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Navigating an odor landscape is a critical behavior for the survival of many species,
including mice. An ethologically relevant mouse behavior is locating food using
information about odor concentration. To approximate this behavior, we used an
open field odor-based spot-finding task indoors with little wind, examining navigation
strategies as mice search for and approach an odor source. After mice were trained
to navigate to odor sources paired with food reward, we observed behavioral changes
consistent with localization 10–45 cm away from the source. These behaviors included
orientation toward the source, decreased velocity, and increased exploration time.
We also found that the amplitude of ‘casting,’ which we define as lateral back and
forth movement of the nose, increased with proximity to the source. Based on these
observations, we created a concentration-sensitive agent-based model to simulate
mouse behavior. This model provided evidence for a binaral-sniffing strategy (inter-nostril
comparison of concentration in a single sniff) and a serial-sniffing strategy (sampling
concentration, moving in space, and then sampling again). Serial-sniffing may be
accomplished at farther distances by moving the body and at closer distances by
moving the head (casting). Together, these results elucidate components of behavioral
strategies for odor-based navigation.

Keywords: olfaction, navigation, casting, binaral-olfaction, binaral-sniffing, serial-sniffing

INTRODUCTION

Mice, insects, and other animals navigate odor trails and locate odor sources with high fidelity,
a remarkable feat given the complexity and variability of odor stimuli. Prior studies of olfactory
navigation have focused on the mechanisms of navigating through odor plumes in air (Vickers,
2000; Gire et al., 2016) or water (Koehl et al., 2001), or of scent-tracking on the ground, specifically
following odor trails (Means et al., 1992; Thesen et al., 1993; Wallace et al., 2002; Porter et al., 2007;

Abbreviations: (−B), CSM model without binaral-sniffing component, kbinaral = 0; (−C), CSM model without
concentration-dependent casting, σ = σmin; (−V), CSM model without concentration-dependent velocity, v = vmax; θ, heading
of model body (degrees); ϕ, heading of model nose relative to body (degrees); σmax, concentration-dependent parameter;
σmin, concentration-dependent parameter; 1t, change in time (s); ηt, multiplicative uniform noise; |dPhi|/nV, curvature;
ANOVA, analysis of variance; CRW, correlated random walk; CSM, concentration-sensitive model; Ct, concentration
magnitude (A.U.); dnares, inter-nostril parameter (cm); IR, infrared; k, concentration-dependent parameter; kbinaral, binaral-
olfaction parameter; l, nose-to-body length parameter (cm); LED, light emitting diode; OU, Ornstein–Uhlenbeck; vmax,
maximum velocity parameter (cm · s−1); x′, derivative (of x); xn, nose coordinate.
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Khan et al., 2012). However, different strategies may emerge for
search under conditions near surfaces where intermittency (the
fraction of samples above detection threshold) is high (Connor
et al., 2018). In this study, we examine the odor-driven behaviors
involved in the search for a discrete odor object under near-
surface, low wind conditions where odor gradient information is
likely preserved. Then, we develop a model to investigate multiple
potential strategies used for effective odor localization.

One general navigation strategy preserved across species and
environmental conditions involves the use of lateral back-and-
forth changes in orientation of the olfactory sensors during
active odor-sampling (Baker et al., 2018). Moths navigating odor
plumes use this strategy to reacquire an odor plume, a behavior
termed “zig-zagging” or “casting” depending on the magnitude
and angle of displacement (Marsh et al., 1978; Kennedy, 1983;
Kuenen and Carde, 1994; Carde and Willis, 2008). Flies (Budick
and Dickinson, 2006) and cockroaches (Willis et al., 2008) use a
similar casting strategy during plume navigation. Lateral back-
and-forth behaviors are also often observed in animals following
odor trails. Rats employ head oscillations that sweep back and
forth across a trail as they track it (Khan et al., 2012), a strategy
also used by humans (Porter et al., 2007) and ants (Hangartner,
1969; Draft et al., 2018) following trails. In this study, we use the
term ‘casting’ to describe the amplitude of the movement of the
olfactory sensors during navigation toward an odor source (Heitz,
2014; Zhao et al., 2017; Baker et al., 2018).

Successful navigation of a complex odor environment
likely involves different behavioral strategies under different
conditions. Knowledge of the spatial structure of the
environment, characteristics of specific odor cues, and general
task context may all influence odor-guided behavior. Animals
demonstrate strategy-switching between distinct behaviors as
a consequence of both changes in odor stimulus properties
and task context (Thesen et al., 1993; Pierce-Shimomura et al.,
1999; Wesson et al., 2008; Gire et al., 2016). Environmental
familiarity and visual cues also influence decision-making
strategy during odor source localization. Given visual cues to
navigate, exploratory casting based on odor cues disappears on
tasks with a small number of potential goal locations; instead,
mice begin directly navigating to known odor source locations
in straight-line trajectories (Bhattacharyya and Bhalla, 2015; Gire
et al., 2016). This resembles the transition from exploration to
exploitation behavior observed during successive search trials
(Sutton and Barto, 1998; Hills et al., 2015). Thus, both behavioral
context and the availability of orienting stimuli are important for
strategy choice in odor source localization.

Here, we use an open field odor-based spot-finding task
to examine strategies of olfactory search for an odor source
deposited on the surface under air flow conditions typical of an
indoor setting. By randomizing odor source location, performing
experiments in the dark, and using a discrete target odorant
object, we prevent mice from switching to methods of systematic
search based on memory, visual, or proprioceptive cues (Gire
et al., 2016). We find that multiple dimensions of behavior are
varied as mice approach the odor source, including velocity and
casting, suggesting that these behaviors are associated with odor
localization. We then created agent-based models of olfactory

search and used simulations to interrogate the roles of binaral-
sniffing, variable velocity, and variable casting on effective odor
localization. Both behavioral and simulation data suggest that
multiple behavioral strategies are important for successful odor
navigation to a deposited odor source under typical indoor air
flow conditions in mice.

MATERIALS AND METHODS

Ethical Approval
All experiments were completed in compliance with the
guidelines established by the Institutional Animal Care and Use
Committee of the University of Pittsburgh.

Animals
Four male and one female adult M72-IRES-ChR2-YFP knock-
in mice (The Jackson Laboratory) were used for this study, with
training begun after age P47. Average age at training start was
P72. All mice were housed singly with behavioral enrichment
(running wheel and house) and received unlimited access to
water in their home cage.

Behavioral Arena
A large, open field behavioral arena was used for data collection,
as described in Jones and Urban, 2018 (Figure 1A, adapted
with permission from Jones and Urban, 2018). The arena is a
custom built 36′′ × 45′′ transparent plexiglass and acrylic surface
without walls mounted 1.135 m above the floor in an aluminum
frame. Rows of IR light-emitting diodes (LEDs) were mounted
along each of the four table surface edges. Data were collected
using a camera mounted below the table surface (1280 × 1024
resolution, 11.2 pixels · cm−1, 50 frames · s−1, Flea3, Point Gray
Imaging). Trials were run in the dark and LEDs from equipment
in the room were blacked out with electrical tape. Remaining
light from computer monitors was red-shifted so as to not be
visible to the mice.

Odorized Crayon
We created odorized wax crayons similar to what was described
in Jones and Urban (2018). Briefly, 4.9 g of a Crayola crayon, 0.1 g
of Crayola chalk, and 0.1 g of odorant consisting of one of three
different concentrations (0.1, 1, and 2% by weight) of methyl
salicylate (Sigma-Aldrich; CAS#: 119-36-8) diluted in mineral
oil (Fisher Chemical Paraffin Oil, 0121-1) were mixed together,
and the mixture was poured into a silicon or rubber crayon
mold. After 10 min, the mixture cooled and hardened into an
odorized crayon.

