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Abstract

It has been suggested that the space-time structure as described by the theory of

special relativity is a macroscopic manifestation of a more fundamental quantum

structure (pre-geometry). Efforts to quantify this idea have come mainly from the

area of abstract quantum logic theory. Here we present a preliminary attempt to

develop a quantum formulation of special relativity based on a model that retains

some geometric attributes. Our model is Feynman’s ‘‘checker-board’’ trajectory for

a 1-D relativistic free particle. We use this model to guide us in identifying (1) the

quantum version of the postulates of special relativity and (2) the appropriate

quantum ‘‘coordinates’’. This model possesses a useful feature that it admits an

interpretation both in terms of paths in space-time and in terms of quantum states.

Based on the quantum version of the postulates, we derive a transformation rule for

velocity. This rule reduces to the Einstein’s velocity-addition formula in the

macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-

dilation effect, and invariant interval are also discussed in term of this new

formulation. This is a preliminary investigation; some results are derived, while

others are interesting observations at this point.

Introduction

Einstein [1], Feynman [2], Schwinger [3], and others have pointed out that there

are fundamental difficulties and inconsistencies inherent in our present-day

quantum theory that treats space-time as a continuum. Wheeler [4] believes that

the lattice approach to space-time is not satisfactory and will not lead to a true

understanding of the quantum nature of space-time (pre-geometry). An

intriguing idea, which is strongly advocated by Weizsacker [5], is that the space-

time structure is an outcome of quantum theory. This idea is further emphasized

by Wheeler [4, 6], Fingelstein [7–9], and many others [10, 11] that the

fundamental rule of nature is governed by quantum theory of information
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(quantum logic), and the apparent space-time structure is inferred only in the

macroscopic limit.

Although the field of quantum logic is quite advanced, the axiomatic

formulation is rather abstract and often lacks ‘‘physical semantic’’ according to

Weizsacker [5]; that is, the mathematical formalism is not given a meaning in

physics. In this paper, we will attempt to bridge the gap and present a physical

model for quantum kinematics. We will focus on the kinematics aspect of special

relativity. Our basic approach is to compare the kinematic ‘‘measurements’’ of a

quantum system by two quantum inertial observers; that is, both the system and

observers are described by quantum principles. Since there is no definitive theory

on quantum measurements, we will have to make some assumptions about the

‘‘measurements’’.

Before presenting our model, it is useful to review the essential steps by which

the theory of special relativity for continuous space-time is formulated [12]:

(1) Special relativity is based on two postulates:

N Postulate 1: The principle of relativity states that all physical laws must be

invariant with respect to all inertial reference frames.

N Postulate 2: The speed of light (c) has the same value for observers in different

inertial frames [13, 14].

(2) The fundamental coordinates for describing events are assumed to be position

and time.

(3) The Lorentz transformation of coordinates is shown to be consistent with

Postulates 1 and 2.

Our new approach is to identify the following (using a specific model as a

guide):

(1) The quantum version of Postulates 1 and 2.

(2) The appropriate quantum ‘‘coordinates’’.

(3) The transformation rules for these quantum ‘‘coordinates’’ that are consistent

with the new postulates.

A word of caution is needed. Wheeler has emphasized the importance of not

assuming any a prori geometric properties when one wants to ‘‘derive’’ the

geometric properties of space-time from pre-geometry [4]. This is what

Weizsacker called the ‘‘semantical consistency’’ [5]. However, Weizsacker also

pointed out that in order to describe a ‘‘new’’ theory to someone (who does not

know the theory yet), one must use the ‘‘old’’ language that may not be

completely consistent with the ‘‘new’’ theory. During the course of the

explanation, one modifies the language, in a bootstrap process, to achieve

consistency with the new theory. In our presentation, we will first describe our

physical model in the language of continuous space-time, i.e., with all its

geometric attributes. Once we identify the essence of the physical model, we will

re-cast our quantum version of the postulates in a language that does not make

any reference to geometry. Weizsacker also made a conjecture that no theory at
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the present is fully semantically consistent; perhaps only the ‘‘final’’ theory of

everything would satisfy that requirement. We will point out the loose ends in our

model.

