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Partitioning the replicated genetic material is a crucial process in the cell cycle program

of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM

and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the

plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known

as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea.

ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A

centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with

CTPase activity to form the segregation complex. The ParA ATPase, interacts with the

segregation complex and partitions the DNA into the daughter cells. Furthermore, the

Walker A motif-containing ParA superfamily of proteins is associated with a diverse set

of functions ranging fromDNA segregation to cell division, cell polarity, chemotaxis cluster

assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles

underlying the varied range of cellular roles in which the ParA superfamily of proteins

function are outlined. Here, we provide an overview of the recent findings on the structure

and function of the ParB adaptor protein and review the current models and mechanisms

by which the ParA family of proteins function in the partitioning of the replicated DNA into

the newly born daughter cells.

Keywords: DNA segregation, plasmid, ParA, Walker A motif, ParB

INTRODUCTION

The genetic material in all organisms needs to be equipartitioned during each round of cell
division. This mechanism has been very well-studied in eukaryotes. The initial study on eukaryotic
chromosome segregation dates back to the later part of the nineteenth century with the discovery
of thread-like structures within the nucleus of the stained newt cells. These thread-like structures,
observed with a light microscope, were named chromatin (Flemming, 1882). Subsequently, the
entire mechanism of eukaryotic chromosome segregation was characterized. It is now known to
be carried out by spindle fibers, composed of microtubules that pull apart the chromosomes and
assist in segregation (Scholey et al., 2003; Kline-Smith andWalczak, 2004). This mechanism is very
well-coordinated and is programmed into four different phases of the cell cycle- S, G1, M, and G2
(Cooper, 2000; Walczak et al., 2010).

Unlike the eukaryotic genetic material, the prokaryotic DNA is not encased within a nuclear
membrane. Instead, it spreads over the entire cytosol of bacteria and is called the nucleoid. The term
“nucleoid” was first coined by Piekarski (1937). With the progression of the cell cycle, the nucleoid
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changes its shape to a bilobed one and soon segregates into
two daughter cells (Zimmerman, 2003; Yamaichi and Niki, 2004;
Fisher et al., 2013). The genetic material in the eukaryotes is held
together by histone and cohesion proteins (Losada and Hirano,
2005; Nasmyth and Haering, 2005). However, in the case of
prokaryotes, the chromosomes are held together by DNA binding
proteins called Nucleoid Associated Proteins (NAP) (Kar et al.,
2005; Badrinarayanan et al., 2015) that help in chromosomal
compaction and organization of domains known as the high-
density regions (HDRs). These NAPs include HU, HNS, Fis, and
IHF (Ali Azam et al., 1999; Verma et al., 2019). The nucleoid
occupies a major proportion of the bacterial cytosol and plays an
integral and decisive role in positioning the cytokinetic Z-ring
(Harry et al., 1999; Yu and Margolin, 1999; Harry, 2001; Sun and
Margolin, 2001; Bernhardt and de Boer, 2005; Rothfield et al.,
2005) as well as driving the ParA mediated DNA partitioning
(Castaing et al., 2008; Le Gall et al., 2016; McLeod et al., 2017).

DNA segregation in bacteria has been extensively
studied using plasmids as a model system. Plasmids are
extrachromosomal self-replicating species of DNA that usually
encode genes for antibiotic resistance, production of bacteriocins,
resistance to heavy metals, ultraviolet light, pathogen virulence
factors and many other metabolic functions (Birge, 2006).
Plasmids generally vary in size from a few kilobases to hundreds
of kilobases, and their geometry is commonly circular or linear.
Plasmids have been traditionally classified into different types
based on their replication and copy numbers (Million-Weaver
and Camps, 2014).

