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A B S T R A C T   

Touch screens are widely used in smartphones and tablets. These screens exhibit a pattern of 
directional, regular lines on their surface. The intricate texture of this background, which quickly 
causes interference, poses a significant challenge in detecting surface defects. Surface defects can 
be mainly classified into two types: linear and planar. Existing methods cannot effectively detect 
both types of defects. This study proposes a curvelet transform-based multi-angle filtering 
method. It can effectively attenuate regular patterns from panel images with textural backgrounds 
and preserve fine linear and planar defects in the reconstructed image. Curvelet transform is a 
multi-scale directional transformation that can capture the curved edges of objects well. The 
filtered curvelet coefficients are then reconstructed into the spatial domain and binarized using a 
threshold based on the interval estimation skill. The results of the trial show that the suggested 
approach can precisely locate and identify defects in touch panels. The rate of defect detection (1- 
β) stands at 93.33 %. The rate of defect misjudgment (α) is at a low of 1.26 %. The correct 
classification rate (CR) is impressively high at 98.69 %, indicating that the proposed method 
provides fine-grained segmentation results over existing methods for detecting surface defects on 
touch panels.   

1. Introduction 

Capacitive touch panels have the highest market share among different types of touch panels. To meet the high demand, automated 
processes must produce them in large quantities. However, some common defects can affect the quality of touch panels, such as 
scratches, cracks, debris, dirt, and water stains [1]. These defects can be caused by improper wiping or handling of the panels, or by 
insufficient drying after cleaning. Touch panel surface defects can be broadly categorized into two primary kinds given their form: 
linear defects, which are directional and include examples such as scratches and cracks; and planar defects, which are irregularly 
shaped and low contrast, encompassing debris, dirt, and water stains. 

Capacitive touch panels have complex background patterns that challenge automated defect detection [2]. The patterns have 
directional properties that affect defect detection. This study explores the inspection of a capacitive touch panel with a structural 
textured background. The pattern is uniform on the surface, which makes it hard to detect defects. Fig. 1 shows a touch panel sample 
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and a close-up of the texture pattern. Two test images are acquired from the touch panel sample containing a linear flaw and some 
planar flaws. The surface pattern is complex, and defects that overlap the pattern are complicated to detect. 

Touch panel manufacturers used to rely on manual visual inspection for appearance defects. They would use lighting and flip the 
touch panel simultaneously. By changing the angle of the touch panel, they could see the defects by reflection and detect surface flaws. 
However, this visual method had many drawbacks. It could cause fatigue and injury to inspectors or affect their concentration after a 
long operation. It demanded a lot of focus and attention. Therefore, inspectors were likely to make mistakes in product quality in
spection when they were tired. Some manufacturers have tried to use traditional computer vision inspection systems to capture defect 
ranges, but they faced challenges from environmental interference and sample background patterns [3,4]. These factors not only 
amplify the complexity of defect detection but also contribute to an increase in false positives and a decrease in detection rates. 

This study delves into the challenge of identifying surface defects on capacitive touch panels. These panels are characterized by 
regular conductive electrodes and wires, which form the backdrop of their design [5]. The transparent glass of these panels often 
features a variety of textured background patterns, including various conductive electrodes and lines, depending on the design and 
functional requirements of different manufacturers. The touch panel under our scrutiny boasts a complex pattern design, composed of 
grid-like lines intersecting at various angles. This intricate design presents a significant challenge in distinguishing defects from the 
pattern using computer vision techniques, especially when they overlap. 

This research aims to develop an automated technique for detecting surface defects on touch panel images with textured back
grounds. The proposed method uses a curvelet transform and multi-angle filtering to diminish the texture pattern and emphasize defect 
features. It then distinguishes the defects from the background, achieving full automation of defect detection. The curvelet transform, 
with its sparse representation capability, serves a vital role in fabric defect detection. The method is both efficient and dependable for 
identifying surface defects in industrial products. Unlike machine learning and deep learning methods, the curvelet filtering approach 
does not require training data, which can be beneficial when such data are scarce. The curvelet filtering method also has a shorter 
inference time for general images, making it robust for practical applications of online surface defect detection. Some implementations 
of curvelet filtering methods allow the adaptive selection of filter parameters to detect defects in various image textures [6]. Given 
these advantages, the curvelet filtering method proves to be a potent tool for defect detection in various sectors, including 
manufacturing and textile industries. 

The remaining sections of this paper are organized as follows: It begins by reviewing the existing literature on the methods 
currently employed by optical inspection systems for touch screens. Next, we detail the proposed image processing methods that are 
designed to detect imperfections and determine their locations on the touch screens. This is followed by a series of tests to assess both 
the effectiveness and efficiency of the proposed models, drawing comparisons with conventional techniques. Lastly, we summarize our 
contributions and propose potential directions for future research. 

