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Multiple sclerosis (MS) is a common neurological disability of the central nervous system. Immune-modulatory therapy with
interferon-β (IFN-β) has been used as a first-line treatment to prevent relapses in MS patients. While the therapeutic mechanism
of IFN-β has not been fully elucidated, the data of microarray experiments that collected longitudinal gene expression profiles to
evaluate the long-term response of IFN-β treatment have been analyzed using statistical methods that were incapable of dealing
with such data. In this study, the GeneRank method was applied to generate weighted gene expression values and the
monotonically expressed genes (MEGs) for both IFN-β treatment responders and nonresponders were identified. -e proposed
procedure identified 13 MEGs for the responders and 2 MEGs for the nonresponders, most of which are biologically relevant to
MS. Our work here provides some useful insight into the mechanism of IFN-β treatment for MS patients. A full understanding of
the therapeutic mechanism will enable a more personalized treatment strategy possible.

1. Introduction

Multiple sclerosis (MS) is an immune-mediated, in-
flammatory demyelinating disease of the central nervous
system with varying degrees of axonal loss, characterized by
temporal and spatial dissemination of lesions [1]. MS can be
categorized into relapsing-remitting and primary pro-
gressive. Approximately 85% of MS patients suffer from
relapsing-remitting MS (RRMS) [2], where MS occurs re-
peatedly with a variety of symptoms, including multiple
stages of neurological disability (relapse) and recovery
(remission).

Immune-modulatory therapy with interferon-β (IFN-β)
has been a commonly used first-line treatment to prevent
relapses in RRMS patients [3]. For this, three-drug for-
mulations of IFN-β are subcutaneous IFN-β-1a and IFN-
β-1b and intramuscular IFN-β-1a. Nevertheless, the re-
sponse rate of MS patients to IFN-β treatment is average,
and within two years of the initial injection of IFN-β, nearly
40–50% of patients suffer from the first relapse [4],

indicating poor or no response at all to the IFN-β treatments.
While the therapeutic mechanism of IFN-β has not been
fully elucidated, microarray experiments have been used to
evaluate long-term response to IFN-β treatment. However,
the resulting longitudinal gene expression profiles have
usually been analyzed using statistical methods incapable of
dealing with such data [5]. -e inconsistency between the
data and the analysis methods may cause biased or even
totally incorrect conclusions, making it difficult to unravel
the mechanism of action of IFN-β in MS. -erefore, a re-
analysis of longitudinal gene expression data using a ma-
chine learning method capable of identifying genes that
present a consistently changed pattern across time is
recommended.

Feature selection is a machine learning method that
downsizes the number of features, e.g., genes under con-
sideration to a manageable level [6]. -e gene subset
identified by a feature selection usually has an optimal
predictive capacity and relates highly to the phenotype of
interest. -erefore, the identification of relevant gene
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expression profiles is usually accomplished with the aids of a
feature selection method. Our previous studies [7–9] show
that biological information contained within a pathway or a
gene set (which presents a grouping structure so that the
genes within the same gene set tend to coregulate or
coexpress together to influence a biological process than
those outside this gene set) may serve as a priori and provide
valuable clues about the relevance of a gene. -is holds true
for both the cross-sectional feature selection processes [9] in
which the data type is the gene expression profiles at a single
time point and the longitudinal feature selection process [7]
in which the gene expression profiles were collected sub-
sequently across several time points. To decipher the ther-
apeutic mechanism of IFN-β, a longitudinal feature selection
that incorporates pathway information to guide the selection
of genes presenting consistently changed patterns over time
or, more precisely, the monotonically changing patterns
over time are preferred.

In this study, the GeneRankmethod [10], an extension of
Google’s PageRank method [11], was used to analyze bio-
medical data and weigh the gene expression value as well as
the level of importance of such a gene within the network to
generate weighted gene expression values. -en, the
monotonically expressed genes (MEGs) for both responders
and nonresponders (of the IFN-β treatment) were identified,
and their biological relevance was investigated. -ose genes
may provide some insightful clues about the therapeutic
mechanism of IFN-β treatment and facilitate more per-
sonalized treatment strategies to MS patients.

2. Materials and Methods

2.1.ExperimentalData. Data of twomicroarray experiments
comprising one longitudinal data and one cross-sectional
data were considered in this study. -e statistical analyses
carried out on these two datasets had different objectives.
Using the cross-sectional data, the differentially expressed
genes between MS patients and normal controls were
identified.-e objective of using the longitudinal data was to
find MEGs for the responders and the nonresponders of
IFN-β treatment.

Raw data (CEL file) of the MS temporal study were
stored in the GEO (https://www.ncbi.nlm.nih.gov/geo/)
repository (accession number GSE24427) [12]. For this
experiment, longitudinal gene expression data were col-
lected from 25 German relapsing-remitting multiple scle-
rosis patients treated with recombinant interferon-β-1b
(rIFN-β-1b, 250 μg administered every other day) for two
years. -e results of the analysis could potentially provide
useful insights about molecular mechanisms of IFN-β in-
tervention. In this study, we considered the corresponding
data of the chips hybridized on the Affymetrix hgu133A
platform.

Five separate time points were considered for measuring
gene expression values, namely, before the first injection,
before the second injection, before one month of injection,
before 12 months of injection, and before 24 months of
injection.-e 25 patients were divided into two groups of 16
responders and 9 nonresponders, according to their first

relapse time. Nevertheless, several patients relapsed shortly
after the 2-year treatment duration and their gene expression
profiles might have undergone some change during the
treatment similar to what the nonresponders had experi-
enced. -us, to eliminate any ambiguity, we restricted the
responder category to the patients whose first relapse time
was more than five years (60 months) and finally listed nine
responders (six females and three males) and nine non-
responders (six females and three males) for the downstream
analysis. -e first relapse time for these 25 patients, based on
which the patients’ response status to the IFN-β treatment
was determined, is given in Table 1.

-e cross-sectional MS data were acquired from the
microarray data from the E-MTAB–69 experiment stored in
the ArrayExpress [13] repository (http://www.ebi.ac.uk/
arrayexpress). -e chips of this experiment were hybrid-
ized on the Affymetrix HGU133 Plus 2.0 chips. In this study,
26 patients with RRMS and 18 controls with neurological
disorders of noninflammatory nature were included.

2.2. Preprocessing Procedures. Raw data (CEL files) of the
microarray analysis were downloaded from either the GEO
repository (https://www.ncbi.nlm.nih.gov/geo/) or the
ArrayExpress repository (http://www.ebi.ac.uk/arrayexpress).
-e expression values were obtained using the fRMA algo-
rithm [14], normalized using quantile normalization, and
then log 2 transformed.

2.3. Pathway Information. -e information about gene-to-
gene interaction/connection was retrieved from the Human
Protein Reference Database (HPRD) [15], and the adjacency
matrix was prepared based on these gene-to-gene in-
teractions. -ere were 9,672 protein-coding genes annotated
by the HPRD database, Release 9 (http://www.hprd.org).
Among them, 7,473 genes were annotated by the R Bio-
conductor hgu133a.db package as well as the R Bio-
conductor hgu133plus2.db package.

3. Statistical Methods

3.1. GeneRank. -e GeneRank method [10] calculates the
ranks for genes by considering both the expression values
and the connectivity information inside the gene-to-gene
interaction network. -en, the GeneRank r solves the fol-
lowing equation:

Ip − dW D
− 1

􏼐 􏼑r � (1 − d)expi, (1)

In equation (1), Ip is a p× p identity matrix. Here, p is the
number of genes under consideration; W is an adjacency

Table 1: First relapse time for the patients in longitudinal multiple
sclerosis study.

Category Patient ID number
First relapse >60 months 2, 3, 5, 9, 14, 16, 19, 24, 25
First relapse 24∼60∗ 8, 10, 20, 1, 4, 13, 18
First relapse <24 months 6, 7, 11, 12, 15, 17, 21, 22, 23
∗-ose patients were excluded from the data analysis.
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matrix which records how genes interplay with one another
if the value of its ij component is 1 and then gene i and gene j
are connected, and the value is 0 if gene i and gene j are not
connected.D is also a p× pmatrix, with its diagonal elements
recording the degrees of freedom for these p genes and off-
diagonal elements being zeroes. -e degree of freedom is the
number of genes to which the specific gene k (k� 1, 2, . . ., p)
is connected, expi stands for gene expression values for
sample i (i� 1, 2, . . ., n), and d is a tuning parameter,
balancing off the influence of expression values and con-
nectivity information on the ranking.-e default value of 0.5
for d was used in this study.

-e proposed procedure was conducted in three steps.
First, the differentially expressed genes (DEGs) between MS
patients and controls were identified by carrying out mod-
erated t-tests with the help of the R limma package [16]. -e
issue of multiple testing was adjusted by using the Benjamini-
Hochberg procedure [17], and the cutoff of adjusted p value
was set at 0.1, a less stringent value compared to the default
value of 0.05 because the sample size of the longitudinal
microarray study was small.-en the GeneRanks of DEGs for
each patient were calculated, which may be regarded as the
weighted expression values of genes balancing between
original expression values of the genes and their connectivity
levels inside the gene-to-gene interaction network. Second,
Kruskal-Wallis tests were carried out to compare if there were
any differences in the expression value of one gene at different
time points using the generated GeneRanks as outcome
variables. -e genes with adjusted p values less than a pre-
determined threshold (here, 0.1) were deemed as longitudi-
nally differentially expressed genes across time points.

Among the longitudinal DEGs identified in step 2, the
genes with specific patterns of change, i.e., monotonically
expressed patterns, were screened out. A monotonically
expressed gene was defined as

wexp1 ≤wexp2 ≤wexp3 ≤wexp4 ≤wexp5,

wexp1 ≥wexp2 ≥wexp3 ≥wexp4 ≥wexp5.
(2)

If the weighted expression values (i.e., the generated
GeneRanks) of a gene at different time points satisfy the
strictly “not less than” condition, then a gene presents the
monotonically increasing expressed (MIE) change pattern.
In contrast, if the weighted expression levels of a gene follow
the strictly “not more than” trend, then a gene was deemed
as a monotonically decreasing expressed (MDE) gene. Here,
wexpk represents the average weighted expression value of a
specific gene, i.e., the average of generated GeneRanks at
time point k, where k� 1, 2, . . ., 5.

For responders and nonresponders separately, one set of
MIE genes and one set of MDE genes were identified. -en,
if an underexpressed DEG forMS versus control was anMIE
gene as well or an overexpressed DEG (MS versus control)
was an MDE gene as well, this gene was regarded as a “good
response” gene. -ese “good response” genes may provide
mechanistic insights into IFN-b treatment. Contrarily, a
“bad response” gene corresponded to an overexpressed MIE
gene or an underexpressed MDE gene. Having more such
genes could suggest the ineffectiveness of the treatment and

that the MS gradually worsens to relapse. -e concepts of
“response” and “no response” genes are graphically illus-
trated in Figure 1.

4. Results

4.1.DEGs andMEGs. When the significance level (the cutoff
for the adjusted p value) was set at 0.1, 1078 genes were
identified to be downregulated and 288 genes were deemed
as upregulated in MS patients (as per the cross-sectional MS
data). Interestingly, most DEGs were downregulated (nearly
3 times the number of overexpressed genes).

In these DEGs (identified using the cross-sectional MS
data), the GeneRanks were calculated, and then steps 2 and 3
of the proposed procedure were applied to identify MEGs for
the nonresponder and the responder groups, respectively.-e
identified MEGs are listed in Table 2, in which the directions
of both differential expression change (MS versus control)
and monotonic expression change pattern (over time) are
presented as well.-ere were 13MEGs for the responders and
two MEGs for the nonresponders, respectively. As per our
definitions of “good response” and “bad response” genes in
the previous section, the responders possessed eight “good
response” gene and five “bad response” genes, and bothMEGs
identified in the nonresponder group were “bad response”
genes. In MS, all “good response” genes possessed by the
responders and all “bad response” genes possessed by the
nonresponders were underexpressed. Among the “bad re-
sponse” genes possessed by the responders, all except IGLL1
were overexpressed in MS.

4.2. Biological Relevance. According to the GeneCards da-
tabase [18], among these eight “good response” genes, four
genes (i.e., MYD88, LILRB1, ALOX5, and AFTPH) were
associated directly and the remaining genes were associated
indirectly with MS. Among the four directly associated
genes, two of them, i.e., MYD88 and LILRB1, were reported
to correlate with the IFN-β treatment. Specifically, Myeloid
Differentiation Primary Response 88 (MYD88) encodes a
cytosolic adapter protein that plays a central role in the
innate and adaptive immune responses. -is protein
functions as an essential signal transducer in the interleukin-
1 and Toll-like receptor signaling pathways, which regulate
the activation of several proinflammatory genes. A study by
Zhang et al. [19] demonstrated that IFN-β-1a treatment is
able to increase the expression ofMYD88, mediated by IFN-
β-1a-induced TLR7 expression in dendritic cells (DCs). -is
is consistent with the results of our analysis, which revealed a
monotonic increase in MYD88 expression during the first
two years of IFN-β injection among the responders.

Leukocyte Immunoglobulin-Like Receptor B1 (LILRB1)
is a member of the Leukocyte Immunoglobulin-Like Re-
ceptor (LIR) family. It controls inflammatory responses and
cytotoxicity to help focus on the immune response and limit
autoreactivity. A study [20] pointed the association of
LILRB1 with MS/IFN-β treatment and the expression of
different NKR by NK cells and CD8+ T lymphocytes from
MS patients and healthy controls were analyzed by flow
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cytometry. -e MS patients with active clinical disease
displayed lower levels of LILRB1+ NK cells compared to
those in controls or nonactive MS patients, and progressive
MS patients displayed higher levels of LILRB1+ CD8+
T lymphocytes and LILRB1+ NK cells compared to those in
RRMS patients. -eir analysis further showed a negative
association between IFN-β therapy and LILRB1 expression
by CD8+ T lymphocytes and NK cells. -eir results seem to
have several contradictions; i.e., if LILRB1 expression in MS

active patients was lower than that in healthy people and
inactive patients, it was natural to expect the IFN-β therapy to
be positively related to LILRB1 expression (to eliminate the
difference between MS patients and normal controls). Fur-
thermore, compared to RRMS patients, the LILRB1 expression
was found to increase in the progressive MS patients. How-
ever, IFN-β therapy is the first-line treatment for RRMS, so the
subpopulation for these two comparisons may differ. In ad-
dition, there was no variation between responders and

Ml (+) Downregulated (–)

Upregulated (+)MD (–)

(a)

MD (–) MI (+)Downregulated (–)

MS Control t1 t2 t3 t4 t5 MS Control t1 t2 t3 t4 t5

Upregulated (+)

(b)

Figure 1: Graphical illustration on a “good response” gene and a “bad response” gene. (a)-e definition of a “good response” gene. (b)-e
definition of a “bad response” gene. From these plots, it can be seen that the expression differences decreased over a period of time for a
“good response” gene while such differences increase further over a period of time for a “bad response” gene.

Table 2: MEGs identified by the proposed method.

Responders Nonresponders
“Good response” genes “Bad response” genes “Bad response” genes
Symbol MEG DEG Symbol MEG DEG Symbol MEG DEG
AFTPH ↑ ↓ AGFG1 ↑ ↑ NAP1L4 ↓ ↓
ALOX5 ↑ ↓ CHM ↑ ↑ MMS19 ↓ ↓
ATG7 ↑ ↓ IGLL1 ↓ ↓
MYD88 ↑ ↓ PELI1 ↑ ↑
LILRB1 ↑ ↓ PTEN ↑ ↑
PRKAB1 ↑ ↓
PSEN1 ↑ ↓
VAMP3 ↑ ↓
MEGs ↑: monotonically increasing genes over time; MEGs ↓: monotonically decreasing genes over time; DEGs ↑: overexpressed genes (MS versus control);
DEGs ↓: underexpressed genes (MS versus control). For the discordant genes, the directions of monotonic expression change and differential expression
change are opposite to each other; over a period of time, the gene expression values tend to return to the expression levels of normal controls. For the
concordant genes, the directions of monotonic expression change and differential expression change are identical to each other; over a period of time, the gene
expression values tend to deviate more away from the expression levels of normal controls.
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nonresponders to the treatment. It is highly likely that the
changes in expression of this gene in these two groups were in
contrast to each other. A long-term epidemiologic study to
investigate the role of LILRB1 in IFN-β therapy for MS is
warranted.

Among the “bad response” genes in the responders, two
genes, namely, phosphatase and tensin homolog (PTEN) and
CHM rab escort protein (CHM), were found directly related
to MS according to the GeneCards database. Several previous
studies have verified the association of PTEN with MS. For
instance, Meira et al. [21] showed the downregulation of miR-
17 with the treatment and its upregulation during relapse by
comparing miR-17 expressions in CD4+ T cells from re-
lapsing-remitting (RR) MS patients treated with natalizumab
versus the patients without this treatment. -ey also found
that the miR-17 downregulation was associated with the
upregulation of PTEN, BIM, E2F1, and p21 target genes.
However, for CHM, no such studies have been reported. Of
note, at the least stringent cutoff of 0.2 for adjusted p values,
Janus Kinase 2 (JAK2) may be regarded as a “bad response”
gene among the responders as well, although it is not so at a
cutoff of 0.1. It is directly related to MS and IFN-β. According
to the GeneCards database, JAK2 is involved in various
processes such as cell growth, development, differentiation, or
histonemodifications. It mediates essential signaling events in
both innate immunity and adaptive immunity. In the cyto-
plasm, JAK2 plays a pivotal role in signal transduction via its
association with type I receptors such as growth hormone
(GHR) or with type II receptors including IFN-α, IFN-β, IFN-
c, and multiple interleukins [22]. To effectively inhibit the
expansion of -17 cells by IFN-β, intact IFN-c signaling in
Tcells is required. In Conti’s study [23], the authors reported
that both mRNA and cell surface expression of the signaling
chain of the IFN-c receptor (IFN-cR2) and its cognate ty-
rosine kinase JAK2 were enhanced in peripheral blood -17
cells and clones from MS patients, compared to those with
inactive multiple sclerosis or healthy controls.

Among the “bad response” genes in the nonresponders,
only MMS19 Homolog, Cytosolic Iron-Sulfur Assembly

Component (MMS19) was found directly related to MS but
had no association with the IFN-β treatment according to
the GeneCards database [18]. -erefore, we conjecture that
those “bad response” genes may at most serve as an indicator
of worsening disease and cannot provide more information
on the mechanism of the IFN-β treatment or response.
Further investigation is needed to justify this conjecture.

4.3. Enriched Pathways and Interaction Network. For the
identified MEGs, enriched pathways or gene ontology (GO)
terms [24] were obtained using the String software [25].
-ere were 92 GO biological process (BP) terms and 17
Reactome [26] pathways enriched by these MEGs. Notably,
the most significant five GO BP terms include immune
response, defense response, cellular response to an organic
substance, positive regulation to immune response, and
protein transport, most of which are related to an auto-
immune response. Focusing on the “good response” genes,
the overrepresented analysis in the String software identified
41 enriched GO BP terms, eight GO cellular component
(CC) terms, one KEGG [27] pathway, and nine Reactome
[26] pathways. Moreover, most of these enriched pathways/
gene sets are related to immune responses. In Figure 2, the
gene-to-gene interaction network was constructed using the
Cytoscape software [28] based on the interaction in-
formation downloaded from the String web page (https://
string-db.org).

5. Conclusions

-is study identified “good response” and “bad response”
genes to the IFN-β treatment for RRMS patients, with the aid
of bioinformatics tools to obtain the DEGs and MEGs. One
big limitation of this study was the small sample size (with
nine responders and nine nonresponders). A large-sized
longitudinal gene expression study is highly recommended.

To conclude, this study provides useful insights into the
therapeutic mechanism of IFN-β treatment that selectively
targets the autoimmune response in MS patients. Only with
a full understanding of such a therapeutic mechanism, a
more personalized treatment strategy is possible.

Data Availability

-e longitudinal experimental data (accession number:
GSE24427) were downloaded from the Gene Expression
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geo/) and the cross-sectional experimental data (experimental
number: E-MTAB-69) were downloaded from the
ArrayExpress repository (http://www.ebi.ac.uk/arrayexpress).
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receptors distribution in multiple sclerosis: relation to clinical
course and interferon-beta therapy,” Clinical Immunology,
vol. 137, no. 1, pp. 41–50, 2010.

[21] M. Meira, C. Sievers, F. Hoffmann et al., “Unraveling nata-
lizumab effects on deregulated miR-17 expression in CD4+
Tcells of patients with relapsing-remitting multiple sclerosis,”
Journal of Immunology Research, vol. 2014, Article ID 897249,
2014.

[22] M. Sakatsume, K.-i. Igarashi, K. D. Winestock, G. Garotta,
A. C. Larner, and D. S. Finbloom, “-e Jak kinases differ-
entially associate with the α and β (accessory factor) chains of
the interferon c receptor to form a functional receptor unit
capable of activating STAT transcription factors,” Journal of
Biological Chemistry, vol. 270, no. 29, pp. 17528–17534, 1995.

[23] L. Conti, R. De Palma, S. Rolla et al., “-17 cells in multiple
sclerosis express higher levels of JAK2, which increases their
surface expression of IFN-cR2,” �e Journal of Immunology,
vol. 188, no. 3, pp. 1011–1018, 2012.

[24] M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology:
tool for the unification of biology,” Nature Genetics, vol. 25,
no. 1, pp. 25–29, 2000.

[25] A. Franceschini, D. Szklarczyk, S. Frankild et al., “STRING
v9.1: protein-protein interaction networks, with increased
coverage and integration,” Nucleic Acids Research, vol. 41,
pp. D808–D815, 2013.

[26] D. Croft, A. F. Mundo, R. Haw et al., “-e reactome pathway
knowledgebase,” Nucleic Acids Research, vol. 42, no. D1,
pp. D472–D477, 2014.

[27] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and
M. Kanehisa, “KEGG: kyoto encyclopedia of genes and ge-
nomes,”Nucleic Acids Research, vol. 27, no. 1, pp. 29–34, 1999.

[28] M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and
T. Ideker, “Cytoscape 2.8: new features for data integration
and network visualization,” Bioinformatics, vol. 27, no. 3,
pp. 431-432, 2011.

6 BioMed Research International


