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ABSTRACT Objective: Dry Weight (DW) is a typical hemodialysis (HD) prescription for End-Stage Renal
Disease (ESRD) patients. However, an accurate DW assessment is difficult due to the complication of body
components and individual variations. Our objective is to model a clinically practicable DW estimator.
Method: We proposed a time series-based regression method to evaluate the weight fluctuation of HD patients
according to Electronic Health Record (EHR). A total of 34 patients with 5100HD sessions data were selected
and partitioned into three groups; in HD-stabilized, HD-intolerant, and near-death. Each group’s most recent
150 HD sessions data were adopted to evaluate the proposed model. Results: Within a 0.5 kg absolute error
margin, our model achieved 95.44%, 91.95%, and 83.12% post-dialysis weight prediction accuracies for
the HD-stabilized, HD-intolerant, and near-death groups, respectively. Within a 1%relative error margin,
the proposedmethod achieved 97.99%, 95.36%, and 66.38% accuracies. For HD-stabilized patients, theMean
Absolute Error (MAE) of the proposed method was 0.17 kg± 0.04 kg. In the model comparison experiment,
the performance test showed that the quality of the proposed model was superior to those of the state-of-the-
art models. Conclusion: The outcome of this research indicates that the proposed model could potentially
automate the clinical weight management for HD patients. Clinical Impact: This work can aid physicians to
monitor and estimate DW. It can also be a health risk indicator for HD patients.

INDEX TERMS Personalized prognosis, personalized risk prediction, electronic health record,
hemodialysis.

I. INTRODUCTION
Chronic Kidney Disease (CKD) characterized by the gradual
loss of kidney function is commonly recognized as one of
the most severe global public health problems. CKD affected
more than 753 million people and caused 1.2 million deaths
in the year of 2016 [1]. The disease is the 18-th leading cause
of death in globally [2]. The end-stage of CKD is called End-
Stage Renal Disease (ESRD), and patients with ESRD must
take Renal Replacement Therapy (RRT) including dialysis

and transplantation. As of 2010, the number of individu-
als receiving RRT worldwide was reported as 2.6 million,
with over two-thirds of them relying on Hemodialysis (HD)
treatment. By the year of 2030, the number is expected
to double roughly [3]. Although developing countries pro-
vide the most market for HD consumptions, the medical
conditions and quality of HD there are limited. The avail-
ability of experienced clinicians and well-conditioned HD
centers [4] can hardly meet patients’ demands. The urge
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to expand high-quality HD services has been brought to
attention.

The primary objective of HD is to remove the free water
that is excreted by healthy kidneys in the form of urine
from the blood via Ultrafiltration (UF). To determine the UF
volume for HD session, clinicians must evaluate the patients’
fluid statuses with the prescription of Dry Weight (DW),
which is defined as patients’ lowest tolerated post-dialysis
weight at which the patients have the minimal signs or symp-
toms of hypovolemia or hypervolemia [5]. Overestima-
tion or underestimation of DW causes harmful consequences
including cardiovascular disease, malnutrition, and increased
rate of hospitalization and mortality [6]. Though many meth-
ods are proposed to approximate DW [7]–[10], none of them
can be adopted as a golden standard or has shown better
survival benefits [11]. The difficulty in estimating DW stems
from variations and uncertainties of the human system, such
as nutrition status, underlying illness, commodities, etc. Thus,
the trial-and-error method is still widely applied in clinical
situations. Experienced clinicians still estimate DW with the
closest accuracy to the truth, but it requires an incredible
amount of time and effort. We aim to develop personalized
DW estimation models and implement automatic DW evalua-
tion applications to supervise HD patients’ weight adjustment
behaviors. The proposed models could enhance the quality
of HD and help to fulfill the enormous demands of high-
quality dialysis services. The following segment contains a
brief overview of the relevant works.

A. RELATED WORK
Time series modeling aims to establish the connections
between observed data and future events. It fits excellently
with demands on medical applications where patient records
often correlated with time and observatory markers. Many
studies have focused on time series model developments
[12], [13]. We summarized the conventional methods into
two categories: (1) statistics-based techniques—works under
this class usually elaborate models with problem-dependent
assumptions, such as linearity, periodicity, data distributions,
the order of the model, and more. Autoregressive Integrated
Moving Average (ARIMA) is a representative model in a
stochastic time series analysis [13]. According to differ-
ent applications, it derives various subclass models, such
as Autoregressive (AR), Moving Average (MA), Autore-
gressive Moving Average (ARMA), and Seasonal ARIMA
(SARIMA) [14]–[16]. Though there are limitations for
statistics-based methods, they have still proven capable of
achieving remarkable performances with specific problem.
(2) Machine learning based methods — works in this cat-
egory have high feasibility to solve real-world problems
with the characteristics of non-linearity, minimal knowledge
of priori distributions, high dimensional variables. Artificial
Neural Network (ANN) [17] is a a typical scheme that can
approach the complex system with rigorous precision. There
are also many variations of ANN-based methodologies, such
as Long Short Term Memory (LSTM) network [18], Time

Lagged Neural Network [19], and other implementa-
tions [20]. We also noticed that Random Forest (RF) [21],
Support Vector Machines (SVM) [22], and Bayesian Net-
works (BN) [23] are wildly applied in literature because of
their steady performance. Worth mentioning is that machine
learning schemes face the difficulties in parameter opti-
mizations, over-fitting functions, and model interpretability.
Though many techniques have been proposed to provide
solutions to these problems, some questions remained to be
solved.

Studies exist on the use of machine learning assisted
HD applications. For example, in an HD anemia treatment,
the ANN method [24] was utilized to determine hemoglobin
levels in HD patients, and [25] a reinforcement learning
method to optimize the dose of erythropoiesis-stimulating
agents has also been proposed. The RF model [26] has
been applied to predict HD patients’ cardiovascular risk, and
a decision tree method [27] to detect early Arteriovenous
Fistula (AVF) Failure has been adopted. In regards to HD
quality control, a Temporal Abstractions (TA) method [28] to
monitor the quality of HD process has been proposed, and an
applied Bayesian network [29] to recognize patient temporal-
state transition patterns and detect the exception events is in
place. A study [30] proposed a Bioimpedance analysis (BIA)
based on a multiple variable regression model to predict DW,
and the accuracy is controlled within 0.5 kg with a standard
deviation of 2 kg. Research [31] has applied the Multi-Layer
Perceptron (MLP) neural network to predict DW using the
inputs of patients’ BIA and blood volume monitoring data,
with findings revealing a 0.5 kg outcome with a standard
deviation of 1.3 kg. Although studies [30], [31] have reported
significant DWmodeling progress, the model remains depen-
dent on crowd data, which may lead to data bias. Moreover,
we propose that DW is a dynamic value, and a personalized
training model is necessary for achieving the better precision.
The studies listed here illustrate the remarkable potential of
the application of machine learning methodology in HD.

The rest of the paper is organized as follows: Section II
explains the proposed methodology, Section III shows the
experimental results and comparisons with other methods,
and Section IV is a detailed discussion based on the observed
results. The final part is the conclusion.

II. METHODS
A. METHOD OVERVIEW
Theoretically, precise DW can hardly be obtained. We treated
the trial-and-error post-dialysis body weight as the domain
knowledge to approximate DW value. It is worth mentioning
that all the patients enrolled were received an extended period
of care frommedical experts, and all DW-assessed Electronic
Health Record (EHR) data are from the HD center of the
Huashan Hospital. The physiological variables are stored by
automatic transmission from the dialysis machine or hospital
information system, which makes the research data highly
authentic and complete. We retrieved the HD sessions data
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TABLE 1. Overall statistics for the study of patients.

of each HD patient and trained a customized post-dialysis
weight estimation model. To explore models’ dependencies
on life conditions, we partitioned patients into three groups,
namely, HD-stabilized, HD-intolerant and near-death. The
clinical data were collected from the devision of Nephrol-
ogy, the Huashan Hospital. This research was approved by
the Ethics Committee at the Huashan hospital and written
informed consent was collected from all study participants.

B. PARTICIPANTS
A total of 34 patients with 150 HD entries of EHR data for
each were selected for the research. Participants were divided
into three groups: (1) HD-stabilized group — participants
in good health conditions without any sign of hypovolemia
and hypervolemia or underlying illness; (2) HD-intolerant
group — participants showing typical symptoms of hypoten-
sion during an HD session indicating HD-intolerant status;
(3) Near-death group — participants were dead one week
after the last recorded data were collected. The statistical
characteristics for enrolled patients are shown in Table 1.

This study aimed to establish a DW supervision system
to monitor the weight adjustment behavior of HD-stabilized
patients. It is a necessary measure to setup control groups
to observe evidence of inaccurate predictions that may refer
to exceptional medical events. Therefore, HD-intolerant and
near-death groups were put in place. Details on the results
from different groups are discussed in later sections.

C. EHR DATA FORMAT
All data were auto-collected from the dialysis machine and
hospital information system. Each HD session contains the
following data entries: (1) Patient ID, which is a unique code
for patient identity; (2) Date of HD; (3) Pre-dialysis and
post-dialysis Blood Pressure (BP); (4) Pre-dialysis and post-
dialysis body weight. (5) UF volume, which is the amount of
fluid removed from HD patients. In this study, we excluded
the BP data since they are open variables results from fac-
tors, such as patient mind status, medications, food, and
others.

FIGURE 1. The flow diagram for EMD model development.

D. MISSING DATA TREATMENT
We found the original EHR data missing a few weight val-
ues. The data frame was discarded if both pre-dialysis and
post-dialysis weights were missing. Otherwise, the missing
weights were estimated from the equation (1).

wpre = wpost + u/1000+ δ (1)

where wpre is pre-dialysis weight, wpost is post-dialysis
weight, u is the volume of UF (mL), and δ is the average
weight draft which is defined by equation (2).

δ =
1
m

m∑
i

(
wpre − wpost − u/1000

)
(2)

Though combining the mean UF with its bias and pre-
/post-dialysis weight can approximate themissingweight val-
ues. Individually, the post-dialysis weight is not simply a case
of pre-dialysis weight minus UF volume (L). Figure 2 scatters
the dialysis weight difference and UF volume (L). In most
cases, the UF volume (converted to weight) is higher than
the weight difference because of the supplementary normal
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FIGURE 2. The illustration of the relationship between dialysis weight
difference and UF volume. The red line is an ideal scenario where
removal fluid is equal to weight loss. In most cases, the UF volume is
above or lower because of the supplementary normal saline and the
excretion during the dialysis.

saline at the end-stage of dialysis section. The implantation
dose of normal saline depends on the clinical status of a
patient. In a few cases the UF volume is less than the weight
difference because of the excretion during the dialysis. Very
few patients had residual kidney functions allowing them to
urinate, causing further weight loss. Considering the above
scenarios where the UF volume may indicate the dry weight
status, we included the UF volume as a variable.

E. MODEL FEATURES
1) HISTORIC WEIGHT
The feature domain F is defined by equation (3).

F = W pre
0 ∪W

pre
k ∪W

post
k ∪ Uk (3)

where Wk = {w1,w2, ...,wk}, Uk = {u1, u2, ..., uk}, k is
the most recently k sessions measurements of weight and UF,
W pre

0 is the current pre-dialysis weight.

2) OUTLIER REMOVAL
We filtered the outlier data via the differences in pre- and
post-dialysis weight values to obtain a robust mathematical
model. The training set excluded the largest and the smallest
weight differences in data entries with a rate of 10% for each
side.

F. OBJECTIVE
1) EXPONENTIAL AVERAGE DIFFERENCE
From clinical observations, the post-dialysis weight is time-
sensitive. We used the Exponential Moving Average (EMA),
which is defined by equation (4), to model the time decay
effect of input features.

EMA(f ) =
n∑
i=1

αi ∗ fi (4)

FIGURE 3. Model evaluation with the k parameter ranging from 1 to 10.
For MSE, MAE, and MAPE, the lower the value, the better the
performance. For r2, the larger the value, the better the performance. The
red dash line indicates k=5 performance. k is insensitive to the model
when smaller than 5, and when k is larger than 5, the model accuracy
degrades significantly.

where fi is the i-th input of the variable f , αi is a time-
attenuated weight factor, as shown in equation (5).

αi =


1

1+
∑n

i (
n−1
n+1 )

i
∗ (
n− 1
n+ 1

)i, if i > 1

n− 1
n+ 1

, if i = 1
(5)

Themodel objective, namely theEMD of post-dialysis weight
is defined by equation (6).

EMD(Wpost ) = Wpost − EMA(Wpost ) (6)

EMD exhibits good stationary properties whose statistical
information is relatively constant over time. Thus, instead of
directly connecting data features to wpost , building a model
dependent on EMD simplifies the future weight forecasting
by utilizing system regularity. Figure 4(a) illustrates the dif-
ference between wpost , EMA(Wpost ), and EMD(Wpost ) data.

G. MODELING METHOD
In this study, the EMD value is approximated by equation (7).

ẼMD = EMDbase + EMD1 (7)

where EMDbase describes the average data tendency, and
EMD1 is the local correction factor. The detail implemen-
tations are discussed as the follows.

1) DATA NORMALIZATION
All input features are scaled to zero mean and unit variance
through equation (8).

f̃i =
fi −Mean(f )
STD(f )

(8)

where fi is the i-th element of input feature f , Mean() is
the mean value function, and STD() is the standard variance
function.
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FIGURE 4. (a) A sample of the post-dialysis weight (Wpost ), EMA, and EMD value curve. Left y-axis validates for wpost and EMA, while right
y-axis validates for EMD. The figure shows that EMD is a stationary data compared with the other two weight-related variables by neutralizing
the trend in raw weight and EMA data. (b) An illustration of EMD’s regression tendency. The black points are EMD samplings, the straight line
EMDbase is EMD linear regression, and the dash distance represents EMD1, which is the difference between EMD and EMDbase. (c) An
illustration of the local regression of EMD1. Based on the observation point, the sampling points are weighted locally through the Gaussian
kernel function, as shown in equation (11). The weight is associated with the dots’ size and color, where blue dots’ weights approach to zero.
(d) The same annotations with (c) but with a different observation point. Note that (c) and (d) are illustrations of local regressions for training
process. The future session data will not available in real time prediction.

2) LINEAR REGRESSION
Weused the naive linear regressionmethod tomodel theEMD
baseline (EMDbase). The formula is defined by equation (9).

EMDbase =
∑
fi∈F

λi ∗ f̃i (9)

where λ represents the linear regression coefficients that are
solved using the least square method. An illustration of an
EMDbase modeling is shown in figure 4(b).

3) GAUSSIAN KERNEL-BASED CALIBRATION
The nonlinearity of the model draft is modeled with the
local weighted regression method which is defined by
equation (10).

EMD1 = EMDbase − EMD =
∑
fi∈F

λ′i ∗ f̃i
′ (10)

where f̃i
′ is weighted training data based on the current input

sample X and gaussian kernel method which is defined by

equation (11) [32].

f̃i
′
= f̃i ∗ e

−(fi−Xi)
2

2τ2 (11)

where τ is a constant parameter. The weighted regression
method can approximate the local fluctuation efficiently by
biasing the Eulerian nearest training points from the history
data repository. Gaussian kernel-based local regressions are
illustrated in figure 4(c)-(d).

4) MODELING FLOW
The modeling flow is summarized in figure 1. We established
the personalized post-dialysis weight model via four steps:
(i) Extracting patients’ EHR data from the dialysis informa-
tion system. The data of interest is defined by equation (3);
(ii) Performing the data pre-processing procedure to remove
outliers and fill missing values; (iii) Mixing the EMD
regression tendency (EMDbase) and local regression (EMD1)
results to approach the EMD value; (iv) Post-dialysis weight
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was calculated using equation (6), where EMA(Wpost ) is a
known variable.

H. METHOD IMPLEMENTATIONS
The ARIMA method is implemented with statsmodels [33]
package, the RF method is implemented with Scikit-
learn [34] package, and the LSTM is implemented with Ten-
sorFlow [35] and Keras [36] packages. Figure 3 illustrates
k as being insensitive to the model when smaller than 5.
On the other hand, themodel accuracy degrades as k increases
because larger k values bring up more features that make the
model harder to fit. We set the parameter k in equation (3) to
5 (16 input features) for the following reasons: (1) DW is an
interval value. Larger k values may give more reliable results.
(2) Setting k at 5 in clinical practice can achieve a reason-
able observation time window that is equivalent to 2 weeks
follow-up of the patients who visit the HD center 2-3 times a
week. The ARIMA model is fitted with the parameters with
a lag order of 5 for autoregression, difference order is 1 for
stationary data enhancement, and moving average order is
set to 0. RF is set up with a maximum depth of 2 for each
estimator, and the total number of estimators is 200. LSTM is
constructed with one hidden layer and 16 units, and the time
step is 1. The same training and testing data are fed to all
methods.

I. PERFORMANCE MATRICES
The model quality is evaluated via multiple measures: the
Mean Absolute Error (MAE) in equation (12) that empha-
sizes the overall error in magnitude, the Mean Absolute Per-
centage Error (MAPE) in equation (13) that addresses the
relative mismatch of predictions, the Mean Squared Error
(MSE) in equation (14) that weights more on large deviations
and the coefficient of determination r2 that measures the
fitness of regression in equation 15.

MAE =
1
n

n∑
i

| EMDi − ẼMDi | (12)

MAPE =
1
n

n∑
i

|
EMDi − ẼMDi

EMDi
| ×100 (13)

MSE =
1
n

n∑
i

(EMDi − ẼMDi)2 (14)

r2 = 1−

∑n
i=1(EMDi − ẼMDi)

2∑n
i=1(EMDi − EMD)2

(15)

where EMD is the mean value of EMD testing samples
defined in equation (16), and n is the number of testing
samples. A perfect predictive model occurs if MAE = 0,
MAPE = 0, MSE = 0, and r2 = 1, otherwise, the larger
the deviation, the worse the model is.

EMD =
1
n

n∑
i

EMDi (16)

III. EXPERIMENTAL RESULTS
The proposed method was running on a 1.1 GHz Intel core
M CPU with 8G 1600 MHz DDR3 memory. The average
runtime of the proposed model (training and predicting for
one patient) is 0.25s.

FIGURE 5. (a) The absolute error distribution of the three patients groups,
where the red dash line indicates a 0.5 kg error. The CDF value with a
greater than 0.5 kg error for the HD-stabilized, HD-intolerant, and
near-death groups are 4.56%, 8.05%, and 16.88%, respectively. (b) The
relative error distribution of the three patients groups, where the red
dash line indicates a 1% error. The CDF value with a greater than 1% error
for the HD-stabilized, HD-intolerant, and near-death groups are 2.01%,
4.64%, and 33.62%, respectively.

A. ERROR DISTRIBUTIONS
We evaluated the accuracy of the proposed method with
the absolute and relative error matrices, where the absolute
error is a non-negative kilogram weight difference between
patients’ actual post-dialysis weights. The relative error is the
absolute error that divides the patients’ post-dialysis weights.
As a rule of thumb, the absolute weight error would be
kept within 0.5 kg, and the relative error would be kept
within 1% by the clinical staff to gain the best treatment
for HD patients. We fitted the gamma error distributions
in figure 5. The proposed model showed smaller variations
and average errors when comparing HD-stabilized patients
with patients from the other two groups. This result indicated
that HD-intolerant and near-death patients’ recent historical
weight data might consist of inner chaos that is challenging
to model the regularity. In this sense, larger prediction errors
were generated. Overall, the value of the estimated Cumu-
lative Distribution Function (CDF) of the gamma distribu-
tion with a ≤ 0.5 kg absolute error were 95.44%, 91.95%,
and 83.12% for the HD-stabilized, HD-intolerant, and near-
death groups, respectively. The relative error distribution had
a better performance with an error of ≤ 1% of which the
CDF values were 97.99%, 95.36%, and 66.38%. From the
experimental results, the accuracy of the proposed method
decreases with patients’ deteriorating conditions. Patients
with stable life signs (HD-stabilized) exhibited minimal DW
prediction errors, indicating that our approach may be used
as a novel marker to monitor HD quality. On the other hand,
the proposed method can be a good fit for most HD patients,
given that about 80% of patients are at stable clinical levels
according to the annual data report from the United States
Renal Data System (USRDS) of the year 2018 [37].

4200109 VOLUME 7, 2019



Z. Bi et al.: Practical EHR-Based DW Supervision Model for HD Patients

TABLE 2. Performance matrices.

TABLE 3. F-statistic of one-way ANOVA.

TABLE 4. T-statistic of Bonferroni-Holm.

B. MODEL COMPARISONS
The mean, standard deviation, and 95% confidence interval
for the models discussed in previous sections are summarized
in Table 2. The experimental results showed that the pro-
posed model outperformed other methods in terms of mean
results regarding all patient groups. The mean ofMAE for the
HD-stabilized group of the proposed method was 0.17 kg,
which is equivalent to 37%, 32%, and 26% improvements
compared with ARIMA, RF, and LSTMmodels, respectively.
The MAPE and MSE matrices also confirmed that our pro-
posed method had the best error margin. The r2 measure-
ment indicates that the model proposed is the most suitable,
as it was 66%, 42%, and 19% better than the ARIMA, RF,
and LSTM models, respectively, in HD-stabilized group.

The p-value corresponding to the F-statistic of one-way
ANOVA [38] in Table 3 suggested that the proposed method
was significantly better than one or more methods regarding
HD-stabilized group. We then used T-statistic of Bonferroni-
Holm [39] in Table 4 to isolate the significance with other
methods. The p-value showed that the proposed method
was significantly better than ARIMA and RF methods
(HD-stabilized group, all metrics). The proposed method
showed significantly improved in MAPE (p<0.05) and on
the edge of the significance in MAE (p=0.053), MSE
(p=0.064), r2 (p=0.077) when comparing with LSTM for
HD-stabilized group. Figure 6 is an intuitive illustration of the
comparisons of different algorithms from one HD-stabilized
patient.
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FIGURE 6. The illustration of different regression algorithms on post-dialysis weight prediction. This result comes from a sample of an
HD-stabilized patient. The MAE, MAPE, MSE, and r2 from the proposed method are 0.15, 0.22, 0.03, and 0.88, respectively. ARIMA scores are
0.53, 0.8, 0.40, and −0.47. RF scores are 0.35, 0.53, 0.2, and 0.25. LSTM scores are 0.34, 0.52, 0.17, and 0.35.

IV. DISCUSSION
The prediction accuracy degraded with worsening patient
conditions. The near-death group manifested a substantial
accuracy deviation compared with the HD-stabilized group,
indicating that the machine learning and statistical-based
methods can potentially follow the regularity of the human
system. When exceptional medical events happen, the chaos
weight adjustment behavior may damage the stability of the
model training, which could lead to more significant devia-
tions. From this point of view, the proposedmodel can behave
like a marker to track HD patients’ regularity and exceptional
medical events. Naturally, patients with stable life signs may
exhibit a better regularity than unstable patients. Since most
of the HDs are undertaken at HD centers with nursing staff,
it potentially lacks expert knowledge to timely tune or to
rise awareness of the risk factors, such as subtle changes in
patients’ conditions. The proposed method in this research
can supervise and record the weight adjustment behaviors
efficiently, such that any operation that drafts off the predic-
tion to a certain threshold will produce a medical warning to
alert patients and doctors, and help to buildup personalized
HD plans. As aforementioned, the weight prediction model
is from the personalized data record, and it avoids the crowd
bias of population data and matches the concept of personal-
ized medical care.

V. CONCLUSION
This paper proposes a scheme that could process EHR data
and establish a DW estimation and supervision model for HD
patients. As far as our knowledge goes, this is the first work
to have developed a personalized model based on mature
DW assessment dataset to monitor DW adjustment behav-
ior. We kept the absolute error under 0.5 kg, and relative
error under 1% for most HD-stabilized cases included. This
accuracy suggests that this model has great potential for

utilization in dialysis centers monitoring the quality of HD
automatically.We also observed a more substantial predictive
deviations in the HD-intolerant and near-death groups, which
indicates that the proposedmodel should be revised by excep-
tional medical events to fit situations of clinical instability.
The proposed method can be consolidated by further clinical
verifications.
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