive days. There were two groups. The same
texture group performed the task with the same set of
five textures on both days (either set A or set B on both
days). The different texture group performed the task
with a set of five textures on day 1 and a different set of
five textures on day 2 (A-B or B-A on days 1 and 2).
The textures are shown in Figure 1.

Viewing was binocular and head position was
stabilized with an adjustable chin rest. The stimulus
display was the only source of illumination in the room.
The experiment started after a 60 s period during which
the subject adapted to the average luminance of the
display. Each trial began with the presentation of a
black, high-contrast fixation point (0.15◦ × 0.15◦), in
the center of the screen for 100 ms. This was followed by
a randomly selected texture presented for 200 ms at the
center of the screen in either the signal absent condition
(zero contrast) or the signal present condition (one of
seven contrasts shown in Table 1) at the given noise
level. On signal absent trials, the stimulus comprised
a square patch of Gaussian noise. After the stimulus
disappeared, subjects used a keypress to report whether
the texture was present or absent on that trial. Auditory
feedback indicated whether the response was correct
(high-pitched tone) or incorrect (low-pitched tone). The
next trial began 1 s after the presentation of feedback.
Noise levels were blocked with a short break between
blocks. The order of noise levels was randomized for
each subject. Each session comprised 560 trials: for
each noise level there were 140 signal present trials (7
contrasts × 20 trials per contrast), and 140 signal absent
trials (zero contrast). Hence, the signal was present on
50% of trials. The duration of each session was about
40 minutes.

Before the experiment began, subjects were shown
examples of the stimuli in low and high noise, at both
low and high signal contrasts. They were told that the

noise conditions would be blocked. They were further
given the following instructions: “When you respond
correctly, you will hear a high-pitched beep, and when
you respond incorrectly, you will hear a low-pitched
beep, so you will know how you are doing. Don’t feel
discouraged if you find the task hard at first, you’ll get
the hang of it as you go along. The task is designed
to be difficult, so you will get some trials wrong from
time to time, but please try to do your best.” In this
sense, subjects were instructed to maximize the number
of correct responses. However, subjects were not
explicitly instructed about differences in potential task
strategies, that is, “minimize false alarms” vs. “maximize
proportion correct.”

Results

We calculated the signal detection measure of
sensitivity (d′) at each contrast using the standard
formula

d ′ = z(H ) − z(FA) (1)

where z is the inverse of the cumulative normal
distribution function andH and FA are the hit and false
alarm rates, respectively. Hits were measured separately
at each contrast at each noise level, and a single false
alarm rate was measured at each noise level from the
signal-absent trials in that block. Contrast detection
thresholds corresponding to a d′ of 1 were obtained
from a linear fit of d′ to log contrast variance.

Response criterion was measured in two ways.
The first measure, termed c_local was calculated
using the procedure described by Wenger and Rasche
(2006), who used the method of constant stimuli for
a contrast detection task performed on multiple days.
They fit a psychometric function to the proportion
of hits measured on day 1 to estimate the stimulus
contrast corresponding to a hit rate of 79% (CH79),
and then used the false-alarm rate (estimated from the
signal-absent trials) to calculate the response criterion
using the formula

c = −0.5 × [z(H ) + z(FA)] . (2)

On each subsequent day of testing, a psychometric
function that was fit to the hit rates measured with
all contrasts was used to estimate the hit rate for the
threshold contrast CH79 calculated on day 1. Typically
the hit rates for that contrast increased as a result
of learning. Finally, Equations 1 and 2 were used
to calculate d′ and c from the estimated hit rate and
the false-alarm on each day. This procedure yielded
estimates of d′ and c for a single contrast (CH79) on
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every day of testing. We used this procedure to compute
d′ and c_local for stimulus contrasts that produced
hit rates of 70% and 80% on day 1 (c_local70 and
c_local80). Note that d′ and c on day 1 are determined
by a subject’s false-alarm rate because the stimulus
contrast always was selected to produce a hit rate of
either 70% or 80%. On day 2, d′ and c were determined
by the false-alarm rate and an estimate of the hit rates at
the same contrasts that were used to calculate sensitivity
and response bias on day 1.

