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ABSTRACT
Artifacts removal and rhythms extraction from electroencephalography (EEG) signals
are important for portable and wearable EEG recording devices. Incorporating a novel
grouping rule, we proposed an adaptive singular spectrum analysis (SSA) method for
artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the
grouping rule determines adaptively the first one or two SSA reconstructed components
as artifacts and removes them. The remaining reconstructed components are then
grouped based on their peak frequencies in the Fourier transform to extract the desired
rhythms. The grouping rule thus enables SSA to be adaptive to EEG signals containing
different levels of artifacts and rhythms. The simulated EEG data based on the Markov
Process Amplitude (MPA) EEG model and the experimental EEG data in the eyes-
open and eyes-closed states were used to verify the adaptive SSA method. Results
showed a better performance in artifacts removal and rhythms extraction, compared
with the wavelet decomposition (WDec) and another two recently reported SSA
methods. Features of the extracted alpha rhythms using adaptive SSA were calculated
to distinguish between the eyes-open and eyes-closed states. Results showed a higher
accuracy (95.8%) than those of the WDec method (79.2%) and the infinite impulse
response (IIR) filtering method (83.3%).

Subjects Bioengineering, Computational Biology, Neuroscience
Keywords Adaptive singular spectrum analysis, Rhythms extraction, Artifacts removal, EEG

INTRODUCTION
Electroencephalography (EEG) is a measurable voltage resulting from electrical activity of
the brain neurons (Niedermeyer & Da Silva, 2005). Spontaneous EEG consists of several
rhythms of different frequencies: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz) and gamma (>30 Hz), each containing information about different brain
activity. For example, the alpha rhythm reflects attention demands and the beta rhythm
reflects emotional and cognitive processes (Rowland, Meile & Nicolaidis, 1985). Because of
its feasibility and convenience, EEG has been widely studied for the brain physiological
states monitoring (Jones et al., 2014; Ko, Yang & Sim, 2009; Ng & Chan, 2005).

Rhythms extraction from the EEG signals is important for portable and wearable EEG
recording devices, which have attracted much attention in recent studies (Gargiulo et
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al., 2008; Van Bavel et al., 2008). Chi & Cauwenberghs (2010) developed a system using
wireless non-contact EEG electrodes to collect EEG signals for the alpha rhythm extraction.
Ranjit et al. utilized changes in the EEG alpha rhythm during eye closure as a switch
for electrical devices used for severely impaired people (Thuraisingham et al., 2007). In
addition, the EEG alpha rhythm was also used as a measure of resting-state arousal and
activation (Barry et al., 2007). However, the EEG signal is always contaminated by artifacts,
including electrooculogram (EOG), electromyography (EMG), baseline drift and stochastic
noise, which interfere the rhythms extraction (Azarbad et al., 2014; Daly et al., 2013;
Teixeira et al., 2006).

To extract the desired rhythms accurately from the interfered EEG signals, various
methods have been proposed for artifacts removal (Azarbad et al., 2014; Daly et al., 2013;
Teixeira et al., 2006). In multi-channel EEG recording, visual inspection is useful for
artifacts removal. However, this method is not applicable for portable or wearable devices
with single-channel EEG recording (Nunez et al., 1999). Therefore, many efforts have
been paid on algorithm for artifacts removal (Teixeira et al., 2006). He, Wilson & Russell
(2004) used regression analysis (RA) and adaptive filtering (AF) techniques for EOG
artifact removal. These methods required a separately recorded EOG signal as a reference,
which was however always contaminated. Wallstrom et al. (2004) applied the independent
component analysis (ICA) method to automatically remove the ocular artifacts in EEG
signals. However it distorted the EEG signals in the range of 5–20 Hz. Azami et al. used the
wavelet transform (WT) method for artifacts removal. However this method was relatively
slow, and could not separate components overlapping in time-frequency space (Azami &
Sanei, 2012; Azami & Sanei, 2014).

