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Neurotensin receptor type 1 (NTS1) is a G protein-coupled receptor (GPCR) that affects cellular
responses by initiating a cascade of interactions through G proteins. The kinetic details for these
interactions are not well-known. Here, NTS1-nanodisc-Gas and Gai1 interactions were studied.
The binding affinities of Gai1 and Gas to NTS1 were directly measured by surface plasmon resonance
(SPR) and determined to be 15 ± 6 nM and 31 ± 18 nM, respectively. This SPR configuration permits
the kinetics of early events in signalling pathways to be explored and can be used to initiate
descriptions of the GPCR interactome.
� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical
Societies. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/3.0/).
1. Introduction

G protein-coupled receptors (GPCRs) constitute a large and
diverse family of seven transmembrane receptors. Around 800 of
these, the class A GPCRs, mediate responses of the cell to external
stimuli such as hormones, photons, small molecules and peptides,
through interactions with heterotrimeric G proteins. Ligand bind-
ing initiates a cascade of cell signalling events, beginning with a
conformational change in the receptor that activates heterotri-
meric G proteins. After activation by the receptor, Ga exchanges
guanosine diphosphate (GDP) for guanosine triphosphate (GTP)
in its binding pocket. Ga and Gbc dissociate and signal through
binding partners and second messengers to effect cellular response
through diverse effectors, including adenylyl cyclase (AC), GTPases,
phospholipase C proteins (PLCs), phosphoinositide 3-kinase (PI3K)
and Ca2+ channels. Ga hydrolyses GTP to GDP and reassociates into
the inactive heterotrimer with Gbc. The signalling potential of
GPCRs is amplified by their ability to bind various Gabcs, which
additionally may be composed of various combinations of the 21
Ga, 6 b, or 12 c subunits [1].

The GPCR neurotensin receptor type 1 (NTS1) binds neurotensin
(NT), a 13 amino acid peptide (ELYENKPRRPYIL) that acts as a neu-
rotransmitter in the brain and as a local hormone in peripheral
organs, with high affinity (KD �1 nM) [2,3]. NTS1 signals primarily
through Gq, which binds intracellular loop 3 of NTS1, but also
through the inhibitory Gi1 and the stimulatory Gs, which bind near
the C-terminus of the receptor [4]. NT modulates varied physiolog-
ical responses, including appetite, stress and anxiety, analgesia [5],
thermoregulation [6], maternal care [7] and dopaminergic signal-
ling [2]. It thus plays an important role in conditions such as Par-
kinson’s disease, eating disorders, psychosis, drug addiction, pain
and has also been implicated in colon cancer.

The only high-resolution structural knowledge of GPCR-G pro-
tein interactions is from the b2 adrenergic receptor-G protein com-
plex structure solved by Rasmussen et al. [8], and the crystal
structure of agonist-bound NTS1 was solved only recently [9].
Standard functional assays involving downstream effectors or
radioactive GTPcS G protein activation to describe GPCR-G protein
interactions do not assay the protein-protein interfacial interac-
tions directly. Quantitative kinetic data of GPCR-G protein interac-
tions comes from studies of the interactions of d and l-opioid
receptors with G proteins using plasmon waveguide resonance
[10–12]. Here, receptors were embedded in black lipid membranes
(BLM) in order to mimic closer the native environment of the
receptors. Few studies of the interactions of NTS1 with G proteins
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Fig. 1. Nanodisc preparation and NTS1-G protein coupling determination. (A) Schematic representation of the experimental setup. G proteins (gold) were amine-coupled to a
CM5 Biacore chip (GE Healthcare). FLAG-NTS1-loaded nanodiscs were injected over the sample and reference flow cells. The reference flow cell was activated and blocked or
ovalbumin was amine-coupled to it. Empty discs were injected over the sample and reference flow cells as a reference. Single cycle kinetics using serial concentrations of
FLAG-NTS1-nanodiscs was performed. Data were double-referenced. (B) Representative SEC profile for nanodisc purification. A peak composed of large aggregates and
vesicles elutes in the void volume at approximately 7.5 ml, followed by the nanodisc peak at �12.5 ml, corresponding to a calibrated size of approximately 10 nm (left). SDS–
PAGE of anti-FLAG enriched nanodiscs, showing approximately twice the amount of MSP1D1 compared to NTS1, which understains with Coomassie Brilliant Blue (right). (C)
Negative stain EM images showing nanodisc sample. Nanodiscs prepared with a 1:1 ratio of POPC:POPG form homogeneous populations. Stain was 2% uranyl acetate.
Reference-free class averages of 10–12 nm PC:PG discs (prepared using EMAN2 [54]) are shown. Box size is 18.5 nm. Scale bars are 100 nm (upper) and 50 nm (lower).
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have been reported (all assayed by activation of the G protein)
[4,13,14], and little is known of any of the kinetics of the subse-
quent signalling events. An understanding of the kinetics of inter-
action of GPCR receptors with their cognate G proteins, preferably
under conditions that mimic the native lipid environment of the
receptors, is essential for drug development that targets signalling
pathways. Structural information and the determination of the
affinity of binding would narrow the field of potential drug targets.