High copy number plasmids are generally small and replicate
randomly during the cell cycle. These plasmids can reach up
to a 100 copies per cell, and thus random assortment and
segregation during cytokinesis can ensure sufficient distribution
of these plasmids into two daughter cells (Birge, 2006; Million-
Weaver and Camps, 2014). On the contrary, low copy number
plasmids with <15 copies per cell cannot solely rely on
random distribution for maintenance. Instead, they depend
upon dedicated partitioning proteins to distribute them into
daughter cells. Further, this is also true for single-copy number
plasmids and includes many bacterial genomes. In contrast
to the universal nature of the eukaryotic DNA segregation,
microbes employ diverse mechanisms to partition their DNA.
Active DNA partitioning systems have been broadly classified
into Type-I, Type-II, and Type-III according to the protein
family of the NTPase in the partitioning system (reviewed in
Hayes and Barillà, 2006; Gerdes et al., 2010; Lutkenhaus, 2012).
The DNA partitioning functions usually rely upon a member
of the actin-like ATPase, tubulin-like GTPase, or Walker A
Cytoskeletal ATPase (WACA) family of proteins. The WACA
family of proteins is part of a larger group of P-loop ATPases
with a deviant Walker A motif and is often referred to as the
ParA superfamily (Walker et al., 1982; Motallebi-Veshareh et al.,
1990; Koonin, 1993). The ParA superfamily of proteins is also
involved in a wide range of diverse cellular functions in bacteria,
including DNA segregation. Type-I systems utilize the ParA
superfamily of proteins for DNA partitioning. They are found in
plasmids such as the F plasmid (Fertility Plasmid that encodes the
Fertility factor or the F factor) and in the chromosomes of many

bacteria (Abeles et al., 1985; Davis et al., 1992, 1996; Koonin,
1993; Lutkenhaus, 2012). The Salmonella paratyphi R1 plasmid
carries a Type-II system and contains an actin-like ATPase, ParM,
that undergoes insertional polymerisation to push apart the
plasmids to the two opposite ends of the cell (Gerdes et al., 2000;
Møller-Jensen et al., 2003). The Type-III system is exemplified
by the pBToxis plasmid, wherein the tubulin homolog TubZ
segregates the two plasmids to the poles (Larsen et al., 2007).
The Type-I system is the most widespread, with chromosomes
in organisms ranging from archaea to bacterial pathogens and
low copy number plasmids carrying virulence factors or multi-
antibiotic resistance determinants relying upon the ParA family
of proteins for partitioning functions (Motallebi-Veshareh et al.,
1990; Koonin, 1993; Lutkenhaus, 2012; Stephens et al., 2020). The
low copy number plasmids have been studied for a long time,
and together with the recent findings in many bacterial species
on chromosomal DNA partitioning, they provide us insights into
the mechanism of DNA segregation in prokaryotes.

In this review, we provide a historical overview of the
evolution of our understanding of DNA segregation in bacteria,
with particular emphasis on the ParA protein from the F plasmid
of E. coli (ParAF) and highlight some of the recent findings. We
briefly discuss the various types of plasmid segregation systems
(Type-I–Type-III), the functions of ParA and the mechanism by
which ParA orchestrates DNA partitioning. The recent findings
on the CTPase activity of the centromere binding protein, ParB
and its bearings on DNA segregation functions are discussed.
We list a few examples of the ParA family of proteins involved
in bacterial and archaeal chromosome segregation. Finally, we
touch upon the functions of the ParA superfamily of proteins in
other diverse cellular processes in bacteria.

TYPES OF PLASMID SEGREGATION
SYSTEMS

Type-I—Walker A-Type ATPases in DNA
Partitioning
Most bacterial chromosomes and many low-copy number
plasmids depend on the Type-I system for the segregation of
DNA. The Type-I system is characterized by the presence of a P-
loop ATPase superfamily of protein, known as the ParA/MinD
family of ATPases, that have a deviant Walker A box motif
KGGXXK[S/T] (Koonin, 1993; Lutkenhaus, 2012). The genetic
loci important for partitioning also carry a centromeric repeat
sequence, parS, and encode a second protein, the centromere
binding protein (CBP) or adaptor protein ParB that binds parS
sites and interacts with ParA as well. The Walker A motif in
ParA is directly involved in interactions with the bound ATP
molecule. Walker A motifs in the Type-I ParA family differ
from the classical Walker A motif in having this additional
signature lysine residue (Table 1), and thus the term deviant
Walker A motif follows (Motallebi-Veshareh et al., 1990; Hayes,
2000; Lutkenhaus and Sundaramoorthy, 2003; Wendler et al.,
2012). A second motif, the B box, characterized by conserved
negatively charged residue (D/E), plays an important role in
Mg2+ coordination and ATP hydrolysis (Fung et al., 2001;
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TABLE 1 | The deviant Walker A motif in different members of P loop ATPase.

Protein Deviant Walker A

motif

(KGGXXK[S/T])

ParAF (SopA) KGGVYKT

ParABsu & ParAHpy [Soj (B. subtilis & H. pylori)] KGGVGKT

MinD KGGVGKT

FleN KGGVGKT

PpfA KGGVGKT

FlhG KGGVGKS

MipZ KGGAGKS

ParI KGGVGKS

McdA SGGQGKT

BcsQ RGGVGTT

The signature lysine is marked in red and the catalytic lysine is marked in blue.