In the Methods section, we will describe the Feynman ‘‘checker-board’’ model

and identify the relevant features that guided us in formulating the quantum

postulates for special relativity. In the Results and Discussion section, we will

derive the velocity transformation rule for 1-D and present the generalization to

3-D. In addition, we will illustrate how the time-dilation effect can be visualized

using Feynman’s model and point out an interesting connection between the

invariant space-time interval and the area of the x-t region that encloses all

allowable paths. In the Conclusions section, we will summarize the key findings

and list some loose ends that need further investigations.

Methods

We will use Feynman’s path-integral trajectory for a 1-D relativistic free particle

("checker-board" model) [15] to guide us in formulating the quantum postulates

for special relativity.

Feynman’s Checker-Board Model

Feynman originated this model to derive the 1-D Dirac equation from his path-

integral formulation of quantum mechanics. Jacobson gave a "spinor-chain" path-

integral formulation for the 3-D Dirac equation [16]. Since Feynman’s version has

a more direct connection with space-time, we will describe his model first. Then,

we will re-cast Feynman’s model in terms of a spinor-chain description, which

may be more closely connected with quantum logic.

In the checker-board model, a particle in 1-D moves forward and backward in

space at the speed of light [17]. The trajectory is a zigzag path in the x-t plane (see

Fig. 1), hence the name ‘‘checker-board’’. The amplitude for the particle to move

from (x1,t1) to (x2,t2) has contributions from all possible paths that lie within the

dashed-line rectangle in Fig. 1. (We assume that the particle does not travel

backward in time; see remarks in the last section of this paper.) To facilitate the

enumeration of paths, the time axis is divided into equal steps of width . There

are Nz number of positive steps and N{ number of negative steps. The

continuum limit is obtained by letting ?0 and Nz,N{??. Feynman proposed

that the amplitude is given by [15]

Kba(x2,x1,t2,t1)~ lim
?0

X?
R~0

imc2

B=

� �R

Wba(R) ð1Þ

where R is the number of turns in the zigzag path and Wba(R) is the number of

paths having R turns with a and b denoting the initial and final step directions,

respectively. For example, if the particle leaves x1 by taking a forward step and

arrives at x2 by taking a backward step, then a~z and b~{. The first factor
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inside the sum, imc2
B=

� �R
, is the quantum amplitude for having R turns. Note that if

m50, then the amplitude for turning is zero. Therefore, a massless particle moves

along a straight path at the speed of light; only particles with finite mass move in

zigzag paths in the x-t plane.

It has been shown [18–20] that the continuum limit of the propagator in Eq.

(1) is equivalent to that derived from the 1-D Dirac equation. Here, we shall focus

only on the kinematics implication of this model. The relevant feature of this

model to our present discussion is that, at the quantum level, there is only one

relative speed, namely the speed of light (c). Put more precisely, the eigenvalues of

the velocity operator along any direction are +c.

To make a connection with measurements at the macroscopic level, we define

an average velocity

vvw:
Nz{N{ð Þ
NzzN{ð Þ c ð2Þ

where the bracket sign, ,., is used to remind us that the velocity is an average

over the entire path. In the macroscopic limit where Nz,N{??, we can identify

Pz~Nz=(NzzN{) and P{~N{=(NzzN{) as the probability of occurrence

for a positive and a negative step, respectively. Equation (2) can be re-written as

vvw: Pz{P{ð Þ c ð3Þ

This definition of the macroscopic velocity does not refer to space explicitly; it

only depends on the probability of occurrence for each velocity quantum state: the

+ state and the - state. We identify the quantum kinematic coordinates to be the

number of + steps (Nz) and the number of – steps (N{), or equivalently, the

probabilities Pz and P{. Continuous space-time can be recovered in the limit of

Fig. 1. Feynman’s ‘‘checker-board’’ model for the trajectories of a 1-D relativistic particle. The paths
consist of segments with velocities equal to +c. All possible paths are contained inside the dashed rectangle.

doi:10.1371/journal.pone.0115810.g001

Special Relativity at the Quantum Scale

PLOS ONE | DOI:10.1371/journal.pone.0115810 December 22, 2014 4 / 16



?0 and Nz,N{??,

x2{x1~ lim
? 0

Nz{N{ð Þ c and t2{t1~ lim
? 0

NzzN{ð Þ ð4Þ

The + and – step directions are referenced with respect to a given ‘‘inertial

observer’’. We avoid using the term inertial reference frame. Instead we will take

the viewpoint that kinematics (in fact all physical laws) must be defined in terms

of information available to the observer locally. The observer need not be

macroscopic; an elementary observer is in fact a quantum object which obeys

quantum principles. We consider a free particle obeying Eq. (1) to be an

elementary inertial observer. In classical special relativity theory, one considers

two inertial observers at relative constant velocity. Here, the two quantum

observers do not have a constant relative velocity at the quantum time scale, but

rather an average relative velocity as defined by Eq. (3). Note: At present, we do

not have a theory of measurement that tells us how the observer obtains the

information about the system under observation, so we simply assume that such

information is available to the observer. The important requirement is that such

information obeys the principle of relativity.

Quantum Postulates for Special Relativity

We are ready to state the quantum version of Postulates 1 and 2 of special

relativity:

N Q-Postulate 1: The principle of relativity remains valid at the quantum level,

namely, that all physical laws must be invariant with respect to all quantum

inertial observers.

N Q-Postulate 2: At the quantum scale, the eigenvalues of the velocity operator

along any direction can only be +c or –c. (The crucial point is that this speed is

finite. By the virtue of Q-Postulate 1, this finite speed must be the same for all

inertial observers.)

Results and Discussion

We will derive the velocity transformation rule for 1-D and present the

generalization to 3-D. The transformation rule reveals a very interesting aspect of

time. We will illustrate how the time-dilation effect can be visualized using

Feynman’s model and point out an interesting connection between the invariant

space-time interval and the area of the x-t region that encloses all allowable paths.

Velocity Transformation Rule for 1-D

In our quantum formulation, the probabilities are the fundamental quantities. We

will deduce the transformation rule for the probabilities, which we call the P-
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transformation. The transformation rule must be consistent with Q-Postulate 1

and Q-Postulate 2. Consider three free particles, A, B, and O. Given that A is

moving at a relative average velocity ,VA/O. with respect to O, and that B is

moving at a relative average velocity ,VB/O. with respect to O, we wish to find

,VB/A.. That is, we need to deduce (PB=A
z ,PB=A

{ ), given (PB=O
z ,PB=O

{ ) and

(PA=O
z ,PA=O

{ ). To find the velocity of B with respect to A, we examine the motion of

B ‘‘as seen by’’ A. To facilitate the analysis, we use a bit-string representation of

the paths (see Fig. 2). Heuristically, the bit-strings can be thought of as the

experimental records of the motions of B and A as measured by O. The four

possible pairs of motions of B and A as viewed by O are: (zc,zc), (zc,{c),

({c,zc), and ({c,{c). According to Q-Postulate 2, the only symbols available

to A for describing the motion of B are zc and {c. Intuitively, the two processes

(zc,{c) and ({c,zc) that exhibit relative motions should be assigned zc and

{c, respectively. As for the processes (zc,zc) and ({c,{c), where there are no

relative motions, what symbol can be assigned to these events? We cannot assign

zero to these two events, because zero is NOT an allowed symbol. We cannot

assign zc or {c for the following reason. Suppose we assign zc to (zc,zc). If

we interchange B and A, the relative velocity should change sign, hence we are

forced to assign {c to (zc,zc), which leads to an ambiguous transformation

rule. The only conclusion is that there is no symbol assigned to (zc,zc) or ({c,{c).

A possible interpretation is that nothing is happening or no time has elapsed as far

as B and A are concerned, when O observes (zc,zc) and ({c,{c). These rules

are summarized in Table 1.

The normalized probabilities, (PB=A
z ,PB=A

{ ), are defined as

PB=A
z ~

PBA
z{

PBA
z {zPBA

{ z

and PB=A
{ ~

PBA
{z

PBA
z {zPBA

{ z

ð5Þ

where PBA
z{ is the joint probability for B taking a positive step while A taking a

negative step as viewed by O, while PBA
{z is the joint probability for the reverse

directions. In general, the joint probabilities will depend on the pair of paths

under consideration; one must compute the ensemble-average over all possible

pairs. It is difficult to compute the ensemble-average analytically. In the

macroscopic limit where the time of observation, t2{t1, is much longer than the

characteristic time for making a turn, B=mc2, we assume that the ensemble-

average joint probability can be approximated by the product of probabilities, i.e.,

PBA
z{~PB=O

z PA=O
{ and PBA

{z~PB=O
{ PA=O

z ð6Þ

This is a reasonable assumption because the motions of B and A are

independent. We will show that the P-transformation stated in Eqs. (5) and (6)

leads to the Einstein’s velocity-addition formula. Here are the details:
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vVB=Aw:(PB=A
z {PB=A

{ )c~
PB=O

z PA=O
{ {PB=O

{ PA=O
z

PB=O
z PA=O

{ zPB=O
{ PA=O

z

 !
c ð7Þ

From the definition of velocity and the normalization of probability, Pz and

P{ can be expressed in terms of ,v.,

Pz~
1
2

(1zvvw) and P{~
1
2

(1{vvw) ð8Þ

where ,v. is expressed in units of c to simply the expressions. Therefore,

vVB=Aw~
(1zvVB=Ow)(1{vVA=Ow){(1{vVB=Ow)(1zvVA=Ow)

(1zvVB=Ow)(1{vVA=Ow)z(1{vVB=Ow)(1zvVA=Ow)

� �

~
vVB=Ow{vVA=Ow

1{vVB=OwvVA=Ow

� � ð9Þ

which is the well-known Einstein’s velocity-addition formula when ,VB/O. is

parallel to ,VA/O..

It is gratifying that such simple rules (Table 1) for combining velocities at the

quantum scale lead to the Einstein’s velocity-addition formula in the macroscopic

limit. We should emphasize that the normalization of probabilities in Eq. (5) is

Fig. 2. Bit-string representations of relative motions. The motion of B with respect A (B/A) can be deduced
from the motions of B with respect to O (B/O) and A with respect to O (A/O) using the rules listed in Table 1.

doi:10.1371/journal.pone.0115810.g002

Table 1. Rule table for determining relative velocity at the quantum scale.

B/O A/O B/A

+c +c 5. no symbol

+c 2c 5. +c

2c +c 5. 2c

2c 2c 5. no symbol

B/O, A/O, and B/A are motions of B as viewed by O, A as viewed by O, and B as viewed by A, respectively.

doi:10.1371/journal.pone.0115810.t001
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crucial for obtaining the correct denominator in the relativistic velocity-addition

formula (the denominator of Eq. (9)). Recall that the normalization came about

because we must not count ‘‘events’’ where there is no relative motion between B

and A; in fact, as far as B and A are concerned, these events do not exist and no

time has elapsed. At the quantum time scale, t2{t1<B=mc2, we do not expect that

the ensemble-average joint probabilities can be approximated by Eq. (6), and

therefore, there may be quantum correction to the velocity-addition formula.

Generalization to 3-D

The generalization of the checker-board model to 3-D is not simple. As pointed

out by Rosen [19], one cannot simply define paths on a cubic lattice in space with

two components of velocity equal to zero and the third component equal to +c
during each step interval. This is because the three components of velocity do not

commute in the relativistic limit. Jacobson generalized the idea of velocity-

direction change at each corner to quantum-state change in the abstract Hilbert

space. He used spinors to represent the states of the particle. Jacobson was

successful in obtaining a path-integral representation for the 3-D Dirac equation

in terms of these spinor states. Although the space-time picture is not very evident

in the spinor representation, the mathematical connection between spinors and

space-time have been suggested and explored before [21, 22].

First, we must clarify what we mean by ‘‘the only speed at the quantum level is

c’’ (Q-Postulate 2). From the solution to the Dirac equation, we know that the

velocity operator can be represented by the Pauli spin matrices, and that the

eigenvalues of the velocity along any direction are +c. Since the different

components of velocity do not commute, there is no simultaneous eigenstate for

all three components. At the quantum scale, the precise value of the total velocity

(or the total speed) is not known; only one component of the velocity can be

known precisely at a time, and that velocity component can only be +c.

Now, we generalize our 1-D result to 3-D. The velocity operator (~s), in units of

c, is given by

~s~sx̂izsŷjzszk̂ ð10Þ

where

sx~
1 0

0 {1

� �
; sy~

0 1

1 0

� �
; sz~

0 {i

i 0

� �
ð11Þ

We use the eigenvectors along the x-direction as the basis, so that the notation

is consistent with what we have used in the 1-D case. Note that these are not the

conventional definitions of the Pauli matrices. The probabilities (Pz,P{) are

generalized to a 262 density matrix,
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r~
Px,z

(Py,z{Py,{){i(Pz,z{Pz,{)

2
(Py,z{Py,{)zi(Pz,z{Pz,{)

2 Px,{

2
4

3
5 ð12Þ

where Px,z is the probability for a measurement of the velocity along the x-

direction would produce the +x eigenstate, and similar definitions for other

directions. The probabilities for each direction sum to 1; i.e., Px,zzPx,{~1,

Py,zzPy,{~1, and Pz,zzPz,{~1. The macroscopic velocity is given by the

trace of r~s,

v~Vw~Tr(r~s)~(Px,z{Px,{)̂iz(Py,z{Py,{)̂jz(Pz,z{Pz,{)k̂ ð13Þ

The probabilities along different directions are NOT independent. We will now

show that the average speed is never greater than c (i.e. no violation of relativity at

the macroscopic scale). Consider the square of the average velocity; it can be

expressed in terms of the trace and the determinant of r,

jv~Vwj2~(Px,z{Px,{)2z(Py,z{Py,{)2z(Pz,z{Pz,{)2

~ Tr(r)½ �2{4 det (r)
ð14Þ

The trace of r is equal to 1. The determinant can be deduced by finding a basis

such that r is diagonal. Since the diagonal elements are non-negative

(probabilities) and their sum is equal to 1, the determinant of r can only vary

between 0 and 1/4. Since the trace and the determinant are independent of the

basis, Eq. (14) implies that the average speed can never be greater than 1 (in units

of c). For comparison, the average of the velocity-squared is given by

vj~V j2w~Tr r~s.~sð Þ~3 ð15Þ

.

Since the macroscopic measurement of velocity is given by Eq. (14), not Eq.

(15), hence there is no violation of special relativity. Finally, the density matrix

can be re-expressed as

r~
1
2

Iz
v~Vw.~s

2
~

1
2

1zvVwx vVwy{ivVwz

vVwyzivVwz 1{vVwx

� �
ð16Þ

where I is the identity matrix. Although Eq. (16) is a useful expression for r, we

must remember that r is intrinsically a function of the probabilities.

In regard to the velocity-addition formula, we can pose the problem in the

following way. Suppose A and B are moving at v~VA=Ow and v~VB=Ow with

respect to O, respectively. Given the density matrices, rA=O and rB=O, how do we

find rB=A in terms of rA=O and rB=O? In the 1-D case, we were able to compare the

+c and 2c symbols and deduce the transformation rules; it is not clear how to

compare the +c and 2c symbols for different directions. For the case where
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v~VA=Ow and v~VB=Ow are parallel (equivalent to 1-D), we empirically arrive at

the following generalization,

rB=A~
rB=OrO=A

Tr(rB=OrO=A)
when v~VB=Ow==v~VA=Ow ð17Þ

where rO=A~I{rA=O as evident from Eq. (12) or Eq. (16).

For the general 3-D case, our empirical result is

rBA~
r

1=2
O=ArB=Or

1=2
O=A

Tr(r
1=2
O=ArB=Or

1=2
O=A)

~
(r

1=2
B=Or

1=2
O=A){(r

1=2
B=Or

1=2
O=A)

Tr½(r1=2
B=Or

1=2
O=A){(

1=2
B=Or

1=2
O=A)�

, ð18Þ

where r
1=2
O=A is defined by r

1=2
O=Ar

1=2
O=A~rO=A and is the positive root of rO=A. The

second expression in Eq. (18) explicitly shows the Hermitian property of the

density matrix. One may be tempted to identify

r
1=2
B=A~

(r
1=2
B=Or

1=2
O=A)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr½(r1=2
B=Or

1=2
O=A){(r

1=2
B=Or

1=2
O=A)�

q
valid only when v~VB=Ow==v~VA=Ow

	 
 ð19Þ

However, this quantity is not Hermitian unless r
1=2
B=O and r

1=2
O=A commute. The

special case of Eq. (17) (when rB=O and rO=A can be diagonalized by the same

basis) is included in Eq. (18).

We will illustrate Eq. (18) for the case where rO=A is diagonal (i.e., choosing

v~VA=Ow to be along the x-direction). For this case, we have

r
1=2
O=A~½I{rA=O�1=2

~½1
2

(I{vVA=Owxsx)�1=2

~
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{vVA=Owx

p
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zvVA=Owx

p
" # ð20Þ

and

rB=O~
1
2

(Izv~VB=Ow.s)

~
1
2

1zvVB=Owx vVB=Owy{ivVB=Owz

vVB=OwyzivVB=Owz 1{vVB=Owx

" # ð21Þ
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Hence,

r
1=2
O=ArB=Or

1=2
O=A~

1
4

(1{vVA=Owx)(1zvVB=Owx) c{1(vVB=Owy{ivVB=Owz)

c{1(vVB=OwyzivVB=Owz) (1zvVA=Owx)(1{vVB=Owx)

" # ð22Þ

where c{1:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{vVA=Ow

2
x

p
and

Tr(r
1=2
O=ArB=Or

1=2
O=A)~

1
2
½1{vVA=OwxvVB=Owx� ð23Þ

Therefore,

rB=A~
1
2

1z
vVB=Owx{vVA=Owx

½1{vVA=OwxvVB=Owx � c{1
(vVB=Owy{ivVB=Owz)

½1{vVA=OwxvVB=Owx �

c{1
(vVB=OwyzivVB=Owz)

½1{vVA=OwxvVB=Owx � 1{
vVB=Owx{vVA=Owx

½1{vVA=OwxvVB=Owx �

2
64

3
75 ð24Þ

Comparing Eq. (24) with Eq. (16), one can read off the components of the

velocity v~VB=Aw, and these components agree with Einstein’s velocity-addition

formula.

Note: Unlike the 1-D case, where we are able to deduce the rules for combining

velocities that are valid at the quantum time scale (Table 1), for the 3-D case we

are only able to state an empirical formula for velocity-addition that is valid in the

macroscopic limit.

Clock and Time-Dilation Effect

A clock signifies the passage of time by a change of its (quantum) state. The

motion of a quantum ‘‘free’’ particle could, in principle, be used as a clock; every

change of direction signifies a ‘‘tick’’ of this clock. In the absence of other clocks,

the interval between ticks will be perceived to be equal. Using the motion of a

quantum free particle as a clock, we can illustrate the time-dilation effect. We

compare the number of ticks from a ‘‘moving’’ clock with that from a

‘‘stationary’’ clock as viewed by the same observer O. The motions of these two

clocks as viewed by O are depicted in Fig. 3. The moving clock changes its

direction less frequently because it takes unequal numbers of positive and negative

steps. Hence, the moving clock appears to run slower than the stationary clock as

far as observer O is concerned. In fact, if the velocity of the moving clock is c, then

there will be no change of direction at all and there will be a complete time

dilation. To quantify the above description, we compute the typical number of

turns, R*, for the stationary and moving clocks. We can evaluate the most

probable number of turns by finding the largest absolute value of the summand in

Eq. (1). Following Jacobson and Schulman [18], the result is
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R � (vvw)~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pz(vvw)P{(vvw)

p N
B=mc2

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{vvw

2
p Dt

B=mc2
ð25Þ

The moving clock ticks at a slower rate compared to the stationary clock as

given by the ratio

R � (v)

R � (0)
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{vvw

2
p

ð26Þ

We should clarify the interpretation of this result: it states that, with respect to

the same inertial observer, a stationary clock ticks more frequently than a moving

clock over the same duration Dt of the observer’s own clock. However, if two

inertial observers in relative motion are observing the same clock then the number

of ticks is invariant because Eq. (25) indicates that the number of ticks is

proportional to the clock’s own proper time interval Dt~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{vvw

2
p

Dt.

Invariant Space-Time Interval

We have noticed an interesting connection between the space-time interval,

(cDt)2{(Dx)2, and the area of the rectangle in the x–t plane that bounds all

possible paths connecting the initial and final events. Let the coordinates for these

two events be (0,0) and (x,t) in the unprimed frame and (0,0) and (x’,t’) in the

primed frame. In these two frames, the possible paths connecting these two events

are bounded inside their corresponding rectangles in the x–t plane (see Fig. 4).

