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Abstract

Background: Early secretory antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) are co-secreted proteins of
Mycobacterium tuberculosis complex mycobacteria (includes M. bovis, the zoonotic agent of bovine tuberculosis) involved in
phagolysosome escape of the bacillus and, potentially, in the efficient induction of granulomas. Upon tuberculosis infection,
multi-nucleate giant cells are elicited, likely as a response aimed at containing mycobacteria. In tissue culture models, signal
regulatory protein (SIRP)a (also referred to as macrophage fusion receptor or CD172a) is essential for multi-nucleate giant
cell formation.

Methodology/Principal Findings: In the present study, ESAT-6/CFP-10 complex and SIRPa interactions were evaluated with
samples obtained from calves experimentally infected with M. bovis. Peripheral blood CD172a+ (SIRPa-expressing) cells from
M. bovis-infected calves proliferated upon in vitro stimulation with ESAT-6/CFP-10 (either as a fusion protein or a peptide
cocktail), but not with cells from animals receiving M. bovis strains lacking ESAT-6/CFP-10 (i.e, M. bovis BCG or M. bovis
DRD1). Sorted CD172a+ cells from these cultures had a dendritic cell/macrophage morphology, bound fluorescently-tagged
rESAT-6:CFP-10, bound and phagocytosed live M. bovis BCG, and co-expressed CD11c, DEC-205, CD44, MHC II, CD80/86 (a
subset also co-expressed CD11b or CD8a). Intradermal administration of rESAT-6:CFP-10 into tuberculous calves elicited a
delayed type hypersensitive response consisting of CD11c+, CD172a+, and CD3+ cells, including CD172a-expressing multi-
nucleated giant cells.

Conclusions/Significance: These findings demonstrate the ability of ESAT-6/CFP-10 to specifically expand CD172a+ cells,
bind to CD172a+ cells, and induce multi-nucleated giant cells expressing CD172a.
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Introduction

Tuberculosis (TB) in humans and animals may result from

exposure to bacilli within the Mycobacterium tuberculosis complex (i.e.,

M. tuberculosis, M. bovis, M. africanum, M. pinnipedi, M. microti, M.

caprae, or M. canetti [1]). Mycobacterium bovis is the species most often

isolated from tuberculous cattle. Unlike M. tuberculosis, M. bovis has

a wide host range, including several wildlife maintenance hosts for

the infection in cattle. Early secretory antigenic target-6 (ESAT-6)

and culture filtrate protein-10 (CFP-10) are co-secreted proteins of

M. tb complex mycobacteria that form naturally a 1:1 heterodimer

upon export [2]. esxA and esxB genes encode ESAT-6 and CFP-10,

respectively, and are located in the region of difference 1 (RD-1),

an area of the virulent M. tb complex genome not present in the

vaccine strain, M. bovis bacillus Calmette Guerin (BCG) and most

other non-tuberculous mycobacteria [3,4,5,6]. Widely utilized in

diagnostic tests, ESAT-6 and CFP-10 are potent inducers of Th-1

cytokines [7]. ESAT-6 and CFP-10 are critical for TB pathogen-

esis [8] as removal of esxA and esxB genes from virulent M. bovis and

M. tuberculosis results in attenuation and re-introduction of RD-1 to
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BCG Pasteur partially restores virulence [6,9,10,11]. While ESAT-

6 will disrupt lipid bilayers (indicating a cytolytic function [9,12]),

structural analysis of the ESAT-6/CFP-10 complex suggests

another role more consistent with a receptor-mediated interaction

with host cells [13]. Additionally, fluorescently tagged ESAT-6/

CFP-10 binds human monocyte/macrophage tissue culture cells

and this interaction is mediated by a long, flexible C-terminal arm

on CFP-10 [13,14]. With RAW cells, ESAT-6 interacts directly

with TLR2 and inhibits signaling, thereby, dampening innate

immune responses [15]. During M. marinum infection of zebrafish,

macrophage aggregation is dependent upon RD-1 determinants

[16,17], further supporting a receptor-mediated interaction of

ESAT-6/CFP-10 with host cells.

Signal regulatory protein (SIRP)a (also referred to as macro-

phage fusion receptor, CD172a or SHPS-1) is a transmembrane

regulatory protein expressed primarily by myeloid cells (i.e.,

macrophages, monocytes, dendritic cells, granulocytes, myeloid

progenitors), hematopoietic stem cells, and neurons [18,19]. In the

context of a potential role in TB pathogenesis, SIRPa is likely

critical in the formation of multinucleate giant cells (as indicated

by antibody blocking studies performed with in vitro models of

giant cell formation [20,21]) and in leukocyte trafficking via

functional binding to the cell-associated ligand, CD47 [22,23,24].