Schumacher, 2008). Mutations in the conserved Walker A box
lead to the loss of plasmids and point to a key role for ATP
hydrolysis in mediating segregation (Ebersbach and Gerdes,
2001; Fung et al., 2001; Libante et al., 2001; Barillà et al., 2005;
Pratto et al., 2008). The Type-I system is further sub-divided into
Type-Ia and Type-Ib based on the structure of ParA (Hayes, 2000;
Schumacher, 2008).

Type-Ia/large ParA proteins (∼300–450 amino acids) have
an extended N-terminal helix-turn-helix (HTH) motif and can
act as repressors of their gene expression (Figures 1A,B) (Abeles
et al., 1985; Hirano et al., 1998; Libante et al., 2001). The HTH
domains help in this sequence-specific DNA binding to operator
regions near their promoters (Mori et al., 1989; Davis et al., 1992;
Hayes et al., 1994; Ravin et al., 2003). Type-Ia is one of the first
identified DNA segregation systems and is typically encoded by
partitioning loci carried in plasmids (Austin and Abeles, 1983;
Ogura and Hiraga, 1983; Mori et al., 1986). Specific examples of
Type-Ia include the parABS and the sopABC (parABSF) system
of P1 bacteriophage and F plasmid, respectively. In the case of F
plasmid (the one encoding for Fertility factor), the genes appear
in the order of sopA, sopB, and sopC, hereafter referred to as
parAF , parBF , and parSF , respectively. The expression of ParAF

and ParBF are driven by a single promoter located upstream of
parAF (Mori et al., 1986, 1989; Hirano et al., 1998). The parABSF
cluster serves as the partitioning system, wherein parSF serves as
the centromeric sequence and comprises twelve 43-bp base pair
repeats (Figure 1A). Each 43-bp sequence contains a short 16-bp
inverted repeat to which ParBF binds as a dimer (Hayakawa et al.,
1985; Lane et al., 1987; Mori et al., 1989; Hanai et al., 1996). This
ParBF-parSF complex is then recruited to ParAF, which is the
NTPase and functions as the motor protein (Ogura and Hiraga,
1983).

On the contrary, members of the Type-Ib subfamily are
smaller (∼200–250 amino acids) and lack the N-terminal HTH
domain. They are thus referred to as smaller ParAs and are
found in the chromosomal loci of many bacteria. However, they
are also found in a few plasmids, like in TP228 of Salmonella
newport. The ParA ATPases in the Type-Ib systems do not

have any repressor functions due to the lack of the N-terminal
HTH domain required for site-specific DNA binding at their
promoter regions (Figure 1A). Examples of the Type-Ib system
on plasmids include parFGH loci on the S. newport plasmid
TP228 and the parABS loci (δ/parA, ω/parB and parS) in the
plasmid pSM19035 carried by Streptococcus pyrogenes (de la Hoz
et al., 2004; Fothergill et al., 2005; Pratto et al., 2008). Type-Ib
also includes ParA fromCaulobacter crescentus (Mohl andGober,
1997) and Soj from Bacillus subtilis (ParABsu/BsSoj) (Leonard
et al., 2005a; Lee and Grossman, 2006) and Helicobacter pylori
(ParAHpy/HpSoj) (Lee et al., 2006) encoded by bacterial genomes.
ParB members of the Type-Ib family carry an N-terminal
protein-protein interaction domain, central HTH domain and
a self-dimerization domain at the C-terminus. Further, residues
near the N-terminus of ParB specify their interactions with the
cognate ParA (Funnell, 2016; Kawalek et al., 2020). Similar to the
Type-1a system, ParB binds to parS and interacts with ParA, thus
linking the plasmid to the motor protein ParA.