Task
Prior to each trial, the table was wiped clean with 200 proof
ethanol using a paper towel. After the table dried, a spot ∼1 cm
in diameter was drawn in a pseudorandom location in the central
area of the table (Figure 1B). Based on recent spot placements,
the experimenter attempted to place the spot at a different
location on each subsequent trial. For baited trials, a small piece
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FIGURE 1 | Experimental setup and methods. (A) The behavioral arena is a 45′′ × 36′′ table made from three layers of plexiglass, with an infrared (IR) camera placed
underneath to view the mice from below. Odor spots were placed pseudo randomly on the table by the experimenter before starting the trial, either unbaited or
baited with a food reward. (Adapted with permission from Jones and Urban, 2018). (B) The pseudo random odor spot distribution for all trials (N = 853). (C) An
example trajectory where the mouse finds the odor spot, showing nose tracking with the casting measure (unsigned curvature) on the color axis. The mouse is
placed on the right side of the table and begins to hone in on the odor spot (red circle). (D) Anemometer measurements were taken at nine positions across the
behavioral arena, with average wind speed (in ft ·min−1) listed at each point and estimated wind velocity vectors indicated by the green arrows. (E) Photoionization
detector (PID) readings from 0.5 to 15 cm away from an odor source placed at the center of the table (gold star in D). Measurements were taken to the right of the
star, in the ‘downwind’ direction. (F) PID analysis suggests that mean signal variance, mean signal amplitude, and intermittency decrease starting at about 2.5 cm
from the source out to about 15 cm.

of chocolate or peanut (∼0.1 g) was placed in the middle of
the spot, while for unbaited trials, the spot was left empty. No
more than 2 unbaited trials were run on a given day to prevent
extinction of motivated behavior. With the lights off, a mouse
was placed onto the table at a pseudorandom starting location
along the right side of the table and allowed to freely explore the
arena for approximately 3 min. Over the course of 5 months,
133–197 trials were collected per animal, 3–5 trials per day,
3–5 days per week, at a time between 9 am and 2 pm on a normal
light-dark cycle.

Food Deprivation and Task Training
To motivate mice to perform the task, they were food deprived to
78 ± 07% of original body weight. Animals received between 1.8
and 2.2 g of their normal chow per day and were given free access
to water. Animals were trained to associate a spot of odor (∼1 cm
diameter) with food reward, either a small sliver of peanut or
milk chocolate. Training consisted of two stages over the course
of 7–10 trials: (1) habituation (2–3 days); and, (2) odor-reward
association (5–10 days). During habituation, mice were placed
on the table for 15 min and allowed to explore the arena with
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no food reward present. During initial food-odor association,
plexiglass dividers were used to decrease the arena size to 25%
of the full arena. A baited odor spot was placed on the table.
Once animals found the baited spot in the small arena during
at least 66% of the day’s trials, the arena size was increased to
50% the size of the full arena, followed by an increase to the
full 45′′ × 36′′ arena once the spot was again found during
66% of the day’s baited spot trials. Unbaited spot finding trials
were introduced only after the animals successfully performed
the baited spot task in the full arena. Training ended and
data collection began upon successful performance of unbaited
spot trials. All reported data are from the full sized arena, but
contain both baited and unbaited trials. Baited and unbaited trials
analyzed separately were found to be qualitatively similar and so
are grouped together.

Video Processing
Forty-four trials were removed from analysis for technical
reasons, leaving 915 trials analyzed. Trials were removed if (1)
the video file was corrupted; or, (2) tracking the mouse using
Optimouse (see below) was judged by the experimenter to be
unsuccessful before data analysis began. This likely occurred due
to unintended variation in table illumination on different trials.
Of these 915 trials, 54 had odor spot placement within 4 cm of
the edge, and were removed from further analysis due to potential
obstruction of mouse trajectories near the spots. Finally, 5 trials
were removed because the mouse found the spot within 1 s,
indicating that it was initially placed on the arena too close to
the odor spot (most trials where this occurred the mouse started
within 10 cm of the odor spot). This left 853 trials analyzed
here. Raw avi formatted files were processed using the Optimouse
open source program (Ben-Shaul, 2017) to extract body position
and nose position. Extracted position files were post-processed
with in-house software written in Matlab1. Position frames were
passed through a 5th order median filter to suppress jitter in the
position data and remove high-frequency noise. Position data
was excluded if (1) Optimouse failed to detect a position, (2) the
log10 of mean mouse brightness was less than 0.5 times the mean
for that trial, (3) mean velocity was greater than 100 cm s−1,
(4) mouse length was greater than 8 cm, (5) mouse position
‘jumped’ by more than 35 pixels (3.13 cm) between consecutive
frames, and (6) mouse position was 4 cm or closer from the
edge of the arena. Note that the edges of the arena were metal
fasteners and the mouse was often partially obscured from below
when it walked around the edges. Exclusion criteria (6) accounted
for the majority (N = 6E6; 84%) of excluded frames, as mice
spent a good deal of time at the edges of the arena. Finally,
a nearest neighbor filter was used to remove times when the
mouse was stationary, as the computation of orientation of the
mouse was unstable here. For the majority of analyses, we focused
on either the time before a spot was found, or the full 180 s for
unsuccessful trials. The initial time point in analysis occurred
when the mouse’s feet were in contact with the surface of the table
and the experimenter’s hand was withdrawn so as not to be in the
field of view of the camera.

1www.mathworks.com

Behavioral Analysis
A successful spot trial was scored when the mouse’s nose came
within 1.5 cm of the spot, based on a sharp increase in the survival
function of minimum distance to the spot (Figure 2A).

The fraction of the arena explored was calculated by binning
the arena into approximately equal-area parts of 9–10,000
partitions and, then, the percentage of the center of the arena
explored (excluding 4 cm around the edges) was calculated.

Analysis of percent exploration time (or occupancy) entailed
defining 100 circular rings around the odor spots at intervals of
1 cm. The number of samples in each ring was then normalized
by the total number of samples in the trial to (% time) and the
area of each ring.

The orientation relative to the odor spot was calculated by
computing the difference in the four-quadrant arctangent of the
vectors from body-to-nose and body-to-spot (Figure 3E).

Derivatives were computed using the adaptive windowing
Janabi-Sharifi algorithm (Janabi-Sharifi et al., 2000) available
online (Manurung, 2016), but modified to handle missing data
points (NaNs) and to allow for post-smoothing. Parameters used
were a window size of 50 (1 s) and an error term of 0.2, with post
smoothing of 0.1 s.

Casting behavior was quantified by computing the numerical
derivative of the arctangent of the nose velocity, taking the
absolute value, and then dividing by the linear velocity of
the nose (|dPhi|/nV). This is a modification of the zIdPhi
measurement (Papale et al., 2012). |dPhi|/nV is equivalent to the
signed curvature formula with units of m−1 and is therefore an
appropriate measure of tortuosity. The algorithm was extensively
tested on variable-frequency sine waves to verify that segments
of high curvature were well-separated from segments of high
linearity across a wide range of frequencies. Then, for position
data from mice, the log10 of the absolute value of |dPhi|/nV was
taken to generate a roughly normal distribution. An example
of the |dPhi|/nV casting measure (Figure 1C) for one analyzed
behavioral trial shows ‘elbows’ and angled segments with high
curvature (black arrow) well-separated from straight segments
of high linearity.

An alternate measure of casting used was the angle of the
nose relative to the midline. For this measure, the angle from
the nose to the midline was determined by calculating a vector
for the mouse’s current heading and computing the shortest
distance from the detected nose point to that line, then taking
the arccosine of that angle.