Originally termed integrin-associated protein, CD47 is a broadly

expressed member of the Ig superfamily (IgSF), essential for

multiple key immune processes including phagocytosis, leukocyte

migration, and self-recognition [25,26,27]. The extracellular

region of SIRP family members (i.e., SIRPa, SIRPb, and SIRPc)

consists of three joined IgSF domains, two IgC domains and a

membrane-distal IgV domain [18,28]. The IgV domain of SIRPa
binds specifically to the single Ig-like domain on CD47, spanning a

distance of ,14 nm–typical of an immunological synapse [28].

The binding domain of SIRPa is analogous to hypervariable

(CDR-like) regions of Ig and TCRs, presumably functioning as a

sensitive recognition system for myeloid cell activation [28,29].

One hypothesis is that SIRPs are closely related to germ-line

rearranging antigen receptors, indicating a linkage between cell-

mediated cytotoxicity and phagocytosis by cells expressing SIRPa.

However, signaling via SIRPa is primarily inhibitory (the

cytoplasmic portion of SIRPa contains four immunoreceptor

tyrosine-based inhibititory motifs) to cell function, including

phagocytosis [27,30]. A scenario, in the context of TB, is that

SIRPa-expressing cells phagocytose Mycobacterium-infected cells

rendered apoptotic by specific T cell immunity. Upon apoptosis,

CD47 expression is decreased on most cell types [31]; thereby,

removing the ligand for the inhibitory SIRPa signal and

permitting phagocytosis of the apoptotic cell by adjacent SIRPa-

expressing cells [32]. Intriguingly, M. tb complex mycobacteria

have multiple anti-apoptotic mechanisms, thereby, potentially

subverting SIRPa/CD47-mediated killing mechanisms [reviewed

in 33].

In the present study, ESAT-6/CFP-10 complex and SIRPa
interactions were evaluated with samples obtained from calves

experimentally infected with M. bovis. Our observations of in vitro

stimulated peripheral blood mononuclear cells (PBMC) from M.

bovis-infected cattle revealed consistent expansion of CD172a+

(SIRPa-expressing) cells upon stimulation with either a recombi-

nant ESAT-6:CFP-10 fusion protein or a cocktail of ESAT-6 and

CFP-10 peptides. Sorted CD172a+ cells from these cultures had a

dendritic cell/macrophage morphology, bound fluorescently-

tagged rESAT-6:CFP-10, bound and phagocytosed live M. bovis

BCG, and co-expressed CD11c, DEC-205, CD44, MHC II,

CD80/86, and a subset also co-expressed CD11b or CD8a.

Intradermal administration of rESAT-6:CFP-10 into tuberculous

calves elicited a delayed type hypersensitivity (DTH) response

consisting of CD11c+, CD172a+, and CD3+ mononuclear cell

infiltrates, including CD172a-expressing multi-nucleated giant

cells. These novel findings demonstrate the ability of ESAT-6/

CFP-10 to specifically expand CD172a+ cells, bind to CD172a+

cells, and induce multi-nucleated giant cells expressing CD172a.

Materials and Methods

Animals, vaccination, and challenge procedures
Twenty nine male Holstein calves of approximately 3 months of

age were obtained from a TB-free herd in Iowa or Wisconsin,

USA and housed at the National Animal Disease Center in Ames,

Iowa according to institutional guidelines, approved animal care

and use protocols and the National Institutes of Health guide for

the care and use of laboratory animals. Approval of animal

protocols was by the USDA, NADC animal care and use

committee. Treatment groups included: non-infected/non-vacci-

nated controls (n = 3), virulent M. bovis-infected (105 cfu by

aerosol, n = 6; 103 cfu by aerosol, n = 14), M. bovis BCG-

vaccinated (Pasteur strain, n = 3), and DRD1 M. bovis-vaccinated

(Ravenel background, n = 3) calves. The DRD1 M. bovis vaccine

[34] was prepared by targeted mutagenesis as described [9].

Vaccines (BCG and DRD1 M. bovis) were administered subcuta-

neously at 2 wks of age. Virulent M. bovis for challenge [95–1315,

USDA, Animal Plant and Health Inspection Service (APHIS)

designation] was originally isolated from a white-tailed deer in

Michigan, USA [35]. The challenge inoculum was administered at

either 2.5 months (103 cfu group, n = 14) or 6 months (105 cfu

group, n = 6) of age by aerosol as described [36].