The area of the rectangle in the unprimed frame is given by

Fig. 3. Typical path for a stationary clock and that of a moving clock as viewed by an observer. Each
directional change is a ‘‘tick’’ of the clock. The time-dilation effect is illustrated very clearly here by the moving
clock changing its direction less frequently than the stationary clock.

doi:10.1371/journal.pone.0115810.g003
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Area~
ffiffiffi
2
p

tz
� � ffiffiffi

2
p

t{
� �

~
Dtð Þ2{ Dxð Þ2

2
(c:1) ð27Þ

where we have used the fact that Dt~tzzt{ and Dx~ tz{t{ð Þ. Hence, the

invariance of the area enclosing the paths would imply the invariance of the space-

time interval. Now, the question is: Does the invariance of the area follow from

some fundamental principle? An initial guess may be that the area is proportional

to the total number of paths connecting the two events; hence, one could propose

a principle that the number of paths connecting two events is invariant of frames

of reference. This sounds plausible. However, a calculation of the total number of

paths seems to invalidate this presumption. The total number of paths (W) is

given by

W~
N!

Nz!N-!
<eS(Dx,Dt) ð28Þ

where

S(Dx,Dt)~{N
1zv

2

� �
ln

1zv
2

� �
z

1{v
±2

� �
ln

1{v
2

� �� �
; v~

Dx
Dt

ð29Þ

The number of time steps, N~Dt= , is an invariant because both Dt and

should transform alike. It is evident from Eq. (29) that the total number of paths

is not a relativistic invariant. Our preliminary analysis indicates that one must

take into account that not all paths have the same probability. If we consider only

paths that contribute significantly to the amplitude in Eq. (1), then the number of

significant paths is proportional to the invariant space-time interval. This raises an

issue that the dynamical aspect of a free particle (the amplitude factor in Eq. (1))

Fig. 4. Region in x–t plane enclosing all possible quantum paths between two events as viewed in two
reference frames. The area of this region is proportional to the invariant space-time interval; therefore, its
numerical value is independent of reference frames.

doi:10.1371/journal.pone.0115810.g004
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is connected to the kinematical aspect. Such potential connection needs further

investigation.

Conclusions

We conducted a preliminary attempt to develop a quantum formulation of special

relativity based on Feynman’s checker-board model for motion of a free particle at

the quantum scale. Feynman’s model was chosen because of its success in leading

to the well-known Dirac equation. An intriguing feature of Feynman’s model is

that particles move at only one speed, namely the speed of light, at the quantum

scale. We formulated the quantum version of the postulates for special relativity

and derived the rules for determining relative velocity at the quantum scale. These

simple rules lead to Einstein’s velocity-addition formula in the macroscopic limit.

At the quantum time scale, B=mc2, there may be quantum correction to Einstein’s

velocity-addition formula. We discovered an interesting aspect of time. It is

possible to interpret that when two particles have no relative motion, there is no

elapse of time as far as those two particles are concerned. Typically, one thinks of

time simply marching on, independent of one’s motion. This interesting aspect of

time is worth further investigation. Using the motion of a free particle as a clock,

we provided a simple demonstration of the time-dilation effect.

An important aspect of the present formulation is that it makes no explicit

reference to space (or its geometric properties). For example, the definition of

velocity in Eq. (3) requires only the existence of velocity eigenstates and a

definition for the probability of occurring in each velocity eigenstate. This

approach is in line with Wheeler’s idea of pre-geometry.

There are few loose ends that we should mention:

(1) We have considered only paths that move forward in time. Paths that are

allowed to move backward in time have been discussed in a paper by Ord [23]

in connection with quantum interference arising from charge conservation.

At present, we are uncertain how to deal with this type of path in determining

relative velocity.

(2) We made an observation that the area of the rectangle in the x–t plane

enclosing all the possible paths is proportional to the space-time interval (Eq.

(27)). The total number of paths within the rectangle is not proportional to

the space-time interval. However, the number of significant paths is

proportional to the space-time interval. Significant paths are those maximize

the summand in Eq. (1). The potential connection between the dynamical

aspect and kinematical aspect of motion needs further investigation.

(3) Unlike the 1-D case, we are unable to directly derive the velocity

transformation rule for the 3-D case from the postulates. Basically, by

‘‘reverse engineering’’, we arrived at an empirical formula (Eq. (18)) that

gives the correct result in the macroscopic limit.
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We have presented some preliminary ideas on how relativistic kinematics may

be viewed at the quantum scale. Much more work is needed to find a complete

self-consistent formulation. We hope that these preliminary results will inspire

others to pursue further investigations.
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