Anemometer Measurements
A hot wire anemometer (TSI Velocicalc 9535A) was placed
at 9 different positions across the table (Figure 1D). Ten
measurements were taken with the sensor aligned to the long-
axis or short-axis of the table at each position and the respective
averages were taken. We did not generate any airflow during
these experiments though air flow occurs in every environment
and transport via convection likely dominates the effects of
odor diffusion. The room in which these behavioral data were
acquired had a ventilation input vent at roughly the center of
the room and the primary outflow in the room was a ventilation
shaft in the corner.

Frontiers in Neuroscience | www.frontiersin.org 4 March 2020 | Volume 14 | Article 218

http://www.mathworks.com
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00218 March 20, 2020 Time: 12:44 # 5

Liu et al. Odor Source Localization Strategies

FIGURE 2 | Mice efficiently locate the odor source. (A) The survival function shows the fraction of minimum distances to the spot as a function of distance from the
spot. At about 1.5 cm away from the spot, the average minimum distances start to drop off for mice (red line), suggesting this would be a good threshold distance for
counting a trial as successful. In comparison, there is no sharp distinction in the shuffled control data. Instead, shuffled minimum distances tend to increase smoothly
as a function of increasing distance. At about 30 cm away from the odor spot, the survival functions are indistinguishable between mice and shuffled controls. The
survival functions of individual mice are plotted to compare inter-individual variability (gray lines). (B) Mice are more successful at finding the odor spots than shuffled
controls, suggesting that they are using odor cues to guide their search (x = mean). (C) The time to spot is divided by the initial distance to the spot, and mice find the
spot more quickly than shuffled controls. While statistics were performed on a group level, individual mice are plotted for the purposes of visualizing inter-individual
variability (x = mean, o = median; Welch’s t-test; p = 7.25E−18, t-stat = 8.72, df = 1700). (D) The nose displacement was divided by the initial distance to the spot,
and the relative distance traveled by the nose of mice is less than that of the shuffled controls. While statistics were performed on a group level, individual mice are
plotted to give a more precise read out of variability among animals (x = mean, o = median; Welch’s t-test; p = 1.2E−19, t-stat = –9.11, df = 1573).

PID Measurements
A cotton swab dipped in 99% Methyl Salicylate liquid was placed
at the center of the table (Figure 1D, gold star) at approximately
0.5 cm from the surface. Concentration was measured for 30 s
at distances from 0.5 cm to 15 cm using a Photoionization
Detector (PID) (miniPid, Aurora Scientific). Raw measurements
had noise peaks at 60 and 72 Hz, broad spectrum high frequency
noise, and substantial baseline drift. To remove the noise peaks,
two 2nd order Butterworth IIR notch filters were used. To
remove high frequency noise, a (0.2 s backward, 0.02 s forward)
moving mean filter was used. To remove baseline drift, a baseline
estimation and denoising function was used (Duval, 2018). The
denoised traces (Figure 1E) show large signal fluctuations and,
generally, decreasing mean output with distance. Intermittency
was calculated as the mean number of points greater than a
threshold of 0.005.

Shuffled Spot Control
As a control, spots were randomly shuffled and paired with
tracking data from one session. Shuffled spots had to be at least
5 cm away from the original spot. Analyses were repeated with
the shuffled control data.

Model Specification
Based on observations of mouse behavior, we developed an
agent-based model that navigated a virtual odor environment.

This agent made temporally discrete sniff-to-sniff comparisons
of odor concentration as it moved through virtual space, altering
its heading toward higher concentrations and away from lower
concentrations. The agent consisted of a body with coordinates
(x, y) and moved through space along a heading θ at a velocity vc:

xt+1t = xt + vc 1t cos θ (1)

yt+1t = yt + vc 1t sin θ (2)

where1t = 0.1 s represents a constant the inter-sniff interval. The
agent’s nose was located at a distance l = 5 cm from the body at
coordinates (xn, yn). The nose was further divided into left and
right nares, (xnL, ynL) and (xnR, ynR), separated by an inter-nares
distance, dnares = 1.8 mm. The two nares are separated by an angle
2γ. The nose was capable of limited movement independent of
the body heading, with an angular deflection φ relative to the
forward heading. Nares positions were given as:

xnL/nR = x+

√
l2 +

(
dnares

2

)2
cos (θ+ φ± γ) (3)

ynL/nR = y+

√
l2 +

(
dnares

2

)2
sin (θ+ φ± γ) (4)

with nose deflection bounded within±φmax as dictated by mouse
anatomy. The agent geometry is shown superimposed on a mouse
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FIGURE 3 | Mouse behavior varies systematically as mice approach the odor source. (A) The center of the arena was broken up into bins of different area and the
percentage of those bins visited by mice was counted up and plotted versus the bin area. In general, this ‘exploration percentage’ increased with increasing bin size,
while successful trials entailed a higher exploration percentage than unsuccessful trials. (B) The number of samples in 100 concentric rings around the spot was
tallied, and normalized by both the total number of samples in a given trial and the area of the ring. This gave a measure of occupancy with units of% · cm−2. As
mice approach the spot on successful trials, their occupancy increases. In contrast, the occupancy on unsuccessful trials remains flat as a function of distance.
(C) Mean nose velocity decreases as mice approach the spot on successful trials (ANOVA; p = 2.72E−91, F = 18.73, df = 28). (D) The orientation of the mouse
relative to the odor spot was computed and normalized to 100% at each distance from the spot. (E) Diagram demonstrating the computation of orientation relative
to the spot, with orientation of 0◦ indicating the nose is pointing directly at the spot. The angle β between the body and spot (red circle) is subtracted from the angle
α between the nose and the body.

body (Supplementary Figure S2A) and detailed geometry is
shown for clarity (Supplementary Figure S2B).

The independent motion of the nose is what allowed the
agent to sample concentrations to the left and right of its current
heading and adjust its heading toward higher concentrations
(Figure 5C). The distribution of observed mouse nose deflections
was approximately Gaussian (Supplementary Figure S2C);
therefore, we modeled the angular movement of the nose as an
OU process, a mean-reverting CRW with a Gaussian stationary
distribution. At each sniff, the nose deflection was updated
according to:

φt = φt−1t −
φt−1t

τ
1t + dWt

√
1t
τ

+ tanh
(
kbinaral (cL − cR)

)
1t (5)

dWt ∼ N
(
0, σ2

c
)

(6)

σc = σmin + (σmax − σmin)
Ct

k + Ct
(7)

where τ is the characteristic time constant of the process, σc
is the concentration-dependent standard deviation of the nose
deflection, and dWt is a normally distributed random variable
with mean of zero and standard deviation σc. To this OU process,
we add binaral bias in the form of the hyperbolic tangent of
the left–right concentration difference; when CL > CR, the nose
is biased to the left and vice versa. Here, kbinaral controls the
response of the nose to binaral inputs. The concentration value
Ct is the average concentration across both nares at time t:

Ct =
(cL + cR)

2
(8)
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Here, cL is the concentration at the left naris and cR is the
concentration at the right naris.

We observed that mouse speed increased with distance from
the odor source (see Figure 3C). Because the agent in our model
does not have information about its distance from the odor
source, instead we used a concentration-dependent modulation
of speed. Specifically, we use a sigmoidal function with a quartic
coefficient to approximate concentration-dependence of speed:

vc = vmax

(
1 −

C4
t

k+ C4
t

)
(9)

where vmax is the maximum velocity and k = 1/2 concentration
units. Note that this is the same k that appears in eq. 7.