We have used surface plasmon resonance (SPR) to investigate
the interactions of the a subunits of Gi1 and Gs with NTS1 reconsti-
tuted into 10-nm size lipid discs termed nanodiscs [15,16]. This
avoids common problems encountered when studying membrane
proteins using this method, such as detergent and glycerol giving
rise to artefactual signals, whilst additionally enabling the study
of the receptor in specific lipid mixes. To our knowledge, this is
the first time that the G protein binding kinetics of a peptide-bind-
ing GPCR in a lipid membrane environment have been determined
using SPR, and the first time that a GPCR in nanodiscs has been
used as the analyte in SPR studies.

2. Materials and methods

2.1. Materials

Dodecyl-b-D-maltoside (DDM), 3-[(3-cholamidopropyl)dimeth-
ylammonio]-1-propanesulfonate (CHAPS) were purchased from
Melford Laboratories and cholesteryl hemisuccinate (CHS) from
Sigma. Palmitoyl-oleoyl phosphatidylcholine (POPC) and palmi-
toyl-oleoyl phosphatidylglycerol (POPG) were from Avanti Polar
Lipids. All other reagents were analytical grade.

2.2. Protein expression and purification

2.2.1. NTS1B purification
The NTS1B fusion construct has been described previously

[17,18]. The construct was modified to contain a FLAG tag
(DYKDDDDK). NTS1B was expressed and purified as described pre-
viously [19], but phospholipids were omitted from the buffers and
10% glycerol was used in the final elution from the affinity column.
TEV cleavage and affinity purification of cleaved NTS1 were per-
formed as described [19,20]. Approximately 1.0 mg FLAG-NTS1
was obtained from 80 g cells.

2.2.2. MSP1D1 purification
The Membrane Scaffold Protein 1D1 (MSP1D1) construct was

obtained from AddGene (Addgene plasmid 20061) [16]. The pro-
tein was expressed and purified according to [21] with modifica-
tions. Briefly, the protein was expressed at 37 �C using BL21(DE3)
Escherichia coli cells (Calbiochem) in 2 L flasks containing 500 ml
TB medium inoculated with 5 ml starter culture prepared as
described, until the OD600 reached 1.6. Expression was induced
with 1 mM IPTG and the cells were harvested by centrifugation
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(8000�g; 15 min). MSP1D1 purification was performed as
described, with the exception that a cocktail of 2 lg/ml pepstatin
A, 2 lg/ml leupeptin and 3 lg/ml aprotinin were used instead of
phenylmethylsulfonyl fluoride (PMSF).

2.2.3. G protein purification
The constructs for the alpha subunits of Gs and Gi1 were kindly

donated by Renaud Wagner (University of Strasbourg, France). Ga
subunits were expressed and purified according to [22], with
minor modifications. The His-tagged proteins were expressed
using E. coli BL21(DE3) cells (Calbiochem) and purified using metal
affinity chromatography on a 5 ml HisTrap High Performance
column (GE Healthcare). Gai1 was eluted from the column using
a linear gradient of imidazole from 10 mM to 150 mM imidazole
over 15 ml. Gas was eluted from the column in 10 mM steps up
to 150 mM over 160 ml.