The second measure of criterion, c_global , was based
on Jones et al’s (2015) formulation of criterion, which
accounts for sensitivity at multiple signal levels:

c_global = λ_obs − λ_ideal (3)

= −Z(FA) − argmax
λ

( m∑
i=1

(P(Si )[1 − �(λ; d ′
i , 1)]

)

+P(N )[�(λ; 0, 1)]) (4)

where P(Si) is the probability of the ith signal (i.e.,
0.5/7), P(N) is the probability of a noise trial (i.e.,
0.5), � is the cumulative Gaussian thresholded at the
ideal criterion, λ, and assuming equal, unit variance
for both distributions. The ideal criterion is assumed
to maximize proportion correct for the ensemble of
stimulus contrasts. Equation 4 finds λideal , and estimates
the observer’s criterion, λobs, as the distance from λideal
using the observer’s false alarm rate. This formulation
is an extension of the standard formula for criterion
(Equation 2). Whereas in Equation 2, the ideal criterion
maximizes proportion correct at a single signal level,
the ideal criterion in Equation 4 accounts for all signal
levels.

All analyses were conducted using R software for
Statistical Computing (R Core Team, 2013). d′ and
threshold were analyzed with mixed factorial analyses
of variance, with group (same vs. different textures) as
the between-subject factor, and noise (low vs. high),
day (1 vs. 2) and (where relevant) contrast (7 levels) as
within-subjects factors. Significant interaction effects
were analyzed with simple main effects and t tests.
Seven subjects (four from the same texture group and
three from the different texture group) were excluded
from all analyses because performance was at chance
for these subjects on one or both of the two days, in
one or more of the noise levels. Four of these subjects
were at chance performance in both noise levels on both
days. Of the 77 subjects included in the analyses, 40
were in the same texture group and 37 in the different
texture group. An additional two subjects were removed
from the threshold analyses because a reliable threshold
could not be calculated in at least one condition on at
least one day.

Owing to the presence of outliers, the criterion data
were analyzed with nonparametric tests of significance

adapted for factorial designs. Factorial permutation
tests were conducted using the ezPerm function from
the ez package in R (Lawrence, 2016). For all analyses,
experiment (Nottingham, McMaster_1, McMaster_2)
was included as a factor to determine whether the
results were consistent across replications.

Sensitivity (d’)

Figure 2A and 2B show sensitivity across contrast
at each noise level for both groups on days 1 and 2.
As expected, d′ increased with contrast. d’ increased
from day 1 to day 2 for both groups in all conditions,
indicating that both groups improved with practice.
In addition, the slope of the psychometric function
was greater on day 2 than day 1, although this effect
appeared to differ between the low and high noise
conditions in the same texture group. Finally, the effect
of practice was larger in the different texture group
compared with the same texture group in the low
noise condition. We first analyzed the data from day
1 only, to confirm that the groups were equivalent at
baseline. A 3 (experiment) x 2 (group) × 2 (noise) ×
7 (contrast) analysis of variance (ANOVA) revealed
that the factor experiment was not significant and did
not interact with any of the variables. There was a
significant main effect of contrast, F(6, 438) = 270.49,
p < 0.0001, η2

p = 0.79, and noise, F(1, 73) = 37.48, p
< 0.0001, η2

p = 0.34, but the main effect of group was
not significant, F(1, 73) = 0.31, p = 0.57, confirming
that the two groups did not differ on day 1. The noise ×
contrast interaction was significant, F(6, 438) = 3.71,
p = 0.001, η2

p = 0.05, suggesting that d′ increased with
contrast more in high noise than in low noise (i.e., the
slope of the psychometric function was steeper in high
noise; see Figure 2). The remaining interactions were
not statistically significant, F ≤ 3, p ≥ 0.08 in each
case.