The ParA proteins, both the larger Type-1a and the smaller
Type-Ib, also bind DNA in a non-sequence specific manner
and is critical for their DNA segregation functions (Ebersbach
and Gerdes, 2005; Leonard et al., 2005a; Hatano et al.,
2007; Hester and Lutkenhaus, 2007; Castaing et al., 2008;
Vecchiarelli et al., 2010; Roberts et al., 2012; Le Gall et al.,
2016). The currently accepted models for DNA segregation by
ParA, i.e., the diffusion-ratchet, DNA-relay and DNA hitch-
hiking mechanisms (described in detail below), emphasize the
importance of bacterial nucleoids. Briefly, the DNA hitch-hiking
model proposes that the ParA-ATP dimers localize on the HDRs
of the nucleoid to which the ParB-parS complex binds and
stimulates the ATPase activity of ParA. The hydrolysis event
converts the nucleoid bound ParA-ATP into ParA-ADP, resulting
in the release of ParA from the nucleoid. This creates a zone
of depletion of DNA bound ParA, and the released ParB-parS
complex undergoes diffusive motion until captured by ParA-ATP
dimers within theHDRs, resulting in a directional motion toward
the highest concentration of DNA bound ParA-ATP in the cell
(Vecchiarelli et al., 2012; Le Gall et al., 2016; McLeod et al., 2017).
The bacterial nucleoid thus forms a key substrate for the ParA in
its function as amotor protein in the equipartitioning of plasmids
and chromosomes into daughter cells (Vecchiarelli et al., 2012).

Type-II/Actin-Like ATPases
Type-II partitioning system was first discovered in the resistance
plasmid R1 (Jensen and Gerdes, 1997). The partitioning system
in this group contains an actin-like ATPase called ParM, an
adaptor protein, ParR and a centromere site, parC. Monomeric
ParM has an actin-like fold, with its crystal structures bearing
a close resemblance to the eukaryotic actin (Bork et al., 1992;
van den Ent et al., 2002). A search of the microbial genomes
revealed as many as 40 different families of actin-like proteins,
mostly found on plasmids (Derman et al., 2009). A few have
been shown to assemble into polymeric structures and filaments
with varying architectures (Becker et al., 2006; Derman et al.,
2009; Popp et al., 2012; Jiang et al., 2016; Koh et al., 2019).
However, the ParMRC system is the most extensively studied
among the DNA partitioning systems. ParM, like actin, assembles
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FIGURE 1 | Types of plasmid partitioning systems and domain organization in the ParA family of proteins Type-I system. (A) Genetic organization of Type-Ia, Type-Ib,

Type-II, and Type-III partition loci. Genes encoding the ATPase (green) and adaptor protein (blue) are indicated. The auto-repression activity is represented by an

orange arrow. F plasmid, TP228 plasmid, R plasmid and pBToxis plasmid are used as representatives of (i) Type-Ia, (ii) Type-Ib, (iii) Type-II and (iv) Type-III segregation

mechanisms, respectively. The sopA (green box) and sopB (blue box) genes are expressed from the Psop promoter. The partition site sopC is located downstream of

the sopAB genes. The sopC gene sequence is represented by a black line. The inset shows the repetitive stretch of twelve 43 bp repeats. The respective NTPases in

Type-Ib (ParF), Type-II (ParM) and Type-III (TubZ) are shaded in green, and their corresponding centromere binding proteins (CBPs; ParG, ParR and TubR) are shaded

in blue. The orange arrows represent transcriptional repression, whereas the yellow arrows point to centromere binding by the CBPs. (B) The conserved domains of F

plasmid partitioning ParAF protein. The N-terminal (shaded pale green), C-terminal (shaded gray) and the Walker A motifs of ParAF have been represented. The Walker

motifs have been highlighted in blue, and the function of each domain has been represented in orange boxes below. The amino acid residue numbers correspond

to ParAF.

into a two-stranded helix but with an opposite twist. While actin
forms a right-handed filament, ParM helices are mainly left-
handed, with 12 subunits per turn as opposed to 13 monomers
in actin (Orlova et al., 2007; Popp et al., 2008; Gayathri et al.,
2012). Interestingly, in the ParR (C-terminal 17 residue peptide)

bound form, domains IA and IIB show a rotation of 9.1◦ and
10.7◦ toward the nucleotide, reminiscent of the shift in actin
structure from G-actin to F-actin. Further, the ParR peptide
binding site overlaps with the ParM polymerisation interface
and thus allows ParR to bind only to the barbed end or the
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polymerizing end (Gayathri et al., 2012). Also, ParM grows
bidirectionally with similar monomer addition rates at both
ends and exhibits dynamic instability, a characteristic feature of
microtubules (Gerdes et al., 2000; Garner et al., 2004).