2.2.4. FLAG-NTS1 reconstitution into nanodiscs
The protocols for reconstitution of membrane proteins into

nanodiscs were followed in initial reconstitution attempts
[15,16,21,23–26], but optimal ratios of MSP:FLAG-NTS1 and
MSP:lipid were empirically determined. MSP:FLAG-NTS1 mol
ratios of both 80:1 or 50:1 yielded fractions of homogeneously-
sized nanodiscs, confirmed with negative stain electron
microscopy (EM). The lipid:MSP ratio for either a 1:1 mix of POPC:-
POPG or a 3:1:1 mix of POPC:POPE:POPG with 25 mol% cholesterol
was 65:1 for empty discs and 60:1 for loaded discs. Final
Fig. 2. SPR traces of GPCR G coupling. (A) and (B) FLAG-NTS1-PC:PG nanodiscs coupling
amine-coupled to a CM5 Biacore chip (GE Healthcare) in 10 mM sodium acetate, pH 5.
Healthcare) in 10 mM sodium acetate, pH 5.0 (B). The reference flow cell was activated an
reconstituted and ligand-bound FLAG-NTS1 were injected over the chip surface. Empty
double-referenced. The affinity of Gs (A) for FLAG-NTS1 in nanodiscs was 9 nM in this i
captured on an L1 chip. FLAG-NTS1-PC:PG nanodiscs (2500 RU) and empty PC:PG nanod
injection at 5 ll/min. The chip was thoroughly washed in running buffer at 50 ll/min for
injected across the flow cells for 150 s per concentration at 50 ll/min. The data (solid line
binding model (dashed lines), giving KD values of 65 nM for the 1:1 fit and 0.5 and 80 nM
concentrations of all components were approximately 160 lM
MSP1D1, 8 mM lipid, 3 lM FLAG-NTS1, 16 mM sodium cholate,
2.6% glycerol. For empty discs, the volume of the reaction mixture
was brought up to the same volume as the FLAG-NTS1 sample with
the same DDM-containing buffer as FLAG-NTS1.

A calibrated Superdex 200 10/300 GL size exclusion column (GE
Healthcare) was equilibrated in 50 mM Tris–HCl, pH 7.4, 100 mM
NaCl, 5 mM MgCl2. Homogeneously-sized nanodiscs were separated
from larger vesicles and aggregates at a flow rate of 0.4 ml/min.

Receptor-containing nanodiscs were enriched through the use of
an anti-FLAG antibody column according to the directions (anti-
FLAG M2 agarose, Sigma–Aldrich). Receptor-containing nanodiscs
were eluted using 100 lg/ml FLAG� peptide (F3290, Sigma–
Aldrich), dialysed extensively against Nanodisc SPR buffer (50 mM
Tris–HCl, pH 7.4, 100 mM NaCl, 5 mM MgCl2), and concentrated to
�1 lM using 100000 MWCO Vivaspin centrifugal concentrator
tubes (Sartorius).

2.2.5. Surface plasmon resonance
SPR was performed on a Biacore T100 instrument later

upgraded to a T200 (GE Healthcare). Single cycle kinetics (SCK)
were performed due to no suitable regeneration conditions being
found for multiple cycles. Gas or Gai1 were amine-coupled to the
carboxymethylated surface of a CM5 chip (Biacore, GE Healthcare)
using standard protocols. Briefly, G proteins were dialysed into
40 mM sodium phosphate buffer, pH 7.4 with 5 mM MgCl2. The
calculated pI values for His-Gai1 and His-Gas were 6.1 and 6.0
to His6-Gs or His6-Gi1 immobilised on a CM5 chip. Approximately 7000 RU Gs was
5 (A). Approximately 13000 RU Gi1 was amine-coupled to a CM5 Biacore chip (GE
d blocked. Serial concentrations of 41.25–660 nM (A) and 25–400 nM (B) nanodisc-
nanodiscs at the same concentrations were injected as a reference, and data were
nstance, and 9 nM for Gi1 (B). (C) His6-Gs coupling to FLAG-NTS1-PC:PG nanodiscs
iscs (2000 RU) were captured in FC 4 and 3, respectively, of an L1 chip by an 800-s
30–60 min. Serial dilutions of 1000 nM (62.5, 125, 250, 500, 1000 nM) His6-Gs were
s) were fitted with a 1:1 Langmuir binding model as well as a heterogeneous ligand
for KD1 and KD2 respectively. The v2 values for the fits were 4.4 and 3.3, respectively.



Table 1
Averaged kinetic parameters for Ga coupling to FLAG-NTS1-PC:PG nanodiscs.

His6-Gas His6-Gas with GTPcS His6-Gai1

Mean SEMa Nb Mean SEM Nb Mean SEM Nb

ka1 (M�1 s�1) 1.9 � 105 1.9 � 103 12 1.4 � 105 680 4 3.2 � 105 340 6
kd1 (s�1) 2.4 � 10�3 4.2 � 10�5 12 1.7 � 10�3 5.4 � 10�5 4 1.1 � 10�2 8.4 � 10�6 6
KD1 (nM) 31 18 12 72 23 4 15 6 6
ka2 (M�1 s�1) 4.6 � 105 3.0 � 104 10 8.9 � 104 1.8 � 103 4 1.4 � 105 2.8 � 103 6
kd2 (s�1) 4.4 � 10�1 7.5 � 10�3 10 7.3 � 10�2 5.1 � 10�4 4 1.6 � 10�2 1.1 � 10�4 6
KD2 (nM) 470 130 10 880 160 4 330 170 6
Rmax1 29 16 12 30 22 4 29 15 6
Rmax2 33 10 10 21 4.6 4 37 15 6

A one-tailed t-test comparing His6-Gas with GTPcS and His6-Gai1 with His6-Gas in pairs established that there were no significant differences between either of the two
paired datasets (p > 0.05).

a Standard error of the mean.
b Number of experiments.
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respectively (http://web.expasy.org/protparam). Coupling was
most efficient at pH 5.0 for His-Gai1 and pH 5.5 for His-Gas, as
determined by pH scouting on an unmodified chip surface. G pro-
teins were diluted to 10 lg/ml in 10 mM sodium acetate pH 5.0 or
5.5. The chip was primed in HBS-N (10 mM HEPES, 150 mM NaCl,
pH 7.4) and normalised with normalising solution (GE Healthcare).
Coupling was as follows at 10 ll/min: 2 � 60 s injections of 50 mM
NaOH, 420 s injection of NHS/EDC, 1000 s injection of Ga at appro-
priate pH, and finally the surface was blocked with a 420 s injec-
tion of ethanolamine. The reference flow cell was either simply
activated and blocked with 2 � 60 s injections of 50 mM NaOH,
420 s injection of NHS/EDC, and 420 s injection of ethanolamine,
or ovalbumin was amine-coupled to the surface as above, with
840 s injection of 10 lg/ml in 10 mM sodium acetate, pH 4.0. The
chip was extensively washed at 50 ll/min for 1–2 h, then primed
in Nanodisc SPR buffer. NT-bound (NT in excess (5 lM)), anti-
FLAG-enriched NTS1-nanodiscs and empty nanodiscs were serially
diluted five times from 660 nM or 400 nM. SCK programmes were
performed at 30–50 ll/min, using the empty nanodiscs as a buffer
reference. Three 60 s start-up injections of Nanodisc SPR buffer
were followed by serial injections of nanodiscs for 90–120 s.
Fig. 1A shows a schematic diagram of the experiment.

Data were confirmed by switching the roles of nanodiscs and
Ga subunits to ligand (the surface-bound molecule in SPR termi-
nology) and analyte (in solution) respectively.

SPR data was analysed using the BiaCore T100 or T200 BiaEval-
uation software (Biacore). Data was double-referenced and 1:1 and
heterogeneous ligand binding fits were applied.

3. Results

3.1. Nanodisc formation

Nanodisc formation efficiency depended on the lipid:MSP1D1:
NTS1 ratio. Lower amounts of lipid were required when higher
ratios of NTS1 incorporated into discs were needed. High ratios
of MSP1D1:FLAG-NTS1 (50:1 mol:mol) were used to ensure inser-
tion of primarily monomers into the nanodiscs. Assuming a Pois-
son distribution of FLAG-NTS1 into the discs [27], with this 50:1
ratio over 96% of discs would be empty, 3.8% would contain one
receptor, and less than 0.08% would contain two receptors. After
enrichment of loaded nanodiscs using the FLAG tag on NTS1 and
an anti-FLAG column, 2% of discs would contain two receptors. In
all cases though, some level of large aggregates was present in
the nanodisc reaction mixture, which was separated from the
homogeneous nanodisc population using SEC (Fig. 1B). The peak
fractions corresponding to a disc size of �10 nm were pooled,
anti-FLAG purified if required, concentrated and dialysed. As
expected, the discs contained twice the amount of MSP1D1 as
NTS1, and were pure on gels (Fig. 1B). EM confirmed size homoge-
neity of the populations (Fig. 1C). Specific activity of the NTS1-
nanodiscs was determined at �5% by a radioligand binding assay.

Diameters for the FLAG-NTS1-loaded PC:PG-containing discs
were 10 nm, and slightly smaller for the PPPC-containing discs at
9.5 nm. Empty discs tended to be smaller (�0.6 nm) than the
respective loaded discs. The diameters of nanodiscs calculated
from the standards of a calibrated gel filtration column correspond
to average molecular masses of approximately 200 ± 15 kDa for the
loaded PC:PG discs, and for empty discs, 10–20 kDa less. Corre-
spondingly, PPPC discs were 160–180 kDa, with empty discs up
to 15 kDa lighter. The Stoke’s radius assumes a spherical particle,
thus overestimating the mass of a disc-shaped object, and so the
number of lipid molecules calculated from the area of the disc is
likely to be lower than that calculated for the molecular mass. Tak-
ing the PC:PG discs as an example, and using lipid areas of
0.56 nm2 for POPG and 0.66 nm2 for POPC [28], subtracting 1 nm
from the radius of the disc for the diameter of an a-helix (the
MSP), and subtracting the area of NTS1 based on a radius of
approximately 2 nm, it can be calculated that there are approxi-
mately 62 lipid molecules per leaflet (or 70 for empty discs). This
is the number of lipid molecules put into the reaction mixture to
form nanodiscs for most cases, where a 1:60 MSP:lipid mol ratio
was used. This also correlates well with other data indicating a
typical lipid number of 62 lipid molecules per leaflet for POPC only
discs, where a slightly larger lipid area for POPC was used [15,16].
NTS1 would therefore be surrounded by just over three complete
annuli of lipid molecules in the nanodisc. Calculating the number
of lipid molecules from the total molecular mass given by the
Stoke’s radius (200 kDa) would give almost 20 lipid molecules
(average MW of 750 Da) more per nanodisc.

3.2. FLAG-NTS1-nanodisc-G protein coupling

G proteins were amine-coupled to the SPR chip or nanodiscs
were captured on an L1 chip (Fig. 2A–C). Between 5000 and
13000 RU were coupled and the surface rigorously washed to min-
imise baseline drift. Injections of nanodiscs over G protein showed
some concentration-dependence in the signal at higher concentra-
tions, which was partially abolished by lowering the top concentra-
tion of analyte (Fig. 2A and B). Single cycle kinetics (SCK)
programmes were used. Empty nanodiscs were used as a reference
in order to match the refractive index of the sample solution, since it
contained both protein and lipid. To fit the data, a standard 1:1
Langmuir binding model was used initially, but ultimately, a heter-
ogeneous ligand binding (HLB) model was found to be more appro-
priate, given the non-specific nature of amine coupling (inbuilt
BiaEvaluation software, Biacore). HLB global fits to the single cycle
kinetics data produced the kinetic parameters listed in Table 1.
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Fig. 3. Kinetics of the GPCR interactome. Some of the initial steps in the GPCR signalling pathway. The GPCR activates a heterotrimeric G protein (a,b) via the GTPase domain
of the Ga subunit, which is regulated by regulators of G protein signalling (RGS), causing hydrolysis of GTP to GDP (c). The heterotrimer dissociates into a and bc subunits. The
hydrolysis of ATP to cyclic AMP (cAMP) (d) is catalysed by interactions of Ga with adenylate cyclase, which regulates Ca2+ channels via activation of protein kinase A (PKA) by
cAMP. The Gbc subunits activate phosphatidylinositide 3-kinase and phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-
trisphosphate (IP3) and diacyl glycerol (DAG) which activate the release of Ca2+ from the endoplasmic reticulum and the activation of protein kinase C (PKC). PKA and G
protein-coupled receptor kinases (GRKs) phosphorylate the GPCR, leading to coupling of the receptor to arrestin and subsequent down-regulation of the receptor by
internalisation for recycling or degradation in lysosomes. (a,b) Gai1 and Gas affinities for NTS1 of 15 ± 6 nM and 31 ± 18 nM (SE), respectively (this study). (c) BODIPY-GTP
hydrolysis Km value was 120 ± 60 nM [55]; GTPcS binding kapp = 0.027 min�1 [56]. (d) Basal activity �20–65 pmol cAMP/min/mg [57], kobs of �1 � 10�3 � 6 � 10�4 s�1 [58].
(e) Spontaneous diffusion-interaction on the ms timescale [59], with dissociation rates of 1.3 s�1 [60], and a KD of 2–20 nM [61].
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4. Discussion

4.1. GPCR-G protein signalling

For the first time, the direct interactions of a GPCR in nanodiscs
with G proteins have been investigated using SPR. The kinetics of
this interaction and the affinity of binding are of much interest.
These are aspects of G protein coupling, or any downstream events,
that have rarely been assayed directly. Typical assays for G protein-
GPCR coupling follow the activation of the G protein through radio-
active assays using [35S]GTPcS, or by assaying cAMP or Ca2+ levels.
Knowing the affinity of a G protein for a GPCR, and the differential
affinities of the various G proteins for the same GPCR, and then iso-
lating the residues involved in the interaction and potentially
studying how different bc subunits influenced the interaction,
would be of immense use for the development of drugs targeting
specific signalling pathways or protein-protein interfaces (drugga-
ble interfaces). An additional level of complexity that needs to be
unravelled would be how different agonists affect the affinities
and rates of binding of G proteins to GPCRs, and whether the type
of lipid environment of the receptor has any influence on these
parameters.

4.2. Novel use of nanodiscs to detect signalling

Reconstituting NTS1 into nanodiscs eliminated bulk signals
caused by detergent and/or glycerol, which are required for main-
tenance of receptor function and stability when extracted from
membranes. Drift from the chip was also eliminated, because the
receptor itself could be used as the analyte rather than tagged to
NT as the ligand. Further advantages of this configuration were
that NTS1 was in a bilayer, the nanodiscs could be dialysed and
concentrated, and the NTS1-nanodiscs could also be used as the
ligand, by capturing them on an L1 chip. Using the empty nano-
discs as the reference ‘‘blank’’ ensured that the closest fitting blank
possible was being used to subtract any non-specific binding
signal.
4.3. Scope

GPCR structure and function are ideally assayed in a membrane
environment [29–31]. However, lipid membranes and membrane-
mimetic environments do not readily lend themselves to most bio-
physical methods. SPR is by now a well-established real-time,
label-free means of robustly determining the binding constants
and affinities of proteins for antibodies, ligands or other binding
partners, and the binding of NTS1 to NT in detergent has already
been demonstrated [3,32]. A number of other studies have investi-
gated GPCR-ligand or drug interactions, reconstitution of GPCRs on
SPR chips, or GPCR-G protein interactions in detergent [33–41].

Nanodiscs have been used as the analyte in SPR studies previ-
ously. Some instances were found [27,42,43], but to date no other
SPR study has used nanodiscs to investigate GPCR-G protein cou-
pling. The affinity constants of NTS1 in nanodiscs determined for
both Gai1 and Gas were in the low nanomolar range, implying high
affinity for the receptor. There was statistically no difference in the
affinities, or in the affinity of GTPcS-bound Gas for the receptor.
Reducing heterogeneity in the system may prove this not to be
the case, but stable receptor-G protein-GTPcS complexes have
been observed [44].

Our experiments were performed in the presence of ligand.
However, Alves et al. used plasmon waveguide resonance, a variant
of SPR, to study the affinities of various Gai and Gao proteins for
the d-opioid receptor in the presence and absence of ligand. The
affinities were found to be ligand- and bc-subunit-dependent
[12,45]. Thus, within the setting of the cell there is enormous
potential for broad scope of receptor function, depending on multi-
ple parameters. With every additional parameter, sensitivity and
subtlety of function grows. GPCRs are able to bind many different
ligands and G proteins. If the affinity of each different G protein for
the receptor is modulated by the type and presence or absence of
ligand, the type and presence or absence of bc subunit; and the
affinity of GTP(cS), which activates the G protein, for the G protein
alters according to the above parameters, the scope for function is
significant. Add to this the potential for homo- and hetero-dimer-
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isation of the receptor and it becomes increasingly clear why
GPCRs are responsible for, and capable of controlling, so many of
the essential and critical cell functions, and why any defect of
function anywhere along the signalling pathway can have such a
profound influence on the health of the organism.

The ability to explore, relatively rapidly, the affinities of various
G proteins for their cognate receptors is important for many
reasons, including testing the effects of mutations to conserved
residues within the C-terminal a-helix of the G protein, or within
the residues of a GPCR that are expected to bind the G protein,
or the effects of different lipid environments on the coupling affin-
ity and rate of binding of a GPCR to G proteins, or the effect of the
bc-subunit on the coupling, is immensely useful for later clinical
research for drug-targeting of signalling pathways. These are
aspects currently under study.

Mapping the GPCR interactome is going to be challenging due to
its inherent complexity [46–48] (Fig. 3), and here we have shown
one approach to understanding the biology associated with cellular
responses controlled through GPCRs. This importance has not
escaped the pharmaceutical industry, as demonstrated through
its continuance to focus on GPCRs as drug targets [49–53].
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