Next, we analyzed the data from both days, including
day as a factor. Here, the ANOVA revealed a significant
main effect of experiment, F(2, 73) = 3.54, p = 0.033,
η2
p = 0.09. Mean d′ , averaged across noise, contrasts,

and day, was 1.38, 1.41, and 1.13 in experiments 1-3,
respectively, and pairwise comparisons using Tukey
HSD indicated that the difference between experiments
2 and 3 was significant. Experiment did not interact
with any of the variables. As expected, the ANOVA
found a significant main effect of contrast, F(6, 438) =
518.98, p < 0.0001, η2

p = 0.88; noise, F(1, 73) = 96.24, p
< 0.0001, η2

p = 0.57; and a significant noise × contrast
interaction, F(6, 438) = 9.61, p < 0.0001, η2

p = 0.12. The
main effect of day was significant, F(1, 73) = 82.53, p <
0.0001, η2

p = 0.53, because sensitivity was, on average,
higher on day 2 than day 1. These main effects were
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Figure 2. Performance on the texture detection task in two noise levels for both groups on days 1 and 2. Solid symbols: Day 1. Open
symbols: Day 2. (A, B): Sensitivity (d′ ) plotted as a function of stimulus contrast for the same texture (black; n = 40) and different
texture (red; n = 37) groups. Symbols show mean in each condition, error bars show standard error of the mean. (C): Threshold vs.
external noise for both groups (n = 39, 36), on days 1 and 2.

qualified by a significant day × contrast interaction,
F(6, 438) = 10.59, p < 0.0001, η2

p = 0.13, which reflected
the fact that the change in sensitivity across days was
greater at high stimulus contrasts than low stimulus
contrasts. In addition, there was a significant day ×
noise interaction, F(1, 73) = 4.69, p = 0.033, η2

p = 0.06,
which suggests that the change in sensitivity across days
was greater in high noise than in low noise. Finally,
there was a significant interaction between group, day,
and noise, F(1, 73) = 5.44, p = 0.02, η2

p = 0.07, which
suggests that the difference in improvement between
groups depended on noise level. The other interactions
between variables were not significant, F ≤ 4, p ≥ 0.09
in each case.

To analyze the three-way interaction between group,
day, and noise, we first averaged d′ for each subject
across stimulus contrasts, and then conducted separate
2 (group) × 2 (day) ANOVAs for each noise level. The
group × day interaction was significant in the low noise
condition, F(1, 75) = 8.32, p = 0.005, η2

p = 0.10, but
not the high noise condition, F(1, 75) = 0.23, p = 0.63.
This result confirms the pattern shown in Figure 2,
which suggests that in low noise, but not in high noise,
the different texture group improved more than the
same texture group. We also conducted separate 2 (day)
× 2 (noise) ANOVAs for each group: The day × noise
interaction was significant in the same group, F(1, 39)
= 12.32, p = 0.001, η2

p = 0.24, but not the different
group, F(1, 36) = 0.02, p = 0.88. Hence, the same
texture group improved more in high noise than in low
noise, whereas the different texture group improved by
a similar amounts in both noise levels. Overall, these
results suggest that both groups improved with practice,
and that the different texture group improved more in
low noise than the same texture group.

Contrast thresholds

Figure 2C shows contrast threshold plotted against
noise for each group on days 1 and 2: Thresholds
were higher in high noise than in low noise, and
decreased from day 1 to day 2 for both groups.
Log-transformed thresholds from day 1 were analyzed
with a 3 (experiment) × 2 (group) × 2 (noise) ANOVA.
On day 1, the main effect of noise was significant, F(1,
69) = 215.16, p < 0.0001, η2

p = 0.76, because thresholds
were generally higher in the high noise condition. There
was no significant main effect of experiment, F(1, 69) =
1.47, p = 0.23, or group, F(1, 69) = 0.10, p = 0.74, and
none of the interactions were significant, F ≤ 1, p ≥
0.50 in each case.