Model Odor Environment
The agent must iteratively sample concentrations in an odor
environment to navigate in the direction of higher concentration.
To simulate the odor concentration, C(x,y), we use a noisy
bivariate exponential distribution normalized to a value of one
at the source:

C
(
x, y

)
= e
−

(√
(x−xsp)2

+(y−ysp)2

2 σsp

)
(1+ η) (10)

η ∼ U
(
−kn, kn

)
(11)

Here, (xsp, ysp) is the location of the source, σsp controls the
width of the odor distribution around the source (model results
were obtained with σsp = 20 cm), and η is multiplicative uniform
noise added to each point in a spatial grid to approximate the
effect of turbulent flow, bounded at kn = 0.5.

To represent the table, we generated a static smooth odor
landscape grid with a resolution of 1 mm according to eq. 10
(Figure 5B, step 1). Next, we applied noise according to eq. 11
(Figure 5B, step 2). We then simulated the PID intermittency
in the odor signal by randomly setting grid values to zero
(Figure 5B, step 3). The probability that a grid value was zeroed,
Pint, increased with distance from the source according to

Pint = 1− ekint

√
(x−xsp)

2
+(y−ysp)

2
(12)

where kint was the decay parameter set to −0.002 cm−1. Finally,
we applied a Gaussian filter with a standard deviation of
4 mm to introduce local spatial correlations into our landscape
(Figure 5B, step 4).

To reflect the apparent lack of mouse orientation toward
the source beyond 30 cm, (Figure 3D), the models have a
concentration detection threshold of 0.25 concentration units,
representing a distance of approximately 30 cm from the source.

A distribution of simulated spot positions was used, matched
to data (Figure 1B), but due to edge effects reducing
overall model performance, spots closer than 10 cm to the
walls were not used.

Concentration-Sensitive Model (CSM)
The agent moves along forward heading θ at velocity vc,
iteratively sniffing the concentration at its nose coordinates

(Eqs. 1–4). At each sniff, the agent’s nose randomly samples to
the left or right of the forward heading depending on the state
of the random nose deflection process (Eqs. 5–7). It compares
the current concentration sample, Ct, to the sample from the
previous sniff, Ct−1t. If Ct is greater than Ct−1t, the agent sets
its heading to the direction of the nose, θt+1t: = θt + φt. If Ct
is less than or equal to Ct−1 t, the agent turns away from the
direction of the nose, θt+1t: = θt − φt. This algorithm is effective
at reproducing key results of mouse behavior (Figure 5):

θt+1t = θt + φt if Ct > Ct−1t else θt − φt if Ct ≤ Ct−1t (13)

Correlated Random Walk (CRW) Controls
To test model behavior in the absence of odor-sensitivity, and to
serve as a control in case mice were randomly finding the spots,
concentration-dependent turning was removed from the model
and replaced by a random turning decision. Eq. 13 is replaced by:

θt+1t = θt + φt if z > 0.5 else θt − φt; z ∼ U (0, 1) (14)

To our surprise, CRW control models had a similar success
rate to mice when run for 180 s. After observing mice on videos;
however, we determined they were not exploring the arena for
the entire 180 s trial. On successful trials, before finding the odor
spots, the average time mice actually spent exploring the center
of the arena was only ∼30 s. The CRW controls continuously
explored the center of the arena as their decision rule at table
boundaries was to bounce off like a billiard ball. Therefore, we
ran all simulations for 30 s to match average mouse exploration
time in the center of the arena.

Reduced Model Controls
To evaluate the effects of different hypothesized features of mouse
navigation, we constructed 8 model variant combinations by
leaving out binaral-sniffing, concentration-dependent velocity,
and/or concentration-dependent casting amplitude. We then
evaluated CSM model performance in the absence of these
features. To eliminate binaral-sniffing from the model, kbinaral
in eq. 5 was set to zero. To remove concentration-dependent
velocity from the model, eq. 9 was modified so that vc was
equal to the constant vmax. To remove concentration-dependent
casting amplitude from the model, eq. 7 was modified so that σc
was set equal to the constant σmin. The same 8 model variants
were created for the CRW control, and results were averaged
together to obtain a control distribution (Figure 6, black lines;
Figure 7A, gray bar).

RESULTS

An Open Field Odor-Based Spot-Finding
Task Was Developed
To examine the behaviors relevant to odor source localization,
we designed a task that minimized non-olfactory cues. Five
mice were trained to find a ∼1 cm diameter spot of odorized
wax within a rectangular behavioral arena of approximately
1 m2 in the dark (Figure 1A, and Methods). Odor sources
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[methyl salicylate with(out) bait] for each of the trials (N = 855)
across all mice (N = 5) were pseudo randomly distributed within
the center of the testing table (Figure 1B). An example trajectory
shows the nose position of the mouse starting at the right-hand
side of the arena and moving leftward before successfully finding
the spot (red circle; Figure 1C), with color a measurement of
curvature (|dPhi|/nV; see section “Materials and Methods”) used
to detect casting amplitude. Additional example trajectories are
displayed in Supplementary Figure S1, with color indicating
relative time (in seconds).

Wind Conditions in the Room
Airflow measurements were taken on the behavior table (height
1.135 m above the floor) at 9 positions and 2 orthogonal
orientations. Wind speed was measured between 1.9 ft ·
min−1–9.6 ft ·min−1 along the short axis and 9.2 ft ·min−1–
35.1 ft ·min−1 along the long axis of the table (Figure 1D).
Wind direction was estimated by taking the four-quadrant
arctangent (green arrows).

Photoionization Detector (PID)
Measurements on Behavior Table
While attempts to detect a PID signal from the odorized crayon
used in experiments were unsuccessful, we still desired an
estimate of odor concentration decay as a function of distance
from the source. As an approximation to the odorized crayon, we
used a cotton swab dipped in 99% methyl salicylate liquid placed
at the center of the table (Figure 1D, gold star) at approximately
0.5 cm from the surface of the table. The tip of a PID was
placed at distances from 0.5 to 15 cm away from the odor
source. After denoising (see section “Materials and Methods”)
PID traces were highly variable but mean output decreased
reliably with distance (Figure 1E). Three aspects of the PID data
were characterized. The mean variance increased for distances
less than 2.5 cm and then decreased (Figure 1F, left panel). The
increase at small distances could be due to saturation of the PID
at high concentrations. The mean output also decreased with
distance from the source from about 2.5 cm (Figure 1F, center
panel). Intermittency was measured as the fraction of samples
above baseline, and decreased with distance from the source
(Figure 1F, right panel).

Mice Learn the Open Field Odor-Based
Spot-Finding Task
To determine an appropriate distance threshold for achieving
a successful trial and an approximate minimum concentration-
detection threshold, we examined the survival function with
respect to distance from the spot (Figure 2A). For mice, there
was a sharp increase in survival at about ∼1.5 cm, with a more
gradual increase toward 100% at about 90 cm from the odor
spot (red line). Individual mice varied in their success at 1.5 cm
from about 50–75% success (gray lines). In contrast, the survival
function from shuffled data rose smoothly, crossing the mouse
data at about 30 cm (blue line). We therefore set the distance
threshold for finding a spot to be 1.5 cm and estimated the

minimum concentration-detection threshold to be 30 cm for later
modeling purposes.