Table 1. In vitro expansion of CD32, CD172a+ cells within PBMC cultures from M. bovis infected cattle stimulated with ESAT-6/CFP-
10.

Group Media only rMPB83 ESAT-6/CFP10 peptides rESAT-6:CFP10

Non-Infected (n = 3) 3.1 (1.4) 4.1 (1.7) 1.4 (0.4) 2.2 (1.0)

BCG-vaccinated (n = 3) 3.0 (1.0) 3.0 (0.6) 2.2 (0.4) 2.6 (0.7)

DRD1-vaccinated (n = 3) 2.6 (1.1) 4.7 (1.5) 2.1 (0.5) 1.9 (0.8)

M. bovis-infected (n = 3) 2.5 (0.2) 3.8 (0.6) 11.7 (1.7)** 10.5 (0.9)**

aData are presented as mean (6standard error) percent of CD32, CD172a+, PKH67lo cells (R2 gate in Fig. 1A). Isolated mononuclear cells were stained with PKH67 (a
green fluorescent dye used for cell proliferation analysis), cultured for 6 days with or without stimulation as indicated in the upper margin, and analyzed by flow
cytometry for phenotype and PKH67 staining intensity. Both BCG and DRD-1 attenuated M. bovis vaccine strains lack ESAT-6, CFP-10, and select ESX-1 secretion
apparatus genes; thus, these strains do not produce ESAT-6 or CFP-10. In contrast to ESAT-6/CFP10, stimulation with MPB83, another immunodominant antigen of M.
bovis, does not result in expansion of CD172a+ cells.

doi:10.1371/journal.pone.0006414.t001
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Cell culture, dye tracking, cell sorting, and flow cytometry
Peripheral blood mononuclear cells (PBMC) were isolated by

density gradient centrifugation of peripheral blood buffy coat

fractions collected into 26acid citrate dextrose. Staining of PBMC

with PKH67 was performed according to manufacturer instructions

(Sigma, St. Louis, Missouri) and as described [37]. Briefly, 26107

PBMC were centrifuged (10 min, 4006g), supernatants aspirated,

and cells resuspended in 1 ml of diluent provided in the PKH67 kit.

Cells in diluent were added to 1 ml of PKH67 green fluorescent dye

(2 mM) and incubated 5 min followed by a 1 min incubation with

2 ml of fetal bovine sera (FBS, National Veterinary Services

Laboratory, Ames, Iowa) to adsorb the excess dye and stop further

dye uptake by cells. Individual wells of 96-well round-bottom

microtiter plates (Falcon, Becton-Dickinson; Lincoln Park, New

Jersey) were then seeded with 56105 PBMC in a total volume of

200 ml per well. Medium was RPMI 1640 (GIBCO, Grand Island,

New York) supplemented with 2 mM L-glutamine, 25 mM HEPES

buffer, 100 units/ml penicillin, 0.1 mg/ml streptomycin, 1% non-

essential amino acids (Sigma), 2% essential amino acids (Sigma), 1%

sodium pyruvate (Sigma), 50 mM 2-mercaptoethanol (Sigma), and

10% (v/v) FBS. In vitro treatments included medium plus 1 mg/ml

recombinant Mobility Protein of Bovis (rMPB)-83 (MPB83 is an

immunodominant antigen of M. bovis used as a recombinant antigen

control), 1 mg/ml ESAT-6 and CFP-10 peptides, 1 mg/ml rESAT-

6:CFP-10 [38], or medium alone (no stimulation). Cultures were

incubated for 6 d at 39uC and 5% CO2 in air.

Phenotype analysis of PBMC was performed as described previously

[37]. Briefly, cells were harvested and incubated with 1 mg primary

Figure 1. Expansion of CD172a+ cells in response to ESAT-6/CFP-10 stimulation. Isolated PBMC were stained with PKH67 and cultured for
6d with media only, rMPB83, a pool of overlapping ESAT-6 and CFP-10 peptides, or rESAT-6:CFP-10. Data are depicted as: (A) dot plots (CD172a-PE (y-
axis) versus PKH67 (x-axis, green fluorescence), (B) histograms generated by Modfit Proliferation Wizard analysis of PKH67 staining intensity (gated on
CD172a-PE+ cells within the live gate) and (C) mean (6SEM) percent CD172a+ cells within PBMC cultures (stimulation indicated in the lower margin)
from non-infected (open bars, n = 9, includes non- (n = 3), BCG- (n = 3), and DRD1- (n = 3) vaccinates) or M. bovis-infected (closed bars, n = 20) cattle.
Responses did not differ between controls, BCG- and DRD1- vaccinates; thus, these groups were combined. Gate R2 in panel A highlights the
CD172a+, PKH67lo proliferative fraction. For panels A and B, data from a single M. bovis-infected animal are provided that are indicative of a
representative response.
doi:10.1371/journal.pone.0006414.g001
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monoclonal antibodies/106 cells (mAb’s; DH59B, CD172a;