Thresholds from both days were analyzed with a
3 (experiment) × 2 (day) × 2 (group) × 2 (Noise)
ANOVA. There was a significant main effect of noise,
F(1, 69) = 429.80, p < 0.0001, η2

p = 0.86, and a
significant main effect of day, F(1, 71) = 24.31, p <
0.0001, η2

p = 0.26, indicating that thresholds were lower
on day 2 than day 1. The main effect of group was not
significant, F(1, 69) = 0.25, p = 0.61, nor was the group
× noise × day interaction, F(1, 69) = 2.50, p = 0.11, η2

p
= 0.004. No other interactions were significant, F ≤
3, p ≥ 0.1 in each case. Overall, these results suggest
that thresholds of both groups improved by the similar
amounts in both noise levels.

Criterion measures

Figure 3 shows mean false alarms and the medians of
both measures of the response criterion (Equations 2-6)
plotted against day, for both groups and both noise
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Figure 3. False alarms (mean) and two measures of the criterion (medians) plotted against day, for both noise levels and both groups.
(A) Data combined across the three experiments (i.e., replications). (B-D) Experiments 1-3 (Nottingham, McMaster_1, McMaster_2).
Top row: False alarms. Row 2: c_global calculated using Equation 4. This measure accounts for all signal levels used in the task. Row 3:
c_local at hit rates of 70% and 80%, see Equation 2 and text. Error bars show the standard error of the mean for false alarms, and
standard error of the median for the remaining measures, calculated as the standard deviation of the bootstrapped distribution of
medians in each condition.

levels. For these measures, the results differed across
experiments (replications), therefore the figure shows
the results from each experiment separately (columns
B-D), as well as all experiments combined (column A).

False alarms
False alarms (Figure 3, top row) were analyzed with

a 2 (group) × 2 (day) × 2 (noise) × 2 (experiment)
ANOVA, which found that false alarms decreased
significantly across days, F(1, 71) = 48.26, p < 0.0001,
η2
p = 0.40, and were higher in low noise than in high

noise, F(1, 71) = 13.58, p = 0.00044, η2
p = 0.16. The

following interactions were significant: group × day,
F(1, 71) = 9.35, p = 0.003, η2

p = 0.12, group × noise
× day, F(1, 71) = 4.43, p = 0.04, η2

p = 0.06; group ×
experiment × day, F(2, 71) = 3.98, p = 0.02, η2

p = 0.10;
and group × experiment × noise × day, F(2, 71) =
8.065, p = 0.00069, η2

p = 0.19. The four-way interaction
was decomposed with two separate ANOVAs that
examined the effects of experiment, group, and day at
each noise level. In low noise, the three-way interaction
between group, experiment, and day was significant,

F(2, 71) = 10.42, p = 0.001, η2
p = 0.23. In high noise,

the same three-way interaction was not significant, F(2,
71) = 1.22, p = 0.29, and only the main effect of day
was significant, F(1, 71) = 24.34, p < 0.001. η2

p = 0.26.
Figure 3 shows that in low noise, false alarms did

not decrease consistently from day 1 to day 2 for
both groups across experiments. In experiment 1
(Nottingham) and experiment 3 (McMaster), false
alarms decreased for the different texture group but
not for the same texture group. In experiment 2
(McMaster), false alarms decreased for both groups.
This difference between groups across experiments was
confirmed with two additional ANOVAs in the low
noise level, showing a significant interaction between
experiment and day for the same texture group, F(2, 37)
= 14.91, p < 0.00001, η2

p = 0.45, but not the different
texture group, F(2, 34) = 0.637, p = 0.53. Hence, the
four-way interaction in the combined results arose from
the same texture groups in experiments 1 and 3, who
disrupted the pattern of a decrease in false alarms with
practice.

Figure 4 shows the relationship between the change
in performance and the change in false alarms for each
subject. As expected, changes in false alarms were
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Figure 4. Change in false alarms plotted against change in d’ for each subject. (Top) Low noise. (Bottom) High noise. (Left) Same
texture group. (Right) Different texture group. Symbol indicates experiment. Improvement from day 1 to day 2 is shown by points to
the right of the vertical dashed line. A decrease in false alarms is shown by points below the horizontal dashed line.

strongly negatively correlated with the changes in d′

(Low noise, same texture: r = −0.59, t(38) = 4.53, p <
0.0001; Low noise, different texture: r = −0.49, t(35) =
3.33, p = 0.002; High noise, same texture: r = −0.53,
t(38) = 3.85, p = 0.0004; High noise, different texture: r
= −0.44, t(35) = 2.92, p = 0.005). Several subjects from
the same texture group in low noise did not improve
across days, and showed an increase in false alarms (top
left quadrant). Consistent with the analyses reported
above, these subjects were primarily from experiment
1 (Nottingham; black symbols), and experiment 3
(McMaster, asterisks).

c_global
The criterion measures were analyzed using a

factorial permutation test that permits evaluation of
higher-order interactions (Lawrence, 2016). Figure 3
shows the median c_global calculated using Equation 4.
The combined data show that the criterion shifted
rightward, from being slightly liberal on day 1 toward an
unbiased, or optimal, criterion on day 2 for both groups.
A factorial permutation test revealed a significant
interaction between experiment, group, noise and day
for c_global (p = 0.014). The four-way interaction
was decomposed with additional permutation tests
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conducted separately in low and high noise. In low
noise, the three-way interaction between experiment,
group and day was significant (p = 0.008). In high noise,
the same three-way interaction was not significant (p =
0.87), and none of the other effects were significant.

Figure 3 suggests that the three-way interaction in
low noise arose because the criterion did not become
less liberal in the same texture group in experiments 1
and 3. This observation was confirmed with separate
analyses examining the effects of experiment and day
for each group in low noise. For the same texture
group, there was a significant two-way interaction
between experiment and day (p = 0.004). For the
different texture group, the two-way interaction was not
significant (p = 0.358), and there was only a main effect
of day (p = 0.001). The experiment × day interaction
for the same texture group in low noise was further
examined with three permutation tests evaluating the
effect of day in each experiment. The effect of day was
significant in experiment 2 (p = 0.001) but not in the
other two experiments.

To summarize the pattern so far, in general, groups
who showed a rightward criterion shift (i.e., the
response criterion became less liberal) were the same
groups whose false alarms decreased across days. Hence,
the results for c_global resemble those for false alarms.

c_local
Figure 3 shows c_local calculated from Equation 2

for hit rates of 70% and 80%. As expected, c_local was
more liberal at a hit rate of 80% than 70%. The effect
of practice on c_local was in the opposite direction
to c_global for the same texture group in high noise
(i.e., c_global became less liberal and approached an
unbiased, optimal value, but c_local became more
liberal). Aside from this difference, the effect of practice
on c_local resembled the effects found with c_global . A
factorial permutation test revealed that the four-way
interaction between group, experiment, noise and day
was not significant for c_local70 (p = 0.057) or c_local80
(p = 0.084). In addition, the group × day interaction
was not significant for c_local70 (p = 0.054), and
c_local80 (p = 0.051).

Again, the difference across experiments arose from
experiments 1 and 3, where in low noise the response
criterion shifted in opposite directions across days
in the same and different groups, a result similar to
the one obtained with the global criterion and false
alarms. In experiments 1 and 3, the same group’s
criterion decreased across days, whereas it increased
(or stayed the same) for the different texture group
in all experiments. The main difference between the
global and local criterion is that the global criterion
appears to become more optimal across days, whereas
the local criterion may be interpreted as becoming more
or less optimal depending on the hit rate at which it is

measured (e.g., compare c_local70 and c_local80 for the
same texture group in high noise in the combined data).

In summary, the results combined across the three
experiments show that the effect of practice on response
bias depended on the measure of response criterion.
False alarms decreased with practice, and measures that
were based on the hit rates at all stimulus contrasts
(c_global) became less liberal and closer to an unbiased,
optimal value. However, when a single contrast was used
to define the response criterion (c_local70 , c_local80)
practice caused the criterion to become less liberal in
three of four conditions, and more biased according to
c_local70. Finally, the effects of practice on response
criterion were more consistent across experiments in
the high noise condition than the low noise condition.

Comparison of global and local measures
Changes in global and local measures of response

criteria that occurred between days 1 and 2 were
positively correlated in both the same and different
textures groups and in the low and high noise conditions
(Figure 5). Generally speaking, a conservative or liberal
shift in c_global was accompanied by a shift in the
same direction of c_local . Nevertheless, examination
of Figure 5 reveals that global and local criteria
occasionally changed in opposite directions. This result
also is evident in Figure 3: Although false alarms
decreased across days in the high noise condition,
the median values of c_global increased whereas the
median values of c_local decreased (particularly in
the same group). This change in opposite direction
is possible because the value of c_global depends on
the hit rate at every signal contrast whereas c_local
depends on the hit rate at only one contrast. Figure 6
illustrates how this occurred in two observers. The
figure shows the noise and signal distributions for each
observer based on their performance on days 1 and 2.
The optimal local criterion is calculated at a single hit
rate (here, 80% on day 1, and the corresponding hit
rate at the same signal contrast on day 2). The optimal
global criterion is calculated across the ensemble of hit
rates on each day. The observed values of c_global and
c_local are based on each of these optimal criteria. The
same false alarm rate is used for c_local and c_global ,
so the location of both measures relative to the noise
distribution is the same (note that the blue and green
dashed lines are in same location on each day). The
difference between the local and global measures is
associated with their positions relative to the optimal
values. Practice produces different effects on c_global
and c_local when the optimal criteria differ. For s1,
c_local and c_global shift in opposite directions from
day 1 to day 2 because the local optimal criterion is
to the right of the global optimal on day 2. For s2,
c_local shifts leftward and c_global is unchanged, again



Journal of Vision (2020) 20(7):22, 1–12 Hussain & Bennett 9

Figure 5. The relation between changes (i.e., day 2 - day 1) in global and local measures of criterion. Changes in global and local
measures were positively associated in the the same and different groups and in the low and high noise conditions.

because the local optimal is to the right of the global
optimal on day 2.

Discussion

We found that sensitivity in a yes-no detection task
increased across days regardless of whether observers
performed the task with the same or different textures
on day 2 (Figure 2). Thus, learning in a detection
task generalized to novel textures. This result differs
from previous studies showing stimulus specific
improvements in detection of simple patterns (Dorais
& Sagi, 1997; Sowden et al., 2002), and stimulus specific
learning in texture identification tasks (Hussain et al.,
2009). The results are compatible with previous work
showing that improvements in contrast sensitivity
generalize across grating orientation (Mayer, 1983;
Sowden et al., 2002), although those experiments
measured luminance contrast thresholds in the absence

of noise. Overall, our results suggest that improvements
in detection of textures are not driven by observers
becoming more efficient at encoding particular stimulus
features. Instead, our results suggest that observers
may become more sensitive to the general spatial
characteristics of the stimuli. For example, they may
simply be better at detecting contrast energy within the
2 to 4 cy/image bandwidth that defined our textures. If
this is the case, then it is possible that learning would
not generalize to textures constructed from a different
spectral band (e.g., 8-16 cy/image).