Given a threshold of 1.5 cm, mice were successful in 64%
(N = 532/853) of trials (Figure 2B). In comparison, shuffled
controls were successful a mere 1.67% (N = 1,524/91,446) of
trials. Mice had a significantly higher success rate than shuffled
controls (Welch’s t-test; p = 6.22E−5, t-stat = 14.69, df = 4).
A logistic regression on successful versus unsuccessful trials
for mouse data revealed several highly predictive explanatory
variables (Supplementary Table S1). Baited trials had higher
success rates (p = 4.68E−12, β = 2.51), potentially indicating
higher motivation during these trials or a contribution of the odor
of food to localization. Greater arena exploration also predicted
success (∼45 cm2 bins; p = 1.65E−15, β = 15.51; see Figure 3A).
Slower mice (p = 6.89E−06, β = −0.29) were more successful,
though they had faster average nose velocity (p = 1.07E−04,
β = 0.27) and higher casting (integrated log10[|dPhi|/nV]
within 30 cm; p = 2.56E−3, β = 1.4), suggesting that slower
forward body velocity and higher casting amplitude may be
features of successful search strategies. Successful completion
of this spot-finding task is thus dependent on features of
individual trajectories.

We conclude that mice find odor spots above chance levels
established by the shuffled control, and predict that further
evaluation of specific trajectory features will provide useful
information about odor localization strategy.

Mice Efficiently Navigate to the Odor
Source in Comparison to Shuffled
Controls
Next, we compared navigation efficiencies of mice to shuffled
controls by examining time to spot divided by initial distance
and nose displacement divided by initial distance. Time to spot
was divided by initial distance to spot, with the average for mice
(0.51 s · cm−1) significantly lower than shuffled controls (1.71 s ·
cm−1; Figure 2C; Welch’s t-test; p = 7.25E−18, t-stat = 8.72,
df = 1700). Then, nose displacement was divided by initial
distance to spot, with the average for mice (4.75×) significantly
lower than shuffled controls (17.78×; Figure 2D; Welch’s t-test;
p = 1.2E−19, t-stat = −9.11, df = 1573). We conclude that
mice are more efficient at navigating to the odor source than
shuffled controls.

Mouse Behavior Varies Systematically as
a Function of Distance From the Odor
Source
As suggested by the logistic regression analysis, features
of individual trajectories may be relevant to odor source
localization. One potential interpretation of this is that mouse
behavior varies as a function of odor concentration along a
gradient. Because we did not have direct measurements about the
odor gradient being sampled by mice, we used proximity to the
odor source as a stand-in.

Using a bin size of ∼45 cm2, mice explored an average of
33 ± 17% (mean ± s.d.) of the table before finding the spot.
This estimate varied as a function of bin size and successful
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spot-finding (Figure 3A; two-way ANOVA interaction term;
p< 1E−100, F = 83.95, df = 97). Mice also explored progressively
less of the table with increasing trial number (∼45 cm2 bins;
ANOVA; p = 2.65E−51, F = 57.16, df = 5), suggesting refinement
of learning throughout the experiment.

We then computed the percentage of time mice occupied at
different distances from the odor source, normalized by area
(Figure 3B). This revealed a decreasing function with distance
on successful trials (red line) compared to a flat distribution with
distance on unsuccessful trials (blue line). These lines diverged
at a distance of 44 cm (two sample Kolmogorov–Smirnov test;
p < 1E−10), suggesting that mice are exploring more within
44 cm of the odor source on successful trials.

Next, we examined velocity as a function of distance from
the odor source (Figure 3C). As mice approached the odor
source across all trials, nose velocity slowed down (ANOVA;
p = 2.72E−91, F = 18.73, df = 28), as did body velocity (ANOVA;
p = 1.02E−160, F = 31.12, df = 28).

We next examined mouse heading relative to the odor
source for successful trials (Figure 3D). If a mouse detects odor
cues that provide insight into the location of the odor source,
then the mouse’s nose should be oriented toward it. At each
position sample, the difference in angle between body-to-spot
and body-to-nose was computed (Figure 3E). We found that
orientation relative to the spot depended on distance from the
odor spot (Watson–Williams Test; p < 1E−100, F = 877.94,
df = 48), and has a median value not significantly different
from zero (i.e., oriented directly at the spot) within 9.54 cm
(p > 1E−3, circular test for equal medians with Bonferroni
correction) (Figure 3D).

In summary, we found that mice vary their search strategy
and orient toward the spot as they approach it. Mice also slowed
down as they approached the spot. Together, these behavioral
changes potentially represent a speed-accuracy trade-off during
the final stage of navigation toward an odor object, roughly
within∼10–45 cm.

Casting Increases Near the Odor Spot
and Is Modulated by Velocity
We found that curvature increased as mice approached the odor
source (ANOVA; p = 2.2E−117, F = 23.4, df = 28) with an
interaction between distance and successful versus unsuccessful
trials (two-way ANOVA; p = 0.0041, F = 1.85, df = 28).

We used a stepwise Generalized Linear Model (GLM)
to determine the relative effect of velocity and distance
on the curvature measure of casting. The first term to
include in the stepwise GLM was velocity (p < 1E−100,
F = 9636, Deviance = 1500) and the second was distance
(p = 7.1E−41, F = 1481, Deviance = 1481). Non-linear terms were
added to the model.

As curvature explicitly depended on inverse nose velocity
(see section “Materials and Methods,” results from stepwise
GLM, and Supplementary Figure S3A), we computed the angle
between the head and body centerline as an alternate measure
of casting (Supplementary Figure S3B). Using this alternate
measure of nose deflection, we again found that casting increased

FIGURE 4 | Analysis of casting amplitude using curvature. (A) Unsigned
curvature of the nose was computed as a measure of casting amplitude (see
section “Materials and Methods”) and averaged across successful trials (red
line = mean ± SEM). Casting increased as mice approached the odor spot
(ANOVA; p = 1.21E−64, F = 42, df = 8). (B) The approach vector for
successful trials are the vector components of the circular mean of the
nose-to-body orientation (angle α in Figure 3E) after centering position data
at the odor spots. Vectors are normalized by the circular standard deviation.
Color indicates the curvature measure for casting at that point. Most
trajectories approach the spot from the northeast.

as mice approach the odor source (ANOVA; p = 2.18E−56,
F = 12.82, df = 28), with an interaction between distance and
successful versus unsuccessful trials (two-way ANOVA; p = 0.02,
F = 1.61, df = 28).

To assess whether animals potentially began using non-odor
cues to navigate toward the spots on later trials, we performed
one-way ANOVAs on curvature versus binned trial number
(N = 6). We found an effect of session on curvature (ANOVA;
p = 1.42E−11, F = 12.34, df = 5), suggesting that after 60–70 trials,
a shift in strategy occurred which led to systematically less casting.
Further analysis revealed that this effect was consistent with
systematically increased nose velocity on later trials (ANOVA;
p = 9.16E−7, F = 7.36, df = 5).

We also examined casting amplitude as a function of approach
vector. To compute approach vectors, the angle of the nose
with respect to the body was taken and positions were centered
with respect to the spot, then binned every 2.3 cm. The length
of the vector was then normalized by the standard deviation
of the angles at that point. The vector colormap indicates
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the log10(|dPhi|/nV) at that point. Note that on most trials
mice approached the spot from the northeast direction (the
‘downwind’ direction, see Figure 1D). It was in this direction, at
points closest to the source, where casting increased (Figure 4B).

Overall, we found that casting amplitude of mice increases at
distances close to the spot, suggesting that it may play a role in
the successful navigation to a discrete odor object by mice. This
change in casting is potentially correlated with velocity, which
also decreases significantly during the approach to the spot.