2. Related works 

The production process has become more efficient with automation, but it also produces more untested products than the in
spection unit can handle. An automated visual inspection system is necessary for the product inspection process to guarantee that the 
output quality adheres to professional standards [7,8]. This system can enhance the speed of detection, and decrease the errors and 
expenses associated with manual inspection of the product. If the quality of the products is not maintained while taking large orders, 
the risk of returns will have to be faced. Chen et al. [2] developed a visual inspection system to identify defects in resistive touch panels 
(RTP), which integrates mechanical, electrical, and computer vision components, and uses image processing technology to identify 
defects of this kind of touch panel. The line structure on the surface of RTP is simple and resembles a checkerboard. Capacitive touch 
panels (CTP) have more variety and complex patterns, and their pattern changes are larger [9]. 

2.1. Traditional-based methods 

Traditional defect detection methods frequently rely on machine vision and image processing techniques. Several image processing 
methods have been applied to flaw detection on surfaces of optical glass, such as image filtering, binarization, and edge enhancement 

Fig. 1. Two test images acquired from a touch panel sample containing (a) a linear flaw and (b) some planar flaws.  
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[3,4,10]. Linear defects of object surfaces with texture have been detected using Fourier transform, wavelet transform, and broadband 
filtering [11,12]. For the surface of the touch panels, Gaussian smoothing was used to remove image noise, histogram equalization was 
used to improve the uneven light problem, and two-dimensional frequency transforms were used to magnify the distinction between 
defects and background [13–16]. The defects were also automatically classified and quantified in severity [17]. The traditional 
methods often lack sophisticated algorithms and may not be suitable for widespread application. They often have difficulty identifying 
and classifying defects accurately [18–20]. 

To segment the touch panel’s pattern and defects effectively, we apply curvelet transform as the frequency domain transformation 
method and combine it with multi-angle filtering to attenuate the background pattern. The testing samples have various directional 
changes, and the curvelet transform could better capture the image edges’ curves and had a strong directional decomposition ability 
[21–23]. Hence, we choose curvelet transform as the frequency domain transformation method for analyzing sample pattern changes. 
Other frequency-domain transformation methods include Fourier transform, wavelet transform, etc. These methods convert the time 
domain signal into the frequency domain, so the frequency content of the signal can be analyzed. In comparison to the time domain 
filtering method, the frequency domain filtering method efficiently eliminates the baseline drift in the signal and effectively mitigates 
low-frequency interference components [17,18]. 

The discrete curvelet transform (DCT) is a skill for representing images or signals using multi-scale and multidirectional basis 
functions. It addresses specific intriguing phenomena that occur along curved edges in signals of higher dimensions. It generates sub- 
band coefficients, with each sub-band capable of being processed independently. The distinctions between the curvelet transform and 
its similar methods are outlined as follows. Wavelets form the foundation for depicting position and spatial frequency. However, these 
methods are inadequate in accurately depicting highly anisotropic elements and only include a set number of directional elements, 
regardless of scale [24]. The shearlet transform is a multi-dimensional function utilized for sparse representation. It is capable of 
effectively extracting directional features, delivering the sparse approximation of edge and contour features, and exhibiting greater 
sensitivity to the geometric structure of the image [25]. 

The contourlet transform is composed of bases with varying directions across multiple scales, exhibits a low redundancy rate, and 
possesses superior boundary representation capabilities. The distinction from the curvelet transform lies in the fact that the degree of 
direction localization varies with scale [25]. The ridgelet transform employs the radon transform on a distinct overcomplete wavelet 
pyramid. The curvelet transform employs the ridgelet transform in a synthesis step and integrates a filter bank made up of wavelet 
filters to carry out the curvelet subbands. The bandlet transform belongs to a family of multiscale geometric transformations that are 
utilized in image and signal processing. It is used for sparse representation of an image, which is particularly useful in image 
compression. 

The choice among these transforms depends on the specific requirements of the task, taking into account factors such as the nature 
of the data and the computational resources available. The DCT can preserve the image quality better than the wavelet transform, 
which can introduce artifacts and distortions due to its isotropic and homogeneous nature [24]. The DCT can also handle images with 
different orientations and scales better than the wavelet transform, which can lose information and resolution when dealing with 
anisotropic and heterogeneous images [26]. Alzubi [24] discussed how wavelet, ridgelet, and curvelet transforms can perform 
multi-resolution analysis for segmentation systems. It indicated the curvelet transform, being an advanced version of wavelet and 
ridgelet transforms, is effective in capturing curves. 

2.2. Deep learning-based methods 

Defect detection techniques that utilize Convolutional Neural Networks (CNNs) have been widely applied in various industrial 
scenarios [27–30]. These CNN-based approaches significantly mitigate the limitations of traditional methods, such as a low sampling 
rate and reduced accuracy. CNNs are capable of independently extracting powerful features for defect detection, with little need for 
prior knowledge regarding the images. They excel at handling complex textures in backgrounds, noise, and fluctuations in lighting 
conditions. However, the identification of unbalanced samples can result in biased training and impact the model’s performance. In 
many real-world applications, the limited sample size makes it challenging to acquire a substantial number of labeled samples for 
training. Real-time processing is also a challenge. Although CNN-based methods have made significant progress in this area, there is 
still room for improvement [31,32]. 

A Generative Adversarial Network (GAN) is a structure where two opposing networks engage in competition to produce the desired 
data. GANs have found extensive use in defect detection tasks, owing to their robust data generation capabilities [19,20]. GANs are 
unsupervised learning algorithms, which means they do not require labeled data for training. This is particularly useful in defect 
detection where obtaining defect samples can be difficult and unpredictable [33,34]. GANs can generate more realistic and effective 
data compared to traditional data enhancement methods. However, GAN models are harder to train. They necessitate the ongoing 
supply of various types of data to verify their accuracy. 

A hybrid method, the combination of GANs and Attention Mechanism (AM), can be quite powerful in defect detection tasks [35, 
36]. The AM can effectively improve the utilization of correlation information, the precise detection of small defect areas, and the clear 
definition of overlapping boundaries of multiple defects. However, the integrated models encounter the issue of mode collapse, where 
the training process lacks stability, and the generated images may be confined to a few specific categories or unusual images may 
emerge. Despite these challenges, the combination of GANs and AM has shown great potential in defect detection and remains a 
vibrant field of research [37,38]. 

While defect detection can be achieved using both machine learning and deep learning methods, they vary in their feature 
extraction approaches and their requirements for data and resources [7,8]. The choice between these methods would depend on the 
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specific requirements of the defect detection task. Machine learning algorithms are significantly dependent on the quality and volume 
of data. If the training data is not representative of real-world scenarios, the model may perform poorly [39–41]. Machine learning 
models can sometimes fit the training data too closely, leading to overfitting problems and poor performance on testing data. 
Furthermore, complex machine learning models can be difficult to interpret and understand, i.e. they lack interpretability. Deep 
learning models necessitate substantial computational resources, posing a potential constraint in real-time applications. Like machine 
learning methods, deep learning models can also overfit the training data, which can lead to ineffective generalization when 
encountering new data. Additionally, the development and fine-tuning of deep learning models typically necessitate domain expertise 
[7,8]. 

3. Proposed methods 

This study proposes a method to identify surface defects on capacitive touch panels with structural patterns. The method comprises 
two stages. In the first stage, the curvelet transform is employed for the panel images to produce the curvelet decomposed images. 
Then, the multi-angle filtering processing is conducted on the detailed images in the curvelet domain based on prior knowledge of the 
sample’s pattern characteristics. Besides, the reverse curvelet transform is conducted to filter out the background patterns and 
highlight the defects. In the second stage, a binarization skill is used to segment the flaws from the background, with black as the flaws 
and white as the background. The efficacy of the proposed method is assessed through the outcomes of statistical analysis. 

3.1. Image capture 

A touch panel sample with dimensions of 0.78 mm (thickness), 227 mm (length), and 147 mm (width) is randomly chosen from the 
manufacturer’s production line. The touch panel has a background texture that requires blue coaxial light sources for illumination. The 
sample is positioned on an examination platform and captured using a high-power lens for localized regions. The acquired images show 
the texture and defects of the touch screen. Fig. 2 shows a schematic and photo of the image capture device setup and image capture 
device layout of the test panel. We also control the environmental illumination to get digital images with suitable intensity. 

3.2. Curvelet transform and decomposed images 

To detect surface defects on the touch panel, we need to minimize the interference of the background conductive lines and magnify 
the contrast of the defects. We use the curvelet filtering method to process the captured images. This method can remove the texture 
pattern and enhance the defect contrast. Curvelet transform decomposes an image into different detail images that capture the texture 
information of various directions, and an approximation image that preserves the original appearance of the image. We use a curvelet 
transform to break down a test image of the capacitive touch panel into several detail images and one approximation image. The 
advantage of curvelet transform is that it can represent more directional patterns in images, and store them in different detail images. 
By knowing the direction of the patterns in each detail image, we can filter out the unwanted information more precisely and achieve 
defect enhancement. 

Curvelet transformation implements ridgelet analysis on Radon transform [22]. This method is computationally unique in that it 
determines coefficients for each scale, orientation, and location. In digital image analysis, the input image is structured as a Cartesian 
array. Thus, rotation becomes shear and the calculation takes place in the pseudo-polar plane [23]. The curvelet transform, an 
extension of the wavelet transform, offers superior directionality and reconstruction abilities. Candès et al. proposed an enhanced 
edition of the curvelet transform termed the fast discrete curve transform (FDCT) [42]. This edition is more efficient, straightforward, 
and less redundant compared to the initial ridgelet transform. 

The discrete curvelet transform (DCT) comprises three major procedures: (1) partitioning the image into dyadic blocks of different 
sizes, (2) applying a two-dimensional fast Fourier transform (FFT) to each block, and (3) mapping the Fourier coefficients to a polar 
grid and applying an inverse FFT to gain the curvelet coefficients. The DCT can be implemented using various algorithms, such as the 
FDCT, the unequally spaced fast Fourier transform (USFFT), or the wrapping-based discrete curvelet transform (WDCT) [42]. The steps 
of applying the WDCT method in this study are summarized as follows: First, we apply a forward 2-D FFT to an original image g(x, y) of 
pixel-size M×N and obtain its frequency domain notation G[u,v] as shown, 

Fig. 2. Experimental hardware setup for image acquisition: a schematic diagram and the corresponding photograph.  
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Second, we multiply G [u, v] by a set of local window functions Ṽj,l that are based on the ideal CT conditions. Each window function 
corresponds to a scale j and an orientation l, resulting in the product Ṽj,l[u,v] G[u,v]. Third, we wrap the products into rectangles around 
their origin using the wrapping function W as shown, 

G̃j,l[u, v] =W
(
Ṽj,l G

)
[u, v]. (2) 

This produces the wrapped coefficients G̃j,l[u,v]. Fourth, we perform a reverse 2D FFT to each wrapped coefficient and obtain the 
inversed FFT image gʹ(x, y) as shown, 
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Fifth, we extract the discrete curvelet coefficients cD(j, l, k) from gʹ(x, y) by multiplying it with digital curvelet waveforms ϕD
j,l,k as 

shown, 

cD(j, l, k)=
∑

0≤x,y<m,n
gʹ(x, y) ϕD

j,l,k[x, y]. (4) 

The coefficients cD(j, l, k) represent the scale, orientation, and position parameters of the curvelets. 
The DCT decomposes an image into different scales and angles, and each scale has a different number of angles. The order of the 

DCT decomposition refers to how many scales and angles are used in the transform. Fig. 3 reveals the initial image and the decomposed 
images after applying the curvelet transformations in different orders. The differences of various orders of DCT decompositions are 
mainly in the number of scales and angles, and the resolution and sparsity of the coefficients. The higher the order, the more scales and 
angles are used, and the higher the resolution and sparsity of the coefficients. Sparsity means that most of the coefficients are zero or 
close to zero, which implies that the image can be expressed by some notable coefficients. However, higher-order decompositions also 
require more computation time and memory. Depending on the application, one may choose a lower or higher order of DCT 
decomposition to balance between accuracy and efficiency. 

Fig. 4(a) shows a sample image with lines at 15-degree intervals. We apply the 4th-order curvelet transformation to this image and 
obtain a decomposed image. The decomposed image consists of a central approximation image (low-frequency region), an outermost 
black square circle of detail images (high-frequency region), and middle black square circles of detail images (middle-frequency re
gion). In this example, the decomposition number is 16, and the decomposed image after the 4th-order curvelet transformation is 
marked in the low, middle, and high-frequency regions as shown in Fig. 4(b). The numbers of detail images from the inner square circle 
to the outermost square circle are 16, 32, and 32 respectively. The numbered outermost detail images in the curvelet domain are 
revealed in Fig. 4(c). 

The curvelet domain allows us to decompose the texture in the spatial domain into detail images at different locations. The detail 
images of each square circle in the curvelet domain have paired texture information. For instance, the 32 detail images in the outer 
square circle of the 4th-order curvelet decomposed image have the same texture information in the same direction every 16 detail 
images, as shown by the standard deviation features of a line chart in Fig. 5(a). The first 16 detail images have identical standard 
deviation values to the next 16 detail images. To select the texture information to be deleted or retained, we need to know the position 
of the texture in each direction in the detail image in the curvelet domain. Since each square circle has a different number of detail 
images, we first test the parts marked in red in Fig. 5(b). We delete 32 detailed images in pairs individually and perform inverse 
curvelet transformation to observe the texture changes. For example, if we delete the 2nd and 18th detail images, which correspond to 
the filtering locations in Fig. 5(b), we can see that they contain 30◦ angle direction textures in the curvelet domain. After filtering and 
reconstructing the curvelet decomposed image, the texture pattern in the 30◦ direction in the spatial domain image will be attenuated, 

Fig. 3. (a) The initial image and the decomposed images after the (b) 1st-order, (c) 2nd-order, (d) 3rd-order, and (e) 4th-order of the curvelet 
transformation applied. 
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Fig. 4. (A) A sample image, (b) the decomposed image after the 4th-order curvelet transformation marked in the low-, middle-, and high-frequency 
regions, and (c) the numbered outermost detail images in the curvelet domain. 

Fig. 5. (A) A line chart of the standard deviations of 32 detailed images, (b) the filtered detail images in the curvelet domain, and (c) the 
reconstructed image indicating the corresponding line has been attenuated. 

Fig. 6. Angle correspondence between the spatial-domain original image and curvelet-domain detail images: (a) a testing image with colored lines 
at 15-degree intervals, (b) the corresponding detail images with various angles and colors after the 4th-order curvelet transform decompositions. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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as revealed in Fig. 5(c). 
A test image with colored lines at 15-degree intervals in Fig. 6(a) is used to illustrate the angle correspondence between the initial 

image in the spatial domain and the detail images in the curvelet domain. We delete each detail image one by one and observe how 
each one affects the texture orientation in the spatial domain. To facilitate our discussion, we label the detail images with numbers and 
show their corresponding texture positions and angles in Fig. 6(b). 

3.3. Relationship between decomposition numbers of curvelet detail images and texture directions 

The curvelet transformation process allows us to choose how many detail images to decompose. Decomposing more detail images 
in the curvelet domain helps us separate the texture information in the spatial domain more clearly. For example, if we decompose 180 
detail images, we can store the texture information in each direction of 360◦ in separate detail images with a 1◦ interval. Fig. 7(a) 
shows that this method decomposes the texture information finely. However, this also increases the processing time and the storage 
space of the curvelet conversion. On the other hand, if we decompose too few detail images, we may have texture information from 
different angles mixed in the same detail image, as Fig. 7(b) illustrates. This makes it harder to detect the defects without removing 
them precisely. 

To evaluate the impact of the curvelet transform’s decomposition number and the texture pattern’s angle interval on defect 
detection performance, we conduct experiments with three angle intervals (10◦, 15◦, 30◦) and six decomposition numbers (8, 12, 16, 
20, 24, and 28) for different sample textures. We then analyze the relationship between the angle interval in the spatial domain and the 
decomposition number in the curvelet domain. We also remove the texture information at the same location for each combination of 
angle interval and decomposition number, and perform curvelet reconstruction. 

The pattern’s angle interval affects the decomposition of detail images and the preservation of patterns in other directions. If the 
interval of the pattern angle is 10◦ and the number of decomposed detail images is 20, we can reduce the erroneous deletion of patterns 
in other directions. If the interval of the pattern angle is 30◦ and the number of decomposed images is 8, we will have a better 
decomposition efficiency. When the textures in the image are successfully decomposed into other detail images, curvelet domain 
filtering can reduce the number of detail images that need to be removed. Table 1 shows the suitable decomposition numbers of the 

Fig. 7. The detail images in the curvelet domain and the number of decompositions of the detail images in each square circle (a) the innermost 
detail images are decomposed into 180 images, (b) the innermost detail images are decomposed into 8 images. 
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curvelet detail images for central line patterns with three-angle intervals. 
The touch panel pattern used in this study is shown in Fig. 8(a). The angles in the texture pattern are 39◦, − 39◦, 90◦, and 

0◦ respectively. Therefore, choosing a decomposition angle interval of 10◦ will give a better description of the patterns in each di
rection. In this study, the number of decompositions of detail images for this sample image is set to 20. Fig. 8(b) shows the execution 
result of converting to the 4th order and decomposing into 20 detail images. If the patterns of each angle can be successfully 
decomposed into individual detail images, then it can avoid deleting too many real defects by mistake. 

3.4. Curvelet multi-angle filtering and filtered image reconstruction 

This research focuses on detecting surface flaws of touch panels by removing the regular background texture and preserving the 
defects. A curvelet transform converts an original image into a set of detail images for each square circle, where the background texture 
information is decomposed. By knowing which detail image contains the background texture in the curvelet domain, we can filter it 
out precisely and enhance the defect contrast. 

The experiment uses the following parameter settings: the texture angle is 10◦ and the number of decomposed detail images is 20. 
An image is broken down into one approximation image and three square circles of detail images, with 1, 20, 40, and 40 images from 
the innermost to the outermost square circles. The second circle has half the number of decompositions as the third and fourth circles. 
When the number of decompositions is 20 (i), the circles above the second circle have 40 (2i) decompositions. This reduces the number 
of second-circle detail images and makes them contain texture information from multiple angles, which can cause defects to be 
mistakenly deleted. 

To filter the detail images in different ways, we focus on the third and fourth circles and remove the 1st, 5th, 11th, and 15th detail 
images in the second circle. These four detail images also have texture information from four angles. Table 2 shows the texture dis
tribution of the first 20 detail images in the third and fourth circles. The texture information in the 21st to 40th detail images is 
symmetrical to that of the first 20 detail images. 

We describe a multi-angle filtering test in the curvelet domain for a touch panel image with defects. The curvelet decomposed 
images without and with partial detail images filtered in various angles show the filtered locations in red in Fig. 9. Fig. 9(b) filters out 
the ±40◦, ±90◦, and ±0◦ directions and then returns to the spatial domain. Fig. 9(c) filters out the ±30◦, ±40◦, ±90◦, and ±0◦ di
rections and then returns to the spatial domain as well. Fig. 9(b1) and Fig. 9(c1) are the reconstructed images of the two filtering 
methods and will be compared and evaluated for the performance of filtering on defect detection. The curvelet transformation is a 
reversible process that decomposes an image in the spatial domain into one approximation image and several detail images. To 
reconstruct a filtered image from the curvelet domain, a reverse transformation is needed after applying any filtering operation. 

3.5. Defect separation from the reconstructed background 

This study proposes a method for identifying surface defects on touch panels that have regular textures. The direct binarization of 
the image fails to eliminate the background texture smoothly and affects the defect separation. To conquer this problem, we suggest 
using curvelet transform and frequency domain filtering to magnify the distinction between the defects and the background. Then, a 
simple thresholding skill is employed to segment the flaws from the background. The pixels with grayscale values below the threshold 
are considered defects and assigned a value of 0, while the remaining pixels are deemed as background and assigned a value of 255. 

The curvelet filtering technique is a multiscale transform that can isolate different scales and orientations of image features. 
Adopting this technique to a test image can magnify the distinction between the defects and the background pattern, which has regular 
lines and textures. Fig. 10(a) represents the initial image, and Fig. 10(d) exhibits the reconstructed image after applying curvelet 
filtering. As we can see, the background patterns are suppressed and the flaws are more prominent. This makes it easier to use a simple 
classification method to detect and separate them from the background. 

4. Experiments and results 

This study uses a personal computer (CPU: Intel® Core 2 3.00 GHz, 2 GB RAM, OS: win7), a 5-megapixel B/W CCD, a 35 mm lens, 
and a coaxial light source to capture images of capacitive touch panels. The images are taken from a local sample area of 9.5 × 6.0 cm, 
as shown in Fig. 1. The coaxial light is placed directly above the sample. Fig. 2 shows the lighting method. The images are cropped to 
256 × 256 pixels for further processing. This study uses Matlab R2009 software to write a program that can apply curvelet transform 
and filtering to the images and segment the defects using binarization. The performance evaluation results are presented. Fig. 11 shows 
the layout of the graphical user interface of the conducted vision system. 

This study aims to assess the defect detection performance by comparing the identified defects with manual evaluations. The 
performance indicators are normal area misjudgment rate α, defect area detection rate (1-β), and accurate classification rate (CR). The 

Table 1 
The suitable numbers of detail image decompositions in the curvelet domain for texture patterns at three-angle intervals.  

Angle intervals 10◦ 15◦ 30◦

Suitable numbers of decompositions 20 16 8  
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Fig. 8. (a) The angles of the texture pattern of the touch panel image and (b) the curvelet domain image after converting the 4th-order curvelet 
transformation and decomposing 20 detailed images. 

Table 2 
The directions of the texture pattern stored in the first 20 detail images of the outermost two square circles (the third and fourth circles) in the 4th- 
order curvelet decomposed image.  

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 
40◦ 30◦ 20◦ 10◦ 0◦ − 0◦ − 10◦ − 20◦ − 30◦ − 40◦

No.11 No.12 No.13 No.14 No.15 No.16 No.17 No.18 No.19 No.20 
¡50◦ − 60◦ − 70◦ − 80◦ − 90◦ 90◦ 80◦ 70◦ 60◦ 50◦

Fig. 9. Curvelet decomposed images without and with partial detail images filtered in various angles (in (a), (b), (c)), and their corresponding 
reconstructed images in the spatial domain (in (a1), (b1), (c1)). 
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parameter setting results based on these indicators are shown. The parameters include the order of curvelet transform decompositions, 
the filtering positions, and the binarization threshold. These parameters affect the performance evaluation indicators. To find the 
suitable parameter settings, this study adopts a two-stage approach: first, it uses a small sample of images to test different combinations 
of parameters and select the best ones; then, it validates the selected parameters on a large sample of images. Table 3 gives the sample 
sizes for the small and large trials. 

Fig. 10. Defect detection procedures ((a) to (e)) of a touch panel image using curvelet multi-angle filtering approach.  

Fig. 11. The layout of the user interface for the developed inspection system.  

Table 3 
The sample sizes of testing images used in this research experiments.  

Experiments with various sample sizes Testing images Total amount 

Defect-free with linear defects with planar defects 

Small sample size 20 20 20 60 
Large sample size 60 60 60 180  
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4.1. Selections of decomposition orders of curvelet transform for flaw detection 

This study applies the curvelet transform to the sample images with different orders of decomposition. We choose the number of 
orders based on the direction of the sample pattern. The suitable order number is explored to achieve the highest detection result in 
terms of effectiveness and efficiency. For this batch of test samples, we used i = 20, which generated 40 detail images for each of the 
third-order and fourth-order detail images. These detail images captured the pattern information more effectively. We only processed 
the third-order and fourth-order detail images, since they matched the number and direction of the sample pattern. We set the 
binarization parameter k to 2 and filtered out the regions with 40◦, 90◦, and 0◦ angles. We tested the performance of the curvelet 
transform with the 3rd, 4th, and 5th orders of decompositions. Table 4 shows the evaluation results, and Fig. 12 shows the defect 
detection images for different decomposition orders. For a fixed binarization parameter and the same filtering positions, the 4th-order 
curvelet transform produces better filtering results than other orders. Hence, we use the 4th-order curvelet transform in our subsequent 
experiments. 

4.2. Selections of filtering location types 

We conduct further experiments with the curvelet transform decomposition order fixed at 4 and the binarization threshold k set to 2 
for choosing the filtering locations in the curvelet domain. We apply four methods from Table 5 to filter the detail images of the third 
and fourth circles in the curvelet domain and summarize the detection results. We find that method 2 (removing 30◦, 40◦, 90◦, and 0◦) 
for filtering is suitable to improve the defect detection performance for panel images. 

4.3. Selections of the threshold for image binarization 

The curvelet transform, a multi-scale directional method, filters out the background texture and amplifies image defects. The 
suitable binarization parameter k for separating defects from textures depends on the order and the filtering angles of the curvelet 
decomposition. In this study, we fix the order to 4 and the filtering angles to 30◦, 40◦, 90◦, and 0◦. We then vary k and evaluate the 
performance of defect detection using ROC curves and CR values. The trial results of these parameter changes are presented in Table 6 
and Fig. 13. We find that k = 2 gives the best performance, with (1-β), α and CR being 92.26 %, 1.32 %, and 98.61 %, respectively. 
Fig. 14 shows the defect detection images with different k values. 

This study introduces a method for identifying surface defects on touch panels, utilizing small-sample experiments and choosing the 
appropriate parameter settings. We use curvelet transform to decompose the images of the touch panels into different directions and 
scales, and then delete some detail images to magnify the distinction between the defects and the background. We also apply 
binarization to segment the defects from the background. We find that the appropriate parameter setting combination: the decom
position order of curvelet transformation is 4, the detail images of 30◦, 40◦, 90◦, and 0◦ direction patterns are filtered, and the 
binarization threshold value k is 2. We verify our method on large-sample experiments and summarize the detection results in Table 7. 

4.4. Result comparisons of flaw detection by the conventional methods and suggested approach 

This work uses a curvelet transform with multi-angle filtering properties to attenuate the background texture of a test image and 
enhance the visibility of defects within the image. To assess the efficacy of this approach, this study will contrast it with some common 
spatial domain techniques, such as Otsu and Iterative methods, as well as other frequency domain techniques. One of the frequency 
domain techniques that will be used for comparison is the Fourier transform with broadband filtering, which was proposed by Lin and 
Tsai [11] for touch panel defect detection. 

This study evaluates the performance of different defect detection methods on 180 touch panel sample images, consisting of 60 
images with linear defects, 60 images with planar defects, and 60 normal images. Fig. 15 illustrates some of these images. As seen in 
Fig. 15, the detection methods of Otsu [43] and Iterative [44] can detect the defects, but they also preserve the background texture, 
which leads to many false positives. Among the frequency domain approaches, Lin and Tsai [11] applied Fourier transform with 
broadband filtering to weaken the texture pattern in the background and enhance the defects. However, this method cannot fully 
detect many planar defects, as shown in Fig. 15. Table 8 compares the results of this study with other methods for the 154 testing 
images. The suggested method reaches a large defect detection rate of 93.33 %, a low false positive rate of 1.26 %, and a high accuracy 
rate of 98.68 %. The experimental findings illustrate that the suggested approach performs better than other methods for both linear 
and planar defects, but it is slightly slower than some other methods in terms of processing time. 

In this study, we separate the images of linear and planar defects for performance evaluation comparison. The Fourier transform 
with broadband filtering method [11] mainly targets linear defects for processing. As shown in Table 9, this method achieves higher 

Table 4 
Various decomposition orders of curvelet transformation applied to flaw detection and corresponding performance evaluation results.  

Decomposition orders Third-order Fourth-order Fifth-order 

(1-β) % 92.88 92.87 90.79 
α % 2.19 1.58 1.61 
CR % 97.75 98.36 98.32  
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detection results for linear defects but misses a large number of planar defects. Moreover, the proposed method is proficient in 
identifying both linear and planar defects. 

4.5. Flaw detection on panel images with the coexistence of linear and planar defects by the proposed approach 

Touch panels may have linear and planar defects in the same screen during manufacturing. Most existing methods deal with these 
defects separately. This study aims to develop a more practical method to handle both types of defects simultaneously and evaluate 
their performance. We use the same parameter settings as in the previous trials (the 4th-order curvelet transformation; filtering angles: 
±30◦, ±40◦, ±90◦, ±0◦). We tune the binarization parameter k to achieve good performance evaluation results with our method. 
Table 10 shows the performance evaluation summary, and Fig. 16 illustrates some defect detection examples. They all reveal that our 
proposed method can accurately localize linear and planar defects in the same image. 

The experimental results reveal that the proposed approach successfully detects linear and planar defects on touch screens. 

Fig. 12. Resulting images of defect detection by various decomposition orders of curvelet transformation.  

Table 5 
Four types of filtering locations and corresponding filtering angles in curvelet domain applied to flaw detection and their performance evaluation 
results.  