Improvements in sensitivity from day 1 to day 2 were
associated with decreases in false alarms. Observers
who did not improve showed either no change in
false alarms, or an increase in false alarms across
days (Figure 4). This result contrasts with Wenger
and Rasche (2006), who reported that subjects who
improved on a yes-no contrast detection task showed
increases in false alarms, and a leftward (liberal)
criterion shift, as measured by a local criterion at a
hit rate of 79%. Jones et al. (2015) used an auditory
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Figure 6. Illustration of practice effects on c_global and c_local for two observers (s1: top two rows, s2: bottom 2 rows). The means of
signal (black solid) and noise (red dotted) distributions and the locations of local and global criteria are based on performance
measured on days 1 and 2. The optimal local criterion (solid blue) is calculated at a single hit rate (here 80% on day 1). The optimal
global criterion (solid green) maximizes proportion correct across the ensemble signal contrasts. The observed values of c_global and
c_local are indicated by dashed lines, and response bias is the difference between observed and optimal criteria. For s1, c_local and
c_global shift in opposite directions from day 1 to day 2: across days, the local criterion shifts leftward relative to the optimal value
(i.e., becomes more liberal) whereas the global criterion shifts rightward (i.e., becomes more conservative). For s2, c_local shifts
leftward whereas the c_global is unchanged. See text for more details.

amplitude-modulation yes-no detection task and found
instead that the effects of practice on response bias
depended on whether sensitivity at all signal levels
was accounted for in the criterion measure. For their
subjects, bias as measured by Wenger’s (2006) local
criterion increased with practice (subjects became more
liberal), but bias decreased when measured by the
global criterion. Consistent with Jones et al. (2015),
we found that, combined across all experiments, the
global criterion for both groups became more optimal
with practice, although this was a small effect and
not significant in all conditions. It is not clear why
false alarms increased in Wenger and Rasche (2006),

unlike what we found here. The discrepancy between
studies is unlikely to be due to differences in method
or experimental design, because Wenger and Rasche
(2006), Jones et al. (2015) and ourselves all tested yes-no
detection using multiple signal levels presented with
method of constant stimuli, and signal absent trials
interleaved within the same block (i.e., one false alarm
rate for all signal levels). It is worth noting here that
the effects of practice on bias may differ for adaptive
methods and in nAFC tasks.

The local criterion for our observers moved in the
same direction as the global criterion in most conditions
(except for the same texture group in high noise), and
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its overall position depended on hit rate (i.e., relatively
conservative at a hit rate of 70% and relatively liberal at
a hit rate of 80%). Whether the local criterion became
more or less optimal depended on the hit rate at which
it was calculated. For instance, in the combined data,
the same texture group’s criterion in the high noise
condition moved leftward at hit rates of both 70%
and 80%. At a hit rate of 80%, this appears to be a
shift toward a less biased, optimal criterion, whereas at
70% bias appears to increase. Therefore, a measure of
criterion that accounts for sensitivity at all signal levels
may be more useful in situations where multiple signal
levels are used.

The effects of practice on performance were more
variable in low noise than in high noise, reflected by
the variation of the same texture groups’ performance
across experiments 1 through 3. For the same texture
group, sensitivity in the low noise condition improved
less across days in experiments 1 and 3 than in
experiment 2, and several observers showed either no
change or an increase in false alarms. The criterion
measures varied across experiments in the same way
as false alarms. On average across experiments and
groups, sensitivity was lower in low noise than in high
noise (i.e., the task was more difficult in low noise),
which may have increased the variability of all response
measures (including criterion) in this condition.
Individual differences in learning have been reported for
other perceptual tasks (e.g., Saffell & Matthews, 2003;
Grzeczkowski et al., 2017), and it is not clear whether
these individual differences arise from task difficulty or
other factors.

Conclusions

In contrast with learning of visual discrimination and
identification, learning of detection of textures involves
a flexible strategy that encompasses the general spatial
characteristics of the stimuli. The effects of practice on
response bias in yes-no detection are better estimated
by a measure that accounts for sensitivity at all signal
levels used, than by a measure that is calculated at a
single performance level.

Keywords: sensitivity, bias, noise, channel, stimulus
specific, transfer, generalization
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