A Concentration-Sensitive Model (CSM)
Was Developed to Capture Aspects of
Mouse Behavior Discovered on the
Spot-Finding Task
A typical simulated nose trajectory showing a successful capture
displays inter-sniff differences in odor concentration in arbitrary
units (Figure 5C). The CSM model used here had parameters:
1t = 0.1 s, ` = 5 cm, νmax = 25 cm/s, k = 0.5 concentration units,
τ = 0.1 s, σmin = 0.2 radians, σmax = 0.3 radians, and kbinaral = 200
The value of τ chosen gave a good balance of sharp turning nose
trajectories with smooth nose trajectories. Values an order of
magnitude lower resulted in tight spirals of the nose, while values
an order of magnitude higher resulted in loss of maneuverability
of the model. νmax was chosen as it was the approximate average
velocity of mice. Because simulated odor concentrations were
scaled to a maximum of one, k = 0.5 was chosen as the half-
maximal value for behavioral response. Changing k could be
used to ‘tune’ the model’s performance without qualitatively
affecting its trajectories. Values of σmax, σmax, and kbinaral were
chosen so that the model’s nose curvature remained qualitatively
“mouselike” in character, i.e., the model trajectories did not
appear overly tortuous or linear when compared by eye to the
mouse trajectories.

To model the observed decrease in velocity close to the odor
source, we implemented a concentration-dependent velocity
term (Eq. 9). In this term, the maximum velocity, vmax decreases
with increasing concentration according to a sigmoidal function.
This function was chosen as it was roughly linear in the center
of the concentration range and saturated at high concentrations.
To model the increase in curvature with approach to the spot,
a concentration-dependent widening of the normal distribution
was implemented (Eq. 7). These equations were linked by a
common parameter k that controlled their rates of change as a
function of concentration.

As a control, we created a CRW model that turned
independently of concentration (Eq. 14), aligning its heading
with its nose 50% of the time and away from its nose 50% of the
time, resulting in left and right turns in equal proportion. Models
using odor cues to navigate should outperform the CRW.

CSM Simulations Have Similar General
Properties to Mice
For simulations, we wished to examine the hypothesis that that
mice are (1) moving rapidly where the slope of the gradient is low
and detecting changes at different physical locations (a versus b);

versus, (2) moving slowly where the slope of the gradient is high
and detecting changes by sweeping their heads back and forth
(A versus B), which we interpret as casting (Figure 5A).

We implemented a complex odor stimulus model which
included (1) generation of a smooth concentration gradient;
(2) addition of multiplicative noise which increased near the
source; (3) setting pixels equal to zero at a proportion dictated by
an intermittency fit such that the farther away from the source
the higher the proportion of zeros; and, (4) the smoothing of
the resulting stimulus by a two-dimensional local Gaussian filter
(Figure 5B). Because we observed a small amount of wind in the
room (Figure 1D), plumes would presumably be biased in the
direction of the wind along the y-axis of the table. Therefore,
we tested the effect of removing radial symmetry from the
odor stimulus (Supplementary Figure S4A). Removal of radial
symmetry along the y-axis had negligible effect on simulation
performance (Supplementary Figure S4B).

The CSM model with 4-step stimulus generation generally
resembled mouse behavior (Figure 5C). Here, concentration
difference between consecutive samples is plotted so that the
turning away from high-to-low and turning toward low-to-high
concentrations is visible. The simulated odor spot is indicated
by the red circle.

Spot positions for the CSM and CRW were taken from the
mouse data, with spots less than 10 cm from the edges being
removed. The success rate of the CSM was 94%, significantly
greater than the 19% for CRW controls (Figure 5D; Welch’s
t-test; p = 2.16E−22, t-stat = 59.45, df = 17). The CSM therefore
successfully used information about concentration to navigate
within 1.5 cm of the odor source.

The nose displacement over initial distance ratio for the CSM
(∼5.6×) was significantly less than the CRW (∼13×) (Figure 5E;
Welch’s t-test; p = 3.5E−11, t-stat = −34-41, df = 9), indicating
that the CSM found the odor spots more effectively than the
CRW. The survival function of CSM minimum distance to the
spot was shifted to the left and up compared to the CRW
control (Figure 5F).

Examining the Structure of CSM
Trajectories Suggests That They
Approximate Mouse Behavior
The orientation relative to the spot for the CSM was qualitatively
similar to mice (Figure 6A, compare with Figure 3D).
The CSM occupancy increased with respect to the CRW
occupancy as agents approached the spot (Figure 6B; two-sample
Kolmogorov–Smirnov test; p < 1E−10 at <26 cm). This was
similar to the occupancy observed in mice on successful trials
(Figure 3B). Mean nose velocity of the CSM decreased as agents
approached the spot (Figure 6C), as expected, given Eq. 9. On
successful trials, the CSM explored less than it did on unsuccessful
trials (Figure 6D). This contrasts with the behavior observed
in mice (Figure 3A), suggesting that there are unexplored
differences between the CSM and mice. CSM casting increased
as agents approach the spot (Figure 6E), as expected, given Eq. 7.
This approximates the effect observed in mice (Figure 4A).
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FIGURE 5 | Development of concentration-sensitive model. (A) Our general hypothesis in constructing the model was that lower concentration differences (1Cab)
far from the source would be detectable by gross movement of the body (right panel). In contrast, higher concentration differences (1CAB) would be detectable by
fine movement of the head (left panel). In this illustration, the wavy green line represents the concentration of an odorant. The blue shading indicates averaging
concentration over an inhalation. The dashed lines indicate the mean concentration for each sniff. (B) The odor concentration profile was constructed in four steps:
(1) A smooth concentration gradient was computed; (2) multiplicative random noise was added to the gradient; (3) ‘Intermittency’ was modeled by setting a
proportion of pixels equal to zero; which increased with distance from the source. Finally, (4) Gaussian smoothing was implemented to simulate averaging of the
signal over a sniff. (C) An example trajectory from the CSM that successfully found the odor spot (red circle). Concentration difference (A.U.) is indicated. (D) The
success rate of the CSM was above 75%, while the CRW control model had a success rate of below 25% (Welch’s t-test; p = 2.16E−22, t-stat = 59.45, df = 17).
(E) The nose displacement divided by the initial distance to the spot was lower for the CSM than for the CRW control (Welch’s t-test; p = 3.5E−11, t-stat = –34-41,
df = 9). (F) The survival function of approach distances shows that nearly all CSM trajectories approach within 30 cm of the source, while CRW control trajectories
are more spread out across the entire table, reminiscent of the shuffled control distribution (Figure 2A).

Simulations Allow Separation of
Component Strategies for Odor-Driven
Navigation
Simulations allowed for further dissection of the odor-driven
factors that impact behavior and successful odor source
localization. We created reduced CSMs to examine the relative
contributions of three hypothesized behavioral components:
binaral-sniffing, concentration-dependent velocity, and
concentration-dependent casting amplitude. While all reduced
model variants outperformed CRW controls (Figure 7A),
removal of any of these behavioral components decreased

model success. The removal of concentration-dependent
velocity led to the largest change in success rate (−V, 130%),
followed by concentration-dependent casting amplitude (−C,
18%), and binaral-sniffing (−B, 13%). The change in success
rate was significant for removal of concentration-dependent
velocity (Welch’s t-test; p < 1E−100, t-stat = 169, df = 1472),
concentration-dependent casting (Welch’s t-test; p < 1E−100,
t-stat = 58.3, df = 1759), and binaral sniffing (Welch’s t-test,
p = 2.65E−100, t-stat = 22.6, df = 1927). The effect size depended
on the number of bootstrapped samples (out of 100,000) and
groups in each sample. For this analysis, we chose 1000 groups
with 10,000 samples in each group, selected without replacement.
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FIGURE 6 | Detailed analysis of CSM trajectories. (A) The orientation of the CSM model relative to the odor spot resembled that of mice (compare Figure 3D).
(B) The occupancy of the CSM resembled that of mice (magenta line; compare red line Figure 3B), and significantly diverged from the CRW control (gray line) at
∼26 cm from the odor spot (two-sample Kolmogorov–Smirnov test; p < 1E−10 at <26 cm). (C) The mean nose velocity of the CSM (magenta line) decreased as
the model approached the odor spot, consistent with what was observed with mice (compare red line Figure 3C). The nose velocity of the CSM was different from
the CRW control (black line). (D) In contrast to mice, successful trials of the CSM (magenta line) showed less exploration than unsuccessful trials (gray line) (compare
red line to blue line in Figure 3A). (E) Casting increased as the CSM approached the spot (magenta line).