Moreover, in the presence of a non-hydrolysable analog of
ATP, these in vitro filaments were longer suggesting that the
growth and retraction of filaments were driven by ATP hydrolysis
(Garner et al., 2007). Although ParM can bind both ATP and
GTP, the most preferred substrate is ATP, for which ParM has a
10-fold higher affinity than GTP (Popp et al., 2008; Galkin et al.,
2009). Cryo-electron microscopy of cells overexpressing ParM
has shown that the protein assembles into closely packed filament
bundles with an average of 3–5 ParM filaments per bundle (Salje
et al., 2009). Further studies suggest that the filaments grow
by insertional polymerisation, wherein new ParM subunits are
inserted at the interface of the filaments with the ParR-parC
complex (Møller-Jensen et al., 2003; Garner et al., 2004, 2007;
Salje et al., 2010; Gayathri et al., 2012). In vitro reconstitution
of the ParMRC segregation machinery using polystyrene beads
for immobilizing parC, purified ParR and ParM proteins, and
ATP resulted in the assembly of dynamic filaments of ParM.
Surprisingly, the ParM filaments were seen to grow and shrink
in a manner that was reminiscent of the dynamic instability
of microtubules (Garner et al., 2004, 2007). However, in the
presence of another parC coated bead in proximity, the filaments
appeared to bundle and push the beads further away, consistent
with the bipolar antiparallel filament structure (Gayathri et al.,
2012, 2013). Thus, ParMRC is a minimalistic tripartite system
that is sufficient for plasmid segregation and does not require
any additional host factors (Garner et al., 2007). Based on cryo-
electron microscopy, in vitro reconstitution experiments, and
fluorescence imaging, a “search, capture, and push” model for
plasmid segregation by ParM and other actin-like proteins has
been proposed (Campbell and Mullins, 2007; Garner et al., 2007;
Salje et al., 2009, 2010; Gerdes et al., 2010; Gayathri et al., 2012).

Type-III/Tubulin-Like GTPases
Partitioning machinery of this kind has been described in
the pXO1 plasmid of B. anthracis and B. cereus (Tinsley and
Khan, 2006; Hoshino and Hayashi, 2012), pBToxis plasmid of
B. thuringiensis (Tang et al., 2006; Larsen et al., 2007) and
more recently in bacteriophages c-st of Clostridium botulinum
(Oliva et al., 2012) and 201ϕ2-1 of Pseudomonas chlororaphis
(Kraemer et al., 2012). The segregation machinery comprises
three components (tubZRC) similar to those found in Type-
I and Type-II systems. However, unlike the others, the motor
NTPase TubZ or PhuZ (for Phage Tubulin/FtsZ) belongs to
the tubulin/FtsZ superfamily of cytoskeletal proteins (Tinsley
and Khan, 2006; Larsen et al., 2007; Anand et al., 2008;
Oliva et al., 2012). While, in general, the sequence similarity
with eukaryotic tubulin amounts to even <15%, TubZ exhibits
striking structural similarity with that of the bacterial cell division
protein FtsZ and tubulin (Löwe and Amos, 1998; Nogales et al.,
1998; Larsen et al., 2007; Aylett et al., 2010). TubZ undergoes
polymerisation upon binding GTP (Anand et al., 2008; Chen and
Erickson, 2008; Hoshino and Hayashi, 2012) and assembles into
two or four-stranded filaments (Aylett et al., 2010; Montabana

and Agard, 2014). Interestingly, the subunit interactions upon
polymerisation leading to the coupling of GTP hydrolysis are
closer to that of α/β-tubulin. Further, the protofilaments in the
presence of GTPγS show a right-handed twist with 14 subunits
over one complete turn (360◦) and assemble into a parallel
double-helical filament when expressed in E. coli as well (Aylett
et al., 2010). The filaments undergo treadmilling, i.e., it undergoes
directional polymerisation, where one end exhibits growth and
the other shrinkage, which assists in DNA partitioning (Larsen
et al., 2007; Aylett et al., 2010). The Type-III system is thus
an example of the involvement of tubulin-like proteins in the
DNA segregation in bacteria. TubR constitutes the CBP in this
Type-III system that binds to the centromeric sequence tubC
and recruits TubZ (Tang et al., 2007; Ni et al., 2010). The
structure of the TubR-tubC complex shows that TubR binds
tubC through an N-terminal winged helix-turn-helix motif and
assembles into a DNA-nucleoprotein complex in vitro, forming
a slight right-handed superhelix (Ni et al., 2010; Aylett and
Löwe, 2012). Further, the TubR-tubC complex stabilizes the
TubZ polymers and possibly exerts its effect by preventing the
depolymerisation of TubZ filaments (Aