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L E T T E R  T O  T H E  E D I T O R

Superparamagnetic iron oxide nanoparticles promote 
ferroptosis of ischemic cardiomyocytes

1  | INTRODUC TION AND BACKGROUND

Superparamagnetic iron oxide nanoparticles (SPION) have been 
widely used in the diagnosis and treatment for cardiovascular dis-
eases.1-6 Correspondingly, the myocardial tissue safety of SPION is 
becoming a bottleneck to seriously restrict its clinical translation. In 
recent years, in vitro and in vivo experiments have confirmed that 
SPION-induced oxidative stress of normal myocardium in mice, lead-
ing to myocardial cell injury, apoptosis or necrosis.7-9 More alarm-
ingly, SPION applied to ischemic myocardium could accumulate in 
the target sites for a long time with high concentration,5,6,10 thereby 
probably further aggravating oxidative stress injury and cardiomyo-
cytes death.11,12

So far, however, the specific molecular mechanism of cardio-
toxicity of SPION remains unclear. Previous studies have reported 
that SPION-induced apoptosis of murine macrophage (J774) cells 
13 and necrosis of human endothelial cells.14 SPION can selec-
tively induce autophagy-mediated cell death of human cancer cells 
(A549).15 After SPION pre-treatment, H9C2 cardiomyocytes were 
exposed to acrolein or H2O2, leading to reactive oxygen species 
(ROS) dependent cell necrosis.7 Our in vitro experiment showed 
that SPION significantly increased oxidative stress damage to 
overactivate autophagy and endoplasmic reticulum stress, even-
tually resulting in cardiomyocyte apoptosis.12 Furthermore, SPION 
could elicit IL-1βrelease and pyroptosis in macrophages, especially 
with the octapod and plate morphology.16 Notably, it has been re-
cently reported that sorafenib or cisplatin assembled into nano-de-
vices containing SPION, which are phagocytized by tumour cells 
and degraded into free divalent iron to accelerate Fenton reaction, 
leading to the lipid peroxidation burst to promote ferroptosis of 
tumour cells.17,18

Taken together, SPION can induce apoptosis, necrosis, autoph-
agy, pyroptosis or ferroptosis in vitro and in vivo studies. The dis-
crepancy may be attributed to distinct cell types and experiments 
design. It has already been well documented that the toxicity of 
SPION is mainly due to its degradation and release of free iron to 
catalyse Fenton reaction, leading to oxidative stress by a large num-
ber of ROS generation.19,20 Then, what is the downstream molecular 
mechanism of SPION mediated cardiotoxicity?

Ferroptosis is a novel form of regulated cell death characterized 
by the iron-dependent accumulation of lipid peroxides to lethal lev-
els, which is morphologically, biochemically, and genetically distinct 
from apoptosis, necroptosis and autophagy.21 Recent studies found 
that ferroptosis is not only an important pathological mechanism in 
the case of circulating iron overload of hemochromatosis,22 but also 
a key molecular mechanism of cellular iron overload in doxorubicin 
(DOX) induced cardiomyopathy.23 DOX induced mitochondria iron 
overload by down-regulating ABCB8,24 a mitochondrial protein that 
facilitates iron export, to elicit lipid peroxidation and mitochondria 
dysfunction, eventually causing cardiomyocytes ferroptosis.23 Mice 
that were subjected to 30 minutes of myocardial ischemia followed 
by 24  hours of reperfusion had significantly higher levels of car-
diac non-heme iron, cardiac ferritin H, ferritin L and Ptgs2 mRNA. 
Both ferroptosis inhibitor Ferrostatin-1 (Fer-1) and iron chelator 
Dexrazoxane (DXZ) pre-treatment significantly reduced I/R-induced 
cardiac remodelling and fibrosis, indicating that ischemia-reperfu-
sion could also induce cardiomyocytes iron overload to cause fer-
roptosis and subsequent left ventricular remodelling.23 Myocardial 
haemorrhage is a frequent complication after successful myocardial 
reperfusion,25,26 which is associated with residual myocardial iron 
in post-myocardial infarction (MI) patients received reperfusion 
therapy.27 It is reasonable to infer that this iron accumulation has a 
potential to generate excessive ROS and trigger pathological events 
such as ferroptosis. A previous study also confirmed that ferropto-
sis is a significant type of cell death in cardiomyocytes; moreover, 
mechanistic target of rapamycin (mTOR) was found to play an im-
portant role in protecting cardiomyocytes against excess iron and 
ferroptosis by regulating ROS production.28 In addition, glutathione 
peroxidase 4 (GPX4), which protects cells from ferroptosis, was 
down-regulated in the early and middle stages of MI mouse model, 
suggesting that ferroptosis during MI was in part due to a reduction 
in GPX4 protein.29

Even though signalling pathways of ferroptosis in cardiovascu-
lar diseases is not yet well characterized, it has been confirmed that 
ischemia-reperfusion (I/R) could induce mitochondrial iron over-
load in cardiomyocytes rather than the increase of iron content in 
cytoplasm.30 In this study, mice treated with 2,2′-bipyridyl (BPD), 
which has high membrane permeability and thus is able to access 
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mitochondria, had demonstrated protective effects on I/R myo-
cardium, while deferoxamine (DFO) failed to protect mice against 
I/R damage due to poor penetrance into mitochondria. Notably, 
overexpression of ABCB8 in cardiomyocytes in mice reduces mito-
chondrial iron and protects against I/R damage,30 suggesting that 
ABCB8 might play an important role in maintaining iron homeosta-
sis in myocardial mitochondria and regulating ferroptosis after I/R 
injury. Thus, it is not difficult to speculate that SPION could aggra-
vate mitochondrial iron load in I/R myocardium. SPION applied in 
ischemic myocardium could be directly degraded by cardiomyo-
cytes,12 leading to severe mitochondrial iron overload.

We detected prominently mitochondrial lipid peroxidation 
(malondialdehyde, MDA), mitochondrial membrane potential 
(MMP) loss and ATP depletion at 24  hours and 4  weeks after 
SPION injected into the peri-infarcted zones of myocardial isch-
emia-reperfusion rats compared with the control group (all P < .01). 
We found that iron content of mitochondria was significantly 
higher than that in the control group (P < .001), and the distorted 
mitochondria were observed by transmission electron microscopy 
in the SPION group, suggesting that SPION have the potential to 
destroy mitochondrial structure and function by inducing mito-
chondria iron overload (data not published). Mitochondria are the 
major site of iron metabolism and ROS production, thereby car-
diomyocytes iron accumulation is especially prone to induce mito-
chondria iron overload to trigger mitochondrial oxidative damage. 
Based on the above results, we speculate that SPION might fur-
ther promote ferroptosis to aggravate left ventricular remodelling 
and cardiac deterioration by inducing severe mitochondria iron 
overload to promote lipid peroxidation burst.

2  | HYPOTHESIS

To summarize, we speculate that SPION applied to ischemic myo-
cardium could exacerbate cardiomyocytes ferroptosis to worsen 
left ventricular negative remodelling through inducing mitochon-
dria iron overload to catalyse sustained Fenton reaction, eliciting 
lipid peroxidation burst（as shown in Figure  1). This hypothesis 
needs to be verified by animal experiments. Firstly, the mitochon-
drial iron metabolism, lipid peroxidation, morphology and func-
tion of mitochondria and ferroptosis should be carefully detected 
after SPION injected into the peri-infarcted zones of myocardial 
ischemia-reperfusion rats. Secondly, the rat models of myocardial 
ischemia-reperfusion were randomly divided into different groups 
to, respectively, treated with apoptosis inhibitor, necrosis inhibi-
tor, autophagy inhibitor and ferroptosis inhibitor, in order to verify 
whether ferroptosis play a pivotal role in cardiomyocytes death 
induced by SPION. Thirdly, SPION were injected into the myo-
cardium of I/R mice model, in which Mlkl−/− or Fadd−/−Mlkl−/− mice 
were employed to respectively block the pathways of myocardial 
cell necroptosis or apoptosis, in order to further illustrate whether 
ferroptosis is the main pathway of SPION-induced cardiomyocytes 
death. Fourthly, developing SPION modified by mitochondrial iron 

chelator or mitochondrial-targeted antioxidant, the effects of two 
strategies to improve the myocardial safety of SPION should be 
comprehensively investigated in vitro and in vivo experiments, po-
tentially promoting the clinical transformation of SPION in cardio-
vascular field.

3  | IMPLIC ATION

The cardiotoxicity of SPION limits its diagnostic or therapeutic ap-
plication in the cardiovascular field. It is helpful to promote the clini-
cal transformation of SPION in cardiovascular field through rescuing 
the key target of SPION-induced cardiomyocyte ferroptosis to im-
prove the myocardial tissue safety. If our hypothesis is true, given 
that SPION mainly induce mitochondria iron overload of ischemic 
cardiomyocytes to catalyse lipid peroxidation and exacerbate fer-
roptosis, and then it is expected to significantly inhibit ferroptosis 
induced negative remodelling of ischemic myocardium by mitochon-
drial iron chelator or mitochondrial-targeted antioxidant peptide 
modifying SPION to effectively protect mitochondria.

F I G U R E  1   SPION were internalized into cardiomyocytes 
and further degraded into free ferrous iron in lysosomes. 
The free ferrous iron entered into mitochondria, resulting in 
lipid peroxidation of mitochondria to trigger ferroptosis in 
cardiomyocytes by a large amount of ROS produced via Fenton 
reaction
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