These behavioral components of olfactory search are
synergistic; simultaneous removal of two or more of them
leads to a greater reduction in success rate than removal of
individual components. Model variant (−VC), in which both
velocity decrease and casting increase are removed, resulted in a
significant112% change in model success relative to (−V) alone
(Welch’s t-test; p< 1E−100, t-stat =−55.9, df = 1997). All groups
performed significantly better than the CRW Control, even with
all three components of the model removed (−VBC; Welch’s
t-test; p< 1E−100, t-stat = 67.08, df = 1997). This is logical since
(−VBC) still makes decisions based on inter-sniff concentration
differences, while the CRW Control makes random decisions.

Significance of model parameters was also established by
shuffling 12 parameters of the model 50 k times, and comparing
the effect of each parameter using a logistic regression
(Supplementary Table S2). We also included two dependent
variables from the model trajectories that we thought might
impact success rate, the mean casting (log10(|dPhi|/nV) within

30 cm, and the mean nose velocity within 30 cm. Note that for this
analysis, we split k into separate parameters for casting (k = kc
in Eq. 7) and velocity (k = kv in Eq. 9). Likewise, we labeled
and varied the power parameters (nc = 1 in Eq. 7) and (nv = 4
in Eq. 9) from 0 to 5. We also added a coefficient in front of
the tanh binaral term in Eq. 5 (kbinaral2), and kbinaral in Eq. 5 is
relabeled as kbinaral1. All parameters and both dependent variables
significantly impacted success rate, except for the parameters τ,
σmin, and k c .

To more rigorously test the effects of different levels of noise,
the noise level kn in Eq. 11 (also see step 2 in Figure 5B) was
varied from 0 to 1 and the Gaussian smoothing (4 mm in reported
CSM variant; step 4 in Figure 5B) was varied from 0 to 10 mm.
Success rate rapidly dropped off as kn approached 1 or smoothing
approached 0 mm (Figure 7B).

To more rigorously test the effects of the 2-parameter binaral
term, we re-ran the 6 reduced model variants 100,000 times each
with a coefficient of kbinaral2 = 3 in front of the tanh term in Eq. 5.
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FIGURE 7 | Analysis of reduced models and parameter sweeps. (A) The full
model (CSM) included three components: (1) a concentration-dependent
velocity term (V), (2) a concentration-dependent casting term (C); and, (3) a
binaral-olfaction term (B). Removal of any of these components (–V), (–C), or
(–B) may, in principle, reduce model performance. (B) Comparison of noise
effects on CSM success rate shows that the CSM model is robust for a wide
array of different noise conditions, but fails if random noise approaches 100%
or Gaussian filtering approaches 0 mm. (C) We added a coefficient in front of
the hyperbolic tangent term in Eq. 5 and set it equal to 3. With this additional
term, (–B) had a larger effect on performance; however, the effect of removing
(–V) or (–C) terms decreased.

Again, we chose 1,000 groups with 10,000 samples in each group,
selected without replacement. This resulted in smaller effects of
removing (−V) and (−C), but a larger effect of removing (−B),
suggesting that strong binaral-sniffing may be able to compensate
for removal of variable velocity and casting (Figure 7C).

In summary, reduced models revealed that individual
components of the overall strategy worked together to
maximize task performance, with concentration-dependent
velocity and casting having the greatest impact on successful
task performance.

DISCUSSION

Here, we described the navigation strategies of mice during
an open field odor-based spot-finding task. Over the course of
7–13 days (3–5 sessions/day), mice could be trained to perform
this task on a 45′′ × 36′′ open field arena. Performance of
mice exceeded that of shuffled controls, indicating that mice
were using odor cues to localize the odor target. Olfactory-
guided behavior changed as a function of distance; specifically,
(1) nose velocity decreased close to the source, (2) casting
increased close to the source, and, (3) occupancy increased
close to the source. Mice demonstrated reliable spot-finding
within 10–45 cm of the odor source. The Concentration
Sensitive Model (CSM) was built to capture these observations
by incorporating concentration-dependent velocity and casting
terms, as well as a postulated binaral comparison term. Removing
components of the CSM demonstrated that each had a significant
impact on performance.

There Is a Potential Speed-Accuracy
Trade-Off in Search Strategy Close to the
Odor Spot
As mice approach an odor source, they slow down and increase
their exploration time in a smaller annulus around the spot.
This is similar to observations in fruit flies following a plume
upwind to an odor source (Budick and Dickinson, 2006). We
suggest this phenomenon may be a type of speed-accuracy trade-
off (Heitz, 2014) in olfactory search behavior. Specifically, when
concentration reaches some perceptual threshold, mice may
“switch” into a local search strategy designed to increase accuracy
at the expense of speed to target. In this local search strategy,
the mouse spends more time in regions of high concentration
where it is more likely to hit its target. In agreement with
this hypothesis, elimination of concentration-dependent velocity
decrease led to less success in reduced models (Figure 7A). While
it is tempting to ascribe all behavioral output on this task to the
salience of the odor cues, mice may fall back on coordination
of olfactory cues with other input modalities, especially as they
get closer to the odor source. For example, they may integrate
olfactory cues with secondary cues from somatosensory or
proprioceptive inputs.

Binaral-Sniffing May Facilitate Search
Near the Odor Source
Use of binaral-cues for navigation has been observed in moles
(Catania, 2013), snakes (Schwenk, 1994), and insects (Martin,
1965; Steck et al., 2010) suggesting it may be an evolutionarily
conserved strategy. In mammals, neurons in the anterior
olfactory nucleus may play a key role in integration of bilateral
stimuli that are key to binaral-sniffing (Kikuta et al., 2010) as this
is one of the earliest locations in which information from both
left and right naris can be integrated. Once a trail’s direction or
the rough direction to a spot is determined, binaral-sniffing cues
may be useful for determining the direction to cast in order to
continue following the direction of the trail (Khan et al., 2012), or
steer toward the odor spot. Binaral-sniffing allowed the CSM to

Frontiers in Neuroscience | www.frontiersin.org 13 March 2020 | Volume 14 | Article 218

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00218 March 20, 2020 Time: 12:44 # 14

Liu et al. Odor Source Localization Strategies

preferentially cast in the direction of the odor source only when
the odor gradient was large (i.e., near the source). Removal of
binaral-sniffing led to a statistically significant decrease in CSM
success (Figure 7C), an observation compatible with the model
developed by Catania (2013), where binaral-sniffing becomes a
relevant strategy on steep concentration gradients.

Future research may wish to examine if effective nares
separation (dnares) determined by parameters such as inhalation
volume, flux, and gradient rather than the distance between
the nares. For example, inhalation in rats is largely from the
lateral direction, rather than the front of the animal (Wilson
and Sullivan, 1999). Pressure differences generated during
sniffing inhalation at different magnitudes and frequencies (slow
deep breath versus rapid sniffing) may also draw in relatively
different concentrations of molecules from different distances
away from the nares.