SSA is another powerful method for time series analysis. It enables separation of
different sources even overlapping in time-frequency space, and has been recently
applied for EEG artifacts removal and rhythms extraction. Maddirala & Shaik (2016b)
proposed a new grouping criterion in SSA to construct the reference signal for EOG
artifact removal. Based on the local mobility of the eigenvectors, Maddirala et al. then
proposed another grouping criterion to remove the motion artifact, which performed
better than the existing methods (Maddirala & Shaik, 2016a). Mohammadi et al. (2015)
and Mohammadi et al. (2016) proposed a SSA method with a new grouping criterion
based on the eigenvalue pairs to extract the main rhythms from sleep EEG signals. Akar et
al. proposed a wavelet decomposition-SSA based method for noise removal and desired
components extraction from EEG signals. It was successfully applied for schizophrenics’
brain dynamics analysis (Akar et al., 2015). In the SSA method, the grouping rule is
important for SSA reconstruction. However, there is no general grouping rule. For a
specific study, it depends on the research target, the types of signals and noise involved
(Azami & Sanei, 2014; Kouchaki, 2014; Sanei, Lee & Abolghasemi, 2012).

In this paper, we proposed a novel grouping rule for SSA reconstruction to remove
artifacts and extract rhythms from EEG signals. EEG signals were processed by SSA to
obtain a series of reconstructed components The first one or two reconstructed components
determined by the signal amplitude were then regarded as artifacts and removed. Finally,
the reconstructed components were grouped, based on their peak frequencies in the
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Fourier transform, to extract the specific EEG rhythms. Proof-of-concept experiments
were performed to verify the proposed adaptive SSA method in extracting the EEG alpha
rhythm and distinguishing between the eyes-open and eyes-closed states.

METHODS
Adaptive SSA method
SSA consists of two stages: decomposition and reconstruction. Decomposition involves
time-delay embedding called Takens’ theorem (Takens, 1981), followed by singular value
decomposition (SVD) (Mees, Rapp & Jennings, 1987). Reconstruction involves grouping
and diagonal averaging (Vautard, Yiou & Ghil, 1992). In the time-delay embedding step,
the single-channel EEG time series s= (s1,s2,...,sN )T , superscriptT denoting the transpose
of a vector is mapped onto a multidimensional trajectory matrix X using a sliding window

X= (S1,S2,...,SK )=


s1 s2 ··· sK
s2 s3 ··· sK+1
...

...
. . .

...

sL sL+1 ··· sN

 (1)

where L denotes the window length (or embedding dimension), K =N −L+ 1, and
Si(1≤ i≤ k) denotes the lagged vector. Next, the SVD of the matrix X is computed as:

X=
L∑

i=1

Xi=

L∑
i=1

√
λivipTi (2)

where Xi denotes the elementary matrice, λi denotes the eigenvalue of covariance matrix
C=XXT in the decreasing order of magnitude (λ1 ≥ λ2 ≥ ...≥ λL ≥ 0), vi denotes the
corresponding eigenvector, and pi=XTvi/

√
λi.

Then, the diagonal averaging step reconstructs several time series from the corresponding
elementary matrices. The reconstructed time series are generally called reconstructed
components (RCs). Finally, based on the proposed adaptive grouping rule, the RCs are
grouped for artifacts removal and rhythms extraction.

The adaptive grouping rule
With the SSA treatment the original EEG time series are decomposed into a set of RCs.
The first several RCs dominate the trend of the EEG time series, which is represented by
the large artifacts (Teixeira et al., 2006). Here, the first one or two RCs, determined by the
EEG amplitude, are grouped as artifacts. When the amplitude is large, indicating a high
level of artifacts, the first two RCs are grouped. Otherwise, the first RC is grouped:

Artifacts=

{
RC1+RC2 max(s)>V0

RC1 max(s)<V0
(3)

where max(s) denotes the EEG amplitude V0 is a threshold. Since the amplitude of the
spontaneous EEG without artifacts is usually below 100 µV (Ng & Chan, 2005), the
threshold was set as V0= 200 µV.
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After artifacts removal, the rhythms are then extracted from the EEG time series.
Rhythms are the oscillatory components of EEG time series, including, but not limited
to, the periodic components. In order to extract the EEG rhythms, the RCs are then
divided into two groups: the periodic and non-periodic components. Firstly, the periodic
components are extracted. Generally, a periodic time series will be factorised into some
eigenvalue pairs with similar amplitude using SSA (Vautard, Yiou & Ghil, 1992). So, RCs
with similar eigenvalues belong to the same periodic component. They are summed up
as a periodic component (PC). The similarity of the eigenvalues for periodic component
extraction is determined by the following criterion:

|1−
λj

λi
|< 0.05. (4)

Then, these PCs and the remaining non-periodic RCs are grouped. Each PC and RC will
fall into a narrow frequency band, when the window length L is large enough (Kouchaki,
2014; Mohammadi et al., 2015; Sanei, Ghodsi & Hassani, 2011). So, the peak frequency in
the Fourier transform can be used to represent the frequency range of the PC and RC.

fmax= argmax
f
{abs[FFT (RC)]} (5)

where fmax is the peak frequency, FFT (RC) is the fast Fourier transform of the RC or PC.
RCs and PCs with the peak frequencies in the same rhythm band are finally clustered into
the same group, which constitutes the brain rhythm.

The pseudo-code of the adaptive SSA method is shown in Fig. 1.
Window length L is selected based on the lowest frequency of interest (L≥ fs/fl) to

capture at least one period of the expected component (James & Lowe, 2003). In this paper,
the window length L is set to be 40. After extracting the desired rhythms, the features of
the rhythms are obtained for each EEG signal. The mean, standard deviation (SD), power
and power ratio of different rhythms are usually selected as the features (Mohammadi et
al., 2015). In this study, the power (P =

∑
V 2
α/N ) of the alpha rhythm were selected.

Data source
Simulated EEG data with known parameters and experimental EEG data were used to verify
the validity of the adaptive SSA method in artifacts removal and alpha rhythm extraction.

Simulated EEG data
Simulated EEG data consisted of two parts: the spontaneous EEG and the artifacts. The
spontaneous EEG has two major characteristics: rhythmic oscillations and randomness.
The artifacts mainly consist of EOG, baseline drift and white Gaussian noise.

The spontaneous EEG was simulated based on the Markov Process Amplitude (MPA)
EEG model developed by Nishida, Nakamura & Shibasaki (1986). In the MPA EEG
model, the EEG rhythmic oscillations were represented by sinusoidal waves, and the
EEG randomness was represented by the stochastic process amplitude of the first-order
Markov process (Al-Nashash et al., 2004; Bai et al., 2000; Bai et al., 2001). The spontaneous
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Figure 1 The pseudo-code of the adaptive SSAmethod.

EEG was generated by a combination of K different oscillations,

s(n1t )=
K∑
i=1

ai(n1t )sin(2πmin1t+θi) (6)

where n is the sample number, 1t is the time interval, K is the number of rhythms, m
is the dominant frequency, θ is an arbitrary value representing the initial phase, a is the
rhythmic amplitude obtained from a first-order Gauss–Markov process

ai[(n+1)1t ]= γiai(n1t )+ξi(n1t ) (7)

where γ is the coefficient of the first-order Markov process, ξ is a random increment of
Gaussian distribution with zero mean and variance σ .

Figure 2 shows the procedures of the spontaneous EEG simulation based on the MPA
EEG model. Firstly, the power spectrum of a real EEG was calculated, as shown in Fig. 2A.
In order to achieve the maximum likelihood with respect to the power spectrum of the
real EEG, parameters of the MPA EEG model were determined in the frequency domain
(shown in Table 1). Then, four oscillations representing the brain rhythms (delta (1–4
Hz), theta (4–8 Hz), alpha (8–13 Hz) and beta (13–30 Hz)) were generated based on the
determined parameters, as shown in Fig. 2B. Finally, the spontaneous EEG was generated
by a combination of the four rhythms as shown in Fig. 2C. The simulated spontaneous
EEG lasted for 8 s with the interval 1t of 5 ms. The detailed mathematical description of
the spontaneous EEG simulation is shown in the ‘Appendix’ (Markov Process Amplitude
(MPA) EEG model).
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Figure 2 Procedures of the spontaneous EEG simulation based on theMPA EEGmodel. (A) The power
spectrum of a real EEG. Parameters of the model were determined based on the power spectrum. (B) The
generated four rhythms: delta, theta, alpha and beta. (C) The simulated spontaneous EEG generated by a
combination of the four rhythms.

Table 1 Parameters of the simulated EEG time series.

Symbol Value Comments

m1 (Hz) 3.61
σ
ξ

1 3.86
γ1 0.97

Delta rhythm

m2 (Hz) 5.76
σ
ξ

2 1.23
γ2 0.99

Theta rhythm

m3 (Hz) 10.45
σ
ξ

2 1.57
γ3 0.99

Alpha rhythm

m4 (Hz) 16.02
σ
ξ

4 0.92

Spontaneous EEG

γ4 0.98

Beta rhythm

VEOG (µV) 400/100 Amplitude of EOG
TEOG (s) 3 Period of EOG
PW EOG (s) 0.3 Pulse width of EOG
VBL (µV) 20 Amplitude of baseline drift

Artifacts

fBL (Hz) 0.5 Frequency of baseline drift

The artifacts consist of EOG, baseline drift and white Gaussian noise. EOG is the main
artifact and is caused by eye blinks and ocular movement. It is characterized by large
amplitude, low-frequency electro-potential shift. Baseline drift originates from the head
or body movement and is characterized by low-frequency electro-potential shift. White
Gaussian noise was used to represent the measurement noise.

Generally, about 15–20 eye blinks, each lasting 0.3–0.4 s will be done in 60 s when the
subject is relaxed. Based on the characters, a triangular pulse with the period of 3 s and the
pulse width of 0.3 s was chosen to simulate the EOG artifact. A sinusoidal function with
amplitude of 20 µV and frequency of 0.5 Hz was used to simulate baseline drift.
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Figure 3 Schematic of the recorded EEG data 4 times of alternating periods of 60 s eyes open followed
by 60 s eyes closed. The desired EEG segments were cut off from every period of the eyes-open and eyes-
closed states. Each segment was in the middle of each period and last for 8 s.

Parameters used in the EEG simulation are shown in Table 1. The data simulation and
treatment were carried out using MATLAB version 7.9.0 on a personal computer with
Intel(R) Core(TM) i5-4590 processor, 8 GB RAM and Windows 7 operating system.

Experimental EEG data
The experiments were approvedwith a protocol (NO. 20170010) by the Institutional Review
Board of Tsinghua University. One male and two female aged 20–25 years participated
in the experiments. These subjects were required to abstain from psychoactive substances
for at least 4 h prior to experiments. Experiments were carried out with the subject sit
on a comfortable chair in a room with normal lightness. The MP36 data acquisition and
analysis system (BIOPAC Systems, Inc., Goleta, CA, USA) with a three electrodes system
was used to acquire the EEG data. The Ag/AgCl electrode (Wuxi Sichiray Technology Co.
Ltd, Wuxi, Jiangsu, China) flushed with conductive gel was attached to the scalp over the
frontal region as the recording electrode. The other two electrodes were attached to the
earlobe and mastoid, serving as a ground and a reference, respectively.

The experimental procedures were as follows. Initially, the subject closed eyes in relaxed
state for 10 min. After that, the subject opened eyes and visually fixated on a small cross
displayed on a computer screen in front of him/her. Meanwhile, the EEG data started to
be recorded with the sampling rate of 200 Hz. Informed by the recorder, the subject then
began 4 times of alternating periods of 60 s eyes open followed by 60 s eyes closed. The
desired EEG segments were cut off from every period of the eyes-open and eyes-closed
states. As shown in Fig. 3, each segment last for 8 s and was in the middle of each period.
For each subject, the experiment was repeated three times in three separate days. Totally,
24 segments were obtained for each subject.

RESULTS AND DISCUSSION
Artifacts removal
Simulated EEG data
Simulated EEG data based on the MPA EEG model was used to verify the artifacts removal
using the adaptive SSA. Representative results are shown in Fig. 4. When the EEG was
contaminated with large artifacts (the EOG amplitude was 400 µV ), as shown in Fig. 4A,
the amplitude of the EEG signal was higher than the threshold (V0= 200 µV). The first two
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Figure 4 Results of artifacts removal from simulated EEG using the adaptive SSA. EEG contaminated
with artifacts (A), the corrected EEG (B) and removed artifacts (C), in the case of large artifacts. The am-
plitude of the EOG artifact is 400 µV. EEG contaminated with artifacts (D), the corrected EEG (E) and re-
moved artifacts (F), in the case of small artifacts. The amplitude of the EOG artifact is 100 µV.

RCs were grouped as artifacts and removed. The corrected EEG and removed artifacts are
shown in Figs. 4B and 4C, respectively. It can be seen that the amplitude of the corrected
EEG was 54 µV, close to that of the simulated spontaneous EEG as shown in Fig. 2C.
When the EEG was contaminated with small artifacts (the EOG amplitude was 100 µV), as
shown in Fig. 4D, the first RC was grouped as artifacts and removed. The amplitude of the
corrected EEGwas 49µV, close to that of the spontaneous EEGaswell. Therefore, it could be
concluded that the large or small artifacts could be removed adaptively by the adaptive SSA.

Experimental EEG data
The artifacts removal using the adaptive SSA was then further tested on experimental EEG
data. Another recently reported SSA method (Maddirala & Shaik, 2016b), which will be
called SSA 1# in this paper, was used for comparison. The SSA 1# used a novel grouping
criterion based on the eigenvectors’ local mobility, which is a signal complexity measure,
to remove motion artifacts. The comparison results are shown in Fig. 5. For nine of the
total 24 segments, the corrected EEG using the adaptive SSA was the same as that using the
SSA 1#. Representative results are shown in Figs. 5B and 5C. Furthermore, it can be seen
from Fig. 5D that their power spectrums overlapped completely. For the other 15 of the
total 24 segments, the amplitude of the corrected EEG using the adaptive SSA was higher
than that of the corrected EEG using the SSA 1#, as shown in Figs. 5F and 5G, respectively.
It can be seen from Fig. 5H that the SSA 1# removed more artifacts than the adaptive
SSA. The excess removed artifacts were in the frequency of 3–5 Hz, which was within the
EEG frequency band and should not be removed. Therefore, the corrected EEG using the
adaptive SSA was more complete and accurate than that using the SSA 1#. It verifies that
the adaptive SSA has a similar, even better, artifacts removal effect.
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Figure 5 Comparison results of artifacts removal between using the adaptive SSA and SSA 1#. The
contaminated EEG (A), corrected EEG using the adaptive SSA (B) and SSA 1# (C), and power spectrums
of the corrected EEG (D), in the case of producing the same results using the adaptive SSA and SSA 1# The
contaminated EEG (E), corrected EEG using the adaptive SSA (F) and SSA 1# (G), and power spectrums
of the corrected EEG (H), in the case of producing different results using the adaptive SSA and SSA 1#.

Alpha rhythms extraction
Simulated EEG data
Simulated EEG data based on the MPA model was then used to verify the rhythms
extraction using the adaptive SSA. Results are shown in Fig. 6. The extracted alpha rhythm
using the adaptive SSA is shown in Fig. 6A. It was similar with the simulated alpha rhythm
(shown in Fig. 6B). To further examine the rhythms extraction, their power spectrums
were calculated (shown in Fig. 6C). The power spectrum of the extracted alpha rhythm
was in good consistence with that of the simulated alpha rhythm. It verifies the validity of
the adaptive SSA in rhythms extraction.

Experimental EEG data
The rhythms extraction using the adaptive SSA was then further tested on experimental
EEG data. After artifacts removal, the EEG alpha rhythms in the eyes-open and eyes-closed
states were extracted. Figs. 7A and 7B shows the representative alpha rhythm extracted
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Figure 6 Results of the alpha rhythm extraction from simulated EEG data using the adaptive SSA. (A)
The extracted alpha rhythm using the adaptive SSA. (B) The simulated alpha rhythm. (C) Power spec-
trums of the alpha rhythms in (A) and (B).

Figure 7 Results of the alpha rhythm extraction in (A) eyes-open state and (B) eyes-closed state, re-
spectively. (C) The spectrogram of the alpha rhythm.

from EEG signals in the eyes-open and eyes-closed states, respectively. It is clear that the
alpha rhythm in the eyes-open state was weaker than that in the eyes-closed state. Actually,
the power value of the extracted alpha rhythm in the eyes-open state was 9.84 µV2; while in
the eyes-closed state the power value was 50.52 µV2. Figure 7C illustrates the alpha rhythm
spectrogram, which is the square of the rhythm amplitude as a function of frequency. It
presents an obvious difference between the eyes-open and eyes-closed states.

In order to verify the rhythms extraction using the adaptive SSA, another recently
reported SSA method (Mohammadi et al., 2016) and wavelet decomposition method (Akar
et al., 2015), which will be called SSA 2# and WDec respectively in this paper, were used
for comparison. The comparison results are shown in Fig. 8. It can be seen from Figs. 8A
and 8D that, in the eyes-open state, the extracted alpha rhythm using the adaptive SSA
was of low amplitude and within the alpha band (8–13 Hz). Therefore, it could represent
the real alpha rhythm of EEG. From Figs. 8B and 8D, it can be seen that the SSA 2# could
not extract any alpha rhythm in the eyes-open state. It was because the SSA 2# could only
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Figure 8 Results of alpha rhythm extraction in the eyes-open and eyes-closed states using three dif-
ferent methods. Extracted alpha rhythm using the proposed adaptive SSA (A), the SSA 2# (B) and the
WDec (C), and power spectrums of the extracted alpha rhythms (D), in the eyes-open state. Extracted al-
pha rhythm using the proposed adaptive SSA (E), the SSA 2# (F) and the WDec (G), and power spectrums
of the extracted alpha rhythms (H), in the eyes-closed state.

extract the dominate component from EEG; while the alpha rhythm in the eyes-open state
is weak and not the dominate component. Figures 8C and 7D both show that the amplitude
of the extracted alpha rhythm using the WDec in the eyes-open state was even higher than
that in the eyes-closed state. It was obviously inconsistent with reality. Besides, it contained
a large number of components out of the alpha band. Therefore, in the eyes-open state,
the adaptive SSA performed better than both the SSA 2# and WDec in rhythms extraction.

In the eyes-closed state, the extracted alpha rhythms using the adaptive SSA and SSA
2# were both of high amplitude and within the alpha band. However, the extracted alpha
rhythm using the WDec contained components out of the alpha band. Therefore, in the
eyes-closed state, the adaptive SSA performed as well as the SSA 2#, but better than the
WDec, in rhythms extraction.
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Figure 9 (A) Extracted alpha rhythms using the adaptive SSA. (B) Power values of alpha rhythms us-
ing the adaptive SSA. (C) Power values of alpha rhythms using theWDec. (D) Power values of alpha
rhythms using the IIR filtering.

Distinguishment between the eyes-open and eyes-closed states
Previous studies have reported that the alpha rhythm in resting state with eyes closed is
much stronger than that in the eyes-closed state with visual stimulation (Barry et al., 2007;
Norton et al., 2015). Therefore, based on the alpha rhythm extraction, the adaptive SSA
could be used to distinguish between the eyes-open and eyes-closed states. The extracted
EEG alpha rhythms using the adaptive SSA are shown in Fig. 9A. In order to quantify the
extracted alpha rhythms, their power values were calculated and shown in Fig. 9B. It is
obvious that the power values in the eyes-open state were generally lower than those in
the eyes-closed state. With a threshold power value of 10 µV2, the two states could be
distinguished. When the power was lower than the threshold, it was categorized as the
eyes-open state. Otherwise, it was categorized as the eyes-closed state. The accuracy of the
states distinguishment was 95.8%.

The performance of the adaptive SSA was compared with the WDec and the infinite
impulse response (IIR) filtering methods. Figures 9C and 9D shows power values of the
extracted alpha rhythms using the WDec and IIR filtering, respectively. It can be seen that
power values in the eyes-open state were generally lower than those in the eyes-closed state,
which was similar to the results of the adaptive SSA. However, the power values obtained
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using theWDec and IIR filtering were larger than those using the adaptive SSA. It was likely
because the WDec and IIR filtering could not remove the artifacts within the alpha band.
With a threshold power value of 20 µV2, the WDec and IIR filtering could both achieve the
optimal distinguishment. The accuracy of states distinguishment was 79.2% and 83.3%,
respectively, lower than the adaptive SSA. It can be concluded that the adaptive SSA could
be potentially used to distinguish between the eyes-open and eyes-closed states.

CONCLUSIONS
In this paper, we proposed an adaptive SSA method with a novel grouping rule to remove
artifacts and extract alpha rhythms from EEG signals in eyes-open and eyes-closed states.
The grouping rule enables SSA to be adaptive to EEG signals containing different levels
of artifacts and rhythms. In order to verify the validity of the proposed adaptive SSA,
the simulated EEG data based on the Markov Process Amplitude (MPA) EEG model and
the experimental EEG data in eyes-open and eyes-closed states were used. The proposed
adaptive SSA showed a better performance in artifacts removal and rhythms extraction,
than another two recently reported SSA methods and the WDec method. Additionally,
a proof-of-concept experiment was performed to apply the adaptive SSA to distinguish
between the eyes-open and eyes-closed states. Results showed an accuracy of 95.8%, higher
than that of the WDec method (79.2%) and the IIR filtering method (83.3%).

APPENDIX
Markov Process Amplitude (MPA) EEG model
As described in ‘Artifacts removal’, the EEG is a combination of several oscillations. The
MPA EEG model can be constructed as
s(n1t )=

K∑
i=1

ai(n1t )sin(2πmin1t+θi)

ai[(n+1)1t ]= γiai(n1t )+ξi(n1t )
0<γi< 1 i= 1,2,...,K

(8)

The theoretical power spectrum of the MPA EEG model was given as

P
(
f
)
=

K∑
i=1


0.251t

(
σ
ξ
i

)2
1+(γi)2−2γicos[2π1t

(
f −mi

)
]
+

0.251t
(
σ
ξ
i

)2
1+(γi)2−2γicos[2π1t

(
f +mi

)
]

. (9)
In the power spectrum of the EEG, the width and the amplitude of peak frequency are the
most important features. Define Hi as the amplitude and the Fi as frequency width at half
of Hi.Hi, Fi can be described as

Hi=
1t
(
σ
ξ
i

)2
4(1−γi)2

(10)

Fi=
1

π1t
cos−1

4γi−1−(γi)2

2γi
. (11)
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In order to determine parameters of the MPA EEG model, the power spectrum of the real
EEG was calculated using the Welch method. The amplitude and width of peak frequency
(mi) in deferent oscillations (delta, theta, alpha and beta) were obtained asHi and Fi. Then,
the parameters of the model, γi and σ

ξ
i , were determined.
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