Types of filtering 
angles 

(1). Three angles (±40◦、 
90◦、0◦) 

(2). Four angles (±30◦、 
40◦、90◦、0◦) 

(3). Five angles (±20◦、30◦、 
40◦、90◦、0◦) 

(4). Six angles (±10◦、20◦、30◦、 
40◦、90◦、0◦) 

(1-β) % 92.87 92.26 91.62 89.05 
α % 1.66 1.32 1.27 1.26 
CR % 98.30 98.61 98.65 98.65  

Table 6 
Effect of changes in threshold values on the image binarization of flaw detection.  

Thresholds k = 1.3 k = 1.5 k = 1.7 k = 2 k = 2.3 k = 2.5 

(1-β) % 98.35 97.36 95.56 92.26 86.87 82.94 
α % 7.66 4.77 2.84 1.32 0.63 0.40 
CR % 92.34 95.22 97.12 98.61 99.25 99.45  
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However, there are some limitations to this research method that can be addressed for further improvement: (1) The proposed 
approach depends on prior knowledge of the sample’s pattern characteristics for multi-angle filtering. For improved detection results, 
the parameters of the approach need retraining when different texture patterns are encountered; (2) To minimize interference from 
background textures, adjustments to the filtering locations are necessary when the sample changes or is misaligned during imaging; (3) 
Currently, the method cannot detect surface defects on touch panels with varying background patterns simultaneously. However, this 
can be achieved if the curvelet coefficient is utilized to distinguish the detailed image positions related to the sample background 

Fig. 13. ROC curve of performance evaluation in defect detection using various binarization threshold k values.  

Fig. 14. Resulting images of defect detection with various binarization threshold values k.  

Table 7 
The appropriate parameter setting combination is used for the detection results of large sample experiments.  

Decomposition order Filtering angles Binarization threshold k (1-β) % α % CR % 

4 ±30◦、40◦、90◦、0◦ 2 93.33 1.26 98.69  
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Fig. 15. Images of partial defect detection results of large sample trials using spatial and frequency domain approaches.  

Table 8 
Comparison table of performance evaluation on defect detection in touch panel images by various methods.  

Domains Spatial domain Frequency domain 

Methods Otsu method [43] Iterative method [44] FT-based filtering method [11] Proposed method 

(1-β) % 99.85 99.83 83.51 93.33 
α % 44.11 41.23 3.1 1.26 
CR % 56.19 59.05 96.63 98.68 
Time (s) 0.03 0.05 1.93 2.28  

Table 9 
Detection performance comparison table for linear and planar defects by the FT-based band filtering method and the proposed method.  

Defect types Linear defects Planar defects 

Methods FT-based band filtering method [11] Proposed method FT-based band filtering method [11] Proposed method 

1-β (%) 98.71 97.23 68.31 90.16 
α % 3.33 1.72 2.87 1.19 
CR % 96.66 98.26 96.61 98.68  

Table 10 
Detection performance comparison table for panel images with the coexistence of linear and planar defects 
by the proposed method with different binarization threshold values k.  

k 2.1 2 1.9 

(1-β) % 87.56 89.93 92.30 
α % 0.61 0.75 0.95 
CR % 99.11 99.03 98.89  
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pattern information. 

5. Concluding remarks 

This research aims to devise an automated technique for identifying surface defects in touch panel images with textured back
grounds. The proposed method, using curvelet transform and multi-angle filtering, handles various defects and enhances them against 
the background texture. The method applies the curvelet transform to the panel images, conducts multi-angle filtering processing on 
the detail images, and inverts the filtered curvelet coefficients back to the spatial domain. This results in a smoother background and 
sharper defects. An interval estimation skill then computes a binary threshold value, which segments the image into defects and 
background areas. The method exhibits exceptional detection performance. The rate of defect detection (1-β) stands at 93.33 %. The 
rate of defect misjudgment (α) is at a low of 1.26 %. The correct classification rate (CR) is impressively high at 98.69 %, indicating the 
proposed method provides fine-grained segmentation results over existing methods for detecting surface defects on touch panels. It is 
not only effective but also efficient in simultaneously detecting planar and linear defects in capacitive touch panels. 

This paper presents a preliminary application of the curvelet transform with multi-angle filtering for surface flaw identification in 
touch panels. However, the test samples have some limitations that can be addressed and investigated further. Future research di
rections include: (1) The test sample has a non-directional bridge connector, which may be mistaken for a surface defect by this 
research method. To avoid this error, the method should be able to distinguish between bridge connectors and defects automatically, 
thereby lowering the false positive rate of normal areas; (2) Defects may occur on both sides of a transparent touch panel, and these 
defects can be captured by the camera when imaging. For more precise quality assurance of the panel, it is essential to determine on 
which side of the panel the defect is located; (3) Examine existing methods to determine the most efficient and effective strategy for the 
proposed application. 

Data available statement 

The data will be made available on request. 

Fig. 16. Some results from the detection of flaws in panel images exhibiting both linear and planar defects (images shown in the first row (a) are 
original images, and the second (b) and third (c) rows are the detection results by the proposed method and inspectors, respectively). 
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