Odor Source Localization May Rely on
Cognitive Mapping
Navigation to an odor source with serial-sniffing is probably
intimately tied to navigation through space using the cognitive
map (Jacobs, 2012). Specifically, the distance traveled between
the first to the second sniff in the concentration comparison
helps determine an updated heading toward the source or along
the trail. In support of this view, hippocampal place cells may
change their firing patterns (called remapping) to match the
relocation of an orienting odor source in a circular arena (Zhang
and Manahan-Vaughan, 2015). Thus, serial-sniffing is potentially
more relevant to gross odor localization than binaral-sniffing.
For example, to determine trail direction using binaral-sniffing
most efficiently, an animal would have to be oriented roughly
perpendicular to the trail so that its nares are sensing maximally
different concentrations. In contrast, studies with dogs repeatedly
find that serial-sniffing of 2–5 footprints is required to determine
a trail’s direction (Thesen et al., 1993; Hepper and Wells, 2005).
Similarly, initial odor source seeking may utilize serial-sniffing to
quickly map larger spatial areas, including eliminating subspaces
where no odor is detected (Vergassola et al., 2007).

Casting Is Related to Olfactory-Guided
Navigation to a Discrete, Static Odor
Source
Casting has been described as “zig-zagging” behavior in moths
flying upwind during pheromone-tracking (Charlton et al., 1993),
and has been reported to occur outside of an odor plume when
a moth is attempting to re-acquire the odor (Kennedy, 1983).
Head-scanning behaviors, also called casting, have been observed
in Drosophila larvae, rats, moles, and humans (Baker et al., 2018).
Here we find that mouse casting (or head scanning) amplitude
increases during approach to the odor source. The moth data
suggest that casting for edge detection increases whenever there
are intermittent gaps in the odor signal, as they cast to re-acquire
the odor plume. If this were true for mice performing the open
field odor-based spot-finding task, we would expect casting to
be higher farther away from the odor source where the signal is
sparse. In fact, we find the opposite. Casting in moths and head

scanning/casting in other animals may therefore be mediated by
different types of mechanisms and occur for different purposes.

Complexities to Address in Future
Studies Include Decision-Rules and
Individual Variability in Strategy
Utilization
Our data suggest that mice may use multiple search strategies
during an open field odor-based spot-finding task. We speculate
that the relative contribution of strategies may also be variable
between individuals, as has been observed during fruit fly
navigation during odor presentation (Tao et al., 2019). This may
mean a specific instantiation of our model (with one set of
parameters) captures behavior for one individual mouse, but fails
to capture behavior for some other subset of mice. For example,
the k parameter could be used to ‘tune’ aspects of the model’s
trajectories which may better fit the data for a subpopulation of
mice. A much larger cohort of animals than was used here would
be necessary to evaluate this idea; however, the general principle
is that similar-looking ethologically relevant behavior can emerge
from different model permutations.

A limitation of the current model is that it incorporates an ‘all
or nothing’ decision at each sniff. It may be more appropriate
to use a probabilistic decision rule to combine binaral- and
serial-sniffing into a unified output. Also, a model where pausing
emerges during epochs of uncertainty in sampling of the odor
concentration may be advantageous. Additionally, the model
is currently limited to detection of one odorant—it would
be useful to distinguish different features of diverse odorants.
Finally, stimulus models with ‘zeros’ distributed throughout
the simulated odor landscape produced high failure rates.
Developing a model that is robust to this type of intermittency
would be a logical next step.

While the CSM is capable of finding the odor source when
the odor is consistently above threshold, it does not attempt to
capture mouse behavior where the odor concentration is below
detection threshold. The mouse may, however, be engaging in
more complex navigation behavior here, including mapping of
the odor environment. For example, the model of Vergassola
et al., 2007 builds a cognitive map of odor source location
likelihood; it utilizes both sparse odor detection events and
frequent subthreshold observations to update its map of source
location likelihood.

In summary, we discover that mice vary their search strategy
during navigation toward a discrete odor object, modulating
features of behavior as a function of distance from the target.
A CSM successfully reproduces mouse behavior, while allowing
for the analysis of the relative contributions of different
putative components of navigation. Future work is needed to
experimentally dissect how these variables causally impact odor-
driven navigation.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

Frontiers in Neuroscience | www.frontiersin.org 14 March 2020 | Volume 14 | Article 218

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00218 March 20, 2020 Time: 12:44 # 15

Liu et al. Odor Source Localization Strategies

ETHICS STATEMENT

The animal study was reviewed and approved by the
Institutional Animal Care and Use Committee (IACUC) of
University of Pittsburgh.

AUTHOR CONTRIBUTIONS

JH, AL, BE, and NU designed the behavioral experiments. AP, JH,
BE, and NU designed the simulations. AL and KP conducted the
behavioral experiments. AP, JH, and AL analyzed the data. AP
and JH wrote the MATLAB code. AP calculated the statistics. AP,
JH, AL, BE, and NU wrote the manuscript.

FUNDING

This work was supported by the National Science Foundation
(1555862 to NU and 1555916 to BE); the National Institutes
of Health, National Institute on Deafness and Other
Communication Disorders (F30DC015161 to AL), and the
Pennsylvania Department of Health’s Commonwealth Universal
Research Enhancement Program (NU).

ACKNOWLEDGMENTS

We thank Gregory LaRocca for technical help, and members
of the Urban laboratory as well as Yu Chen, Robert Kass,
Nour Riman, Erin Connor, and John Crimaldi for helpful
discussions. We thank Kathy Nagel and Jonathan Victor for
helpful comments on an earlier draft of the manuscript.
A special thanks to Peter Jones for designing and building the
behavior table used in this experiment. Thanks to Chris D.
Rand from Aurora Scientific for technical help with the PID.

This manuscript has been released as a Pre-Print at bioRxiv
(Liu et al., 2020).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00218/full#supplementary-material

FIGURE S1 | Example traces. Successful trials (left and center panels) have the
time to spot indicated by the text. The relative time of each position sample is
indicated by the color. Unsuccessful trials (right panel) have the total trial time
indicated by the text. Color represents the relative time of each position sample.
Spot positions are indicated by red circles.

FIGURE S2 | Detailed model geometry. (A) Model specification of the body
position (x, y), and the body angle θ superimposed on a diagram of the mouse.
The nose position (xn, yn) is the mean position between the left and right nares.
(B) Nose angle φ (gray dashed line) is the angle between θ and nose position, and
is constrained by a maximum angle φmax. The head-body length l is the distance
between the body position and the nose position, which is sub-divided into two
nostrils separated by a distance dnares. The angle from the center of the nose to
the edge of the nostril is γ. (C) The distribution of mouse nose deflection angles φ

(blue bars) is approximately Gaussian {dashed red line; a∗exp[−((x−b)/c)∧2];
a = 0.04, b = 0.06, c = 1.92}.

FIGURE S3 | Additional casting analyses. (A) Curvature as measured by log10

(|dPhi|/nV) depends on nose velocity. The color map indicates the percentage of
samples in each bin. (B) Averaged across successful trials, nose deflection angle
φ increases as the distance to the spot decreases (line = mean ± SEM; ANOVA;
p = 2.18E−56, F = 12.82, df = 28).

FIGURE S4 | Non-symmetric plume analysis. (A) To test the effect of removing
radial symmetry on model performance, we created elliptical sources using an
additional shape parameter α. Increasing the shape parameter resulted in more
longitudinally skewed plumes. (B) Performance was not strongly affected by
removing the assumption of radial symmetry.

TABLE S1 | Logistic regression analysis on spot-finding success in mice.
Significant variables in bold.

TABLE S2 | Logistic regression analysis of CSM parameters on spot-finding
success. Significant parameters are in bold.
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