CACT116A, CD25; CACT114A, CD26; BAT31A, CD44; BAQ92A,

CD62L; MM1A, CD3; GC50A1, CD4; BAQ111A, CD8a; BAT82A,

CD8b; CACT61A and GB21A, cd TCR; PIG45A, IgM (B cell);

BAQ44A, BB2 (B cell); BAQ153a, CD11c; CAM36A, CD14; TH14B,

MHC class II; CD11b, MM12A obtained from VMRD, Pullman

Washington or CC149, CD172a; CC8, CD4; MCA1651, DEC-205;

MCA2365, CD335 (NK cell) obtained from Serotec, Kidlington, UK

at room temperature for 15 min. Cells were then washed and stained

with isotype appropriate goat anti-mouse phycoeythrin- (PE, Southern

Biotechnology Associates, Birmingham, Alabama), or Peridinin

Chlorophyll Protein- (PerCP, Becton Dickinson) conjugated secondary

antibodies or hCTLA4/Ig-PE for CD80/86 (Ancel, Bayport,

Minnesota) at room temperature for 15 min. For studies not using

PKH67, isotype appropriate goat anti-mouse fluorescein isothiocya-

nate- (FITC, Southern Biotechnology Associates) conjugated second-

ary antibodies were also used. Three-color flow cytometric analysis was

performed using a FACScan (BD Biosciences, San Jose, California, at

least 25,000 events within the live cell gate captured per sample) flow

cytometer. Data were analyzed with either Cellquest Pro (BD

Biosciences) or FlowJo (Tree Star Inc., San Carlos, California) software.

For cell sorting, cells from 6 day rESAT-6:CFP-10-stimulated

cultures (n = 2, 3 months after M. bovis infection) were harvested

from treatment replicates in 96-well tissue culture plates

(26108 cells/animal) and labeled on ice with 32 mg DH59B

primary antibody and 128 mg goat anti-mouse IgG1-PE for

sorting of CD172a+ cells using a FACS-Aria (Becton Dickinson,

.98% purity). Sorted CD172a+ cells were evaluated by

transmission electron microscopy and fluorescence microscopy.

Electron microscopy
Sorted 172a+ cells were fixed by suspension in 2.5%

glutaraldehyde in 0.1 M cacodylate buffer at 4uC. After 2 hours

fixation, cells were rinsed in cacodylate buffer, postfixed in 1%

osmium tetroxide, dehydrated in alcohols, cleared in propylene

oxide, and embedded in epoxy resin. Ultrathin sections of

appropriate areas were cut, stained with uranyl acetate and lead

citrate, and examined with a FEI Tecnai 12 Biotwin (FEI

company, Hillsboro, OR) transmission electron microscope.

Fluorescence Microscopy
Sorted CD172a+ cells were re-suspended in supplemented

RPMI and incubated in 96 well plates (106 cells/well) with either

M. bovis BCG-FITC (cell : mycobacteria ratio at 1:1 and 1:3) or

rESAT-6:CFP-10-FITC (cell : mg protein ratio at 1:1 and 1:10) for

2, 24, and 48 hr. Fluorescein-conjugation was via a Fluorotag

FITC Conjugation kit (Sigma). After the respective incubation

period, non-bound bacteria/protein was removed by two washes

Figure 2. Ultrastructure of CD172a cells. CD172a+ cells were isolated by high-speed cell sorting (.98% purity) from PBMC cultures stimulated
with rESAT-6:CFP-10 for 6d and evaluated by transmission electron microscopy. A cell with morphology representative of the majority of the CD172a+

cells within the culture is depicted. Bar in lower margin indicates scale. The higher magnification inset is a multi-vesicular body.
doi:10.1371/journal.pone.0006414.g002
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in PBS. Washed cells were transferred to cytospin slides (Thermo

Fisher Scientific, Waltham, Massachusetts), centrifuged, and

coverslips mounted using Prolong Gold, anti-fade reagent

(Molecular Probes, Eugene, Oregon). Fluorescent images were

analyzed with a light microscope (Nikon Eclipse E800; Nikon Co.,

Tokyo, Japan) equipped with the VFM Epi-fluorescent attachment

with xenon lamp (Nikon, Co.). Images were captured using a

microscope mounted digital camera (Spot RT, Diagnostic

Instruments Inc., Sterling Heights, MI, USA).

Immunohistochemistry
Samples were collected from intradermal injection sites and

snap frozen in liquid nitrogen cooled isopentane and stored at

280uC. Frozen sections were cut by cryostat in 6 mm sections and

processed for immunohistochemistry using primary antibodies to

the cell markers CD4, ILA11; CD8, BAQ11A; c/d T cell

receptor, GB21A; CD3, MM1A; CD172a, DH59B; and CD11c as

described previously [39,40] using HistoMark Biotin Streptavidin-

HRP system (Kirkegaard and Perry, Gaithersburg, MD, USA) and

3,39 diaminobenzidine-nickel (DAB-Ni peroxidase substrate,

Vector Laboratories, Burlingame, CA, USA) as a peroxidase

substrate. Non-specific protein binding was blocked using normal

goat serum and endogenous peroxidase activity was quenched

using 0.3% H2O2 in methanol prior to application of the primary

antibody. Digital images of sections from all palatine tonsils were

obtained with a light microscope and digital camera.

Statistics. Data were analyzed by one-way analysis of

variance followed by Tukey-Kramer multiple comparisons test

using a commercially available statistics program (InStat 2.00,

GraphPAD Software, San Diego, Calif.).

Figure 3. CD172a cells bind rESAT-6:CFP-10 and M. bovis BCG. CD172a+ cells (PE-labeled) were isolated by high-speed cell sorting (.98%
purity) from rESAT-6:CFP-10-stimulated PBMC 6d cultures; incubated with rESAT-6:CFP-10-FITC or BCG-FITC for 2–96 hrs; and evaluated by
fluorescence microscopy. (A) rESAT-6:CFP-10-FITC bound to the surface of CD172a+ cells in a focal pattern (24 hr cultures shown). Labeling patterns
were similar at 2, 24 (shown in Fig. 3A) and 96 hrs after addition of rESAT-6:CFP-10 (FITC) to cells, except for increased polarization of staining at
96 hrs. (B) Over the 96 hr culture period, PE-staining (red) used for CD172a+ cell sorting persisted (24 hr cultures shown) with a polar distribution,
possibly due to capping of antibody bound to CD172a. However, rESAT-6:CFP-10-labeling (green) did not overlap with CD172a-PE labeling (red). (C)
M. bovis BCG was detected in association with CD172a+ cells at 2 (not shown) and 24 hrs (green, intact bacteria associated with the cell surface, panel
C) after addition of the live bacteria to the CD172a+ cell culture and by 96 hrs, M. bovis BCG was internalized and mostly degraded (D). White
bar = 10 mm.
doi:10.1371/journal.pone.0006414.g003
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Results

In vitro expansion of CD172a+ cells in response to ESAT-
6/CFP-10 stimulation

In vitro stimulation of peripheral blood leukocytes from TB

patients with ESAT-6 and/or CFP-10 peptides or recombinant

protein(s) elicits a specific T cell proliferative and cytokine response

utilized extensively for TB diagnosis [41]. Extending these

observations, present findings demonstrate in vitro expansion of

CD32, CD172a+ cells in response to ESAT-6/CFP-10 stimulation

of PBMC from tuberculous cattle (Table 1). Stimulation of

PKH67-labeled PBMC with ESAT-6/CFP-10 resulted in an

increase in CD172a+/PKH67lo cells as compared to non-

stimulated cultures, indicating generation of CD172a+ daughter

(proliferative) fractions (Fig. 1A and B). With TB-infected cattle,

percentages of CD172a+ cells in cultures stimulated with either the

recombinant fusion protein or an ESAT-6/CFP-10 peptide

cocktail (,14%, Fig. 1C) exceeded (P,0.05) CD172a+ percent-

ages in cell populations from non-infected, BCG-vaccinated, and

DRD-1-vaccinated cattle (,4%, Fig. 1C). Both BCG and DRD-1

attenuated M. bovis vaccine strains lack ESAT-6, CFP-10, and

select ESX-1 secretion apparatus genes; thus, these strains do not

produce ESAT-6 or CFP-10. Stimulation with another immuno-

dominant antigen of M. bovis (i.e., MPB83) did not result in

expansion of CD172a+ cells (Table 1, Fig. 1), despite significant

proliferation of other cell types (CD172a2/PKH67lo in Fig. 1A

and data not shown) to MPB83 stimulation. These findings

demonstrate that ESAT-6/CFP-10 stimulation of PBMC from

TB-infected cattle results in an environment conducive to the

proliferation and/or maturation of CD172a+ cells.

Phenotype of CD172a+ cells responsive to ESAT-6/CFP-10
stimulation

Various dendritic cell (DC) populations are defined for cattle

[42,43,44,45], including a subset of myeloid DC’s expressing

SIRPa (i.e., CD172a+) that bind CD47 [46]. By flow cytometry,

CD172a+ cell populations responding to ESAT-6/CFP-10 stim-

ulation in vitro did not express bovine CD3, CD4, CD8b, CD14,

CD25, CD26, CD62L, cd TCR, or CD335 (NK cells); however,

they did express CD11c, CD44, CD80/86(lo), MHC class II (lo),

DEC-205 with a subset expressing CD11b or CD8a. To define the

morphology of ESAT-6/CFP-10 expanded CD172a+ cells, an

enriched fraction of CD172a+ cells (.98% purity) were obtained

via high-speed cell sorting of rESAT-6:CFP-10 stimulated cultures

(6d) and evaluated by transmission electron microscopy (Fig. 2).

Characteristics of sorted CD172a+ cells included: 8–16 mm in

diameter, irregular shaped cell margin, multiple mitochondria,

0.5–2.5 mm long cytoplasmic processes, high nucleus to cytoplasm

ratio, irregular contoured nucleus, prominent nucleolus, and

presence of myelin figures and multivesicular bodies (inset in

Fig. 2). These characteristics are consistent with a myeloid cell

lineage.

Binding of rESAT-6:CFP-10 and M. bovis BCG to CD172a+

cells
A proposed function of the ESAT-6/CFP-10 complex is that it

binds mononuclear cells and acts as a signaling molecule [13];

however, specific cell types that the complex binds to (especially in

the context of TB infection) are not known. To evaluate the

potential for direct interaction of CD172a+ cells with the fusion

protein, expanded CD172a+ cells were sorted from rESAT-6:CFP-

10-stimulated (6d) PBMC cultures, incubated with rESAT-6:CFP-

10-FITC for 2–96 hrs, and evaluated by fluorescence microscopy

(Fig. 3). Within 2 hrs, the fluorescently-tagged protein bound to

the surface of CD172a+ cells in a focal pattern (Fig. 3A); however,

rESAT-6:CFP-10-FITC labeling did not overlap with CD172a-PE

labeling (Fig. 3B), indicating that the fusion protein does not likely

interact with CD172a directly. Labeling patterns were similar at 2,

24 and 96 hrs after addition of rESAT-6:CFP-10 (FITC) to cells,

except for increased polarization of staining at 96 hrs. Over the

96 hr culture period, PE-staining used for CD172a+ cell sorting

persisted. CD172a-labeling was polar in distribution, possibly due

to capping of antibody bound to CD172a. Sorted CD172a+ cells

also bound (Fig. 3C, 24 hrs after culture), internalized, and

degraded M. bovis BCG (Fig. 3D, 96 hrs after culture); indicating

their potential for in vivo phagocytosis of mycobacteria. Together,

these findings identify a role for CD172a+ cells in the response to

bovine TB and elucidate a cell type to which rESAT-6:CFP-10

binds.

In vivo response to rESAT-6:CFP-10
Originally termed macrophage fusion receptor, CD172a was the

first protein identified as essential for macrophage fusion in tissue

cultures [reviewed in 47]. To extend in vitro findings on ESAT-6/

CFP-10 and CD172a interactions, M. bovis-infected cattle (n = 5)

were injected with 400 mg rESAT-6:CFP-10 intradermally and

reactions characterized. Prior studies have demonstrated that this

response in cattle is specific to M. bovis infection [48]. Indeed,

intradermal injection of rESAT-6:CFP-10 to a BCG-vaccinated calf

in the present study did not elicit a DTH response and multi-

nucleated giant cells were not detected within a biopsy of the

injection site. With M. bovis-infected cattle (n = 5), rESAT-6:CFP-10

elicited a DTH response characterized by infiltrates consisting of

predominately mononuclear cells with intermittent, yet consistently

detected, multi-nucleated giant cells (Fig. 4). Infiltrates consisted

Figure 4. rESAT-6:CFP-10 induces granulomatous inflamma-
tion with multi-nucleated giant cells. Mycobacterium bovis-infected
cattle (n = 5) received 400 mg rESAT-6:CFP-10 intradermally and
reactions were characterized after 6 days. Injection sites were collected
at necropsy, fixed in formalin, and stained with hematoxylin and eosin.
Injection sites consisted of predominately mononuclear cell infiltrates
with intermittent, yet consistently detected, multi-nucleated giant cells
(arrows). Prior studies have demonstrated that the inflammatory
response to rESAT-6 is specific to M. bovis infection [48]. Also,
intradermal injection of a BCG-vaccinated calf with 400 mg rESAT-
6:CFP-10 did not elicit a DTH response and multi-nucleated giant cells
were not detected within the injection site biopsy from this negative
control animal.
doi:10.1371/journal.pone.0006414.g004
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primarily of CD3+, CD14+, CD11c+, and CD172a+ cells (Fig. 5). In

general, lymphocyte infiltrates were primarily CD4+ cells with lesser

numbers of CD8+ cells and few B or cd T cells. Spatiotemporally,

CD11c+, CD172a+ and CD3+ cells were all located in dense

perivascular accumulations that extended outward separating and

dividing collagen bundles and adnexal structures. In contrast,

CD14+ cells were located at the periphery of mononuclear cell

infiltrates (Fig. 5D). Of particular note, multi-nucleated giant cells

were composed of a concentric ring of CD172a+ expression, albeit,

the central cytoplasmic core of each of the giant cells was devoid of

CD172 staining (Fig. 6). Subcutaneous inoculation of naı̈ve cattle

with either virulent M. bovis, M. bovis BCG, or DRD1 M. bovis (n = 1/

group) also resulted in granulomatous reactions containing multi-

nucleated giant cells, likely due to the presence of envelope

glycolipids in each of these live inocula [49]. Thus, ESAT-6/CFP-

10 is sufficient for the induction of multi-nucleated giant cells in TB-

infected animals but is not required, as attenuated live mutants

lacking ESAT-6/CFP-10 also elicited multi-nucleated giant cells.

Discussion

Multiple functions are proposed for ESAT-6 and CFP-10

proteins produced by M. tb-complex mycobacteria [reviewed in

16]. ESAT-6 interacts with biomembranes after dissociation from

its putative CFP-10 chaperone within the acidic phagolysosome

[12]; thereby affording a ‘‘phagolysosome escape’’ mechanism for

the pathogen. However, dissociation of the ESAT-6/CFP-10

complex under acidic conditions is unclear as a recent study

indicated that the complex is stable at a pH of 4.5 [50] while

another study demonstrated that the complex dissociates between

a pH of 4 and 5 [12]. Regardless, ESAT-6 deletion mutants of M.

tb have reduced tissues invasiveness, likely due to a loss of cytolytic

activity [9]. With the M. marinum/zebrafish granuloma model,

RD1 components are also required for efficient recruitment of

macrophages to granulomas for phagocytosis of dead macrophag-

es with viable mycobacteria [51], thus, ‘‘creating new bacterial

growth niches’’ [17]. RD-1 proteins, including ESAT-6/CFP-10,

likely elicit a faster kinetics of granuloma formation offering a

Figure 5. CD172a cells infiltrate rESAT-6:CFP-10 injection sites. Mycobacterium bovis-infected cattle (n = 5) received 400 mg rESAT-6:CFP-10
intradermally and reactions were characterized after 6 days. Injection sites were collected at necropsy, snap frozen, and evaluated by
immunohistochemistry for expression of (A) CD172a, (B) CD11c, (C) CD3, and (D) CD14 on cellular surfaces. Few B cells or cd T cells were detected
(data not shown).
doi:10.1371/journal.pone.0006414.g005
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distinct growth advantage for the pathogen [51]. In addition to

enhancing recruitment of cells susceptible to infection, the stable

ESAT-6/CFP-10 complex binds to host cells [13]; subsequently,

modulating the host response favorably for the pathogen

potentially via down-regulation of host cell killing mechanisms

and immune cell activation [52]. While a specific receptor for

ESAT-6 has been identified using monocyte/macrophage cell

lines [15], specific cell types to which ESAT-6/CFP-10 binds

within a host have not previously been determined, particularly in

the context of TB infection. Present findings support a specific

interaction of the ESAT-6/CFP-10 complex with bovine CD172a-

expressing cells. Stimulation of PBMC cultures from M. bovis-

infected calves with ESAT-6/CFP-10 resulted in the specific

expansion of CD172a+ cells and the fusion protein bound to the

surface of CD172a+ cells. Further studies are necessary to

characterize molecular interactions of ESAT-6/CFP-10 with

CD172a+ cells and the ramifications of this protein/cell interac-

tion.

SIRPa-CD47 interactions are essential for efficient migration of

DC’s to skin [53] and secondary lymphoid organs [54]. Thus,

ESAT-6/CFP-10-induced expansion of CD172a (SIRPa)-express-

ing cells may favor migration of DC/macrophage trafficking to

infection sites; thereby, promoting efficient granuloma formation

and early dissemination of M. tb complex mycobacteria, as

proposed for RD1 components by Davis and and Ramakrishnan

[51]. Current findings demonstrate that injection of rESAT-

6:CFP-10 elicited granulomatous inflammation with infiltration of

numerous T cells, CD172a+ and CD14+ cells in M. bovis-infected

calves; further supporting a role for ESAT-6/CFP-10 in the

recruitment of naı̈ve cells for infection and granuloma formation.

A unique aspect of the cellular infiltrates of rESAT-6:CFP-10

injection sites was the presence of numerous multi-nucleated giant

cells. These cells provide an opportunity for the host to resorb

large substances (e.g., bacteria) with an enhanced capacity (as

compared to mononucleate cells) via an extracellular lysosome

mechanism [23,55]. Multi-nucleate giant cell formation is

mediated, in part, by macrophage fusion receptor, also termed

CD172a or SIRPa. Cell surface expression of CD172a is strongly

and transiently induced upon giant cell formation. As opposed to

phagocytosis, SIRPa-CD47 interactions provide ‘‘self recognition’’

signals that prevent killing of internalized (i.e., fused) cells. As with

mouse and human cell lines [reviewed in 23], present findings

demonstrate that bovine multi-nucleate giant cells also express

CD172a. Additionally, ESAT-6/CFP-10 was sufficient for induc-

tion of giant cells in TB-infected calves. Numerous other

components of the tubercle bacillus may also induce giant cell

formation [49]; however, this is the first observation that a defined

protein antigen, ESAT-6/CFP-10, induces these cells without

support from mycobacterial glyco- or phospho-lipids, potentially

via a CD172a-mediated mechanism. Based on these findings and

recently published observations, an important yet complex

question arises: Does induction of multi-nucleate giant cells by

ESAT-6/CFP-10 benefit the pathogen, host, or is it a compromise

of this intricate interaction?

In the present study, ESAT-6/CFP-10 stimulation of PBMC

from TB-infected cattle resulted in an environment conducive to

the proliferation and/or maturation of CD172a+ cells. In vitro

expansion of CD172a+ cells most likely resulted from indirect

stimulation via growth factors/cytokines produced by ESAT-6/

CFP-10-specific T cells. Indeed, rESAT-6:CFP-10 elicits robust

M. bovis-specific CD4 and CD8 proliferative responses associated

with increased expression of activation markers including CD25,

CD26, and CD45RO by responding T cells [57]. With this

response, antigen-presenting cells required to support specific T

cell responses may have included CD172a+ cells. Another

possibility is that direct interaction of ESAT-6/CFP-10 with

CD172a+ cells elicited the response. In addition to IFN-c, rESAT-

6:CFP-10 stimulation of PBMC from TB-infected cattle elicits

potent TNF-a and IL-4 responses [56], each supportive of myeloid

cell maturation. Additionally, TNF-a produces pleiotropic effects

in relation to TB granuloma formation and mycobacterial control

[reviewed and modeled in 58]. Further, IL-4 induces multi-

nucleated giant cell formation in vitro [59]. Likewise, rESAT-

6:CFP-10-specific MIP-1a production by bovine mononuclear

cells [56] may contribute to trafficking of CD172a+ cells into

rESAT-6:CFP-10 injection sites. With infection, continued

secretion of ESAT-6/CFP-10 by M. tb complex mycobacteria

would lead to T cell production of cytokines/chemokines/growth

factors that support trafficking and expansion of CD172a+ cells

within lesions. Further studies, however, are warranted to

determine specific biologic messengers facilitating these responses.

Resolution of the solution structure for the ESAT-6/CFP-10

complex to high precision has provided clear evidence for a long

flexible C-terminal arm on CFP-10 necessary for binding to

monocyte lineage human cell lines [13]. Present findings build

upon this observation by demonstrating that the ESAT-6/CFP-10

complex binds to CD172a+ cells and is sufficient for the induction

of multi-nucleated giant cells in TB-infected animals.
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Figure 6. Multinucleate giant cells elicited by rESAT-6:CFP10
are composed of a ring of CD172a+ cells. Mycobacterium bovis-
infected cattle (n = 5) received 400 mg rESAT-6:CFP-10 intradermally and
reactions were characterized after 6 days. Injection sites were collected
at necropsy, snap frozen, and evaluated by immunohistochemistry for
expression of CD172a. Arrows depict a CD172a+ multi-nucleate giant
cell consisting of a ring of peripherally located nuclei and abundant
cytoplasm located centrally.
doi:10.1371/journal.pone.0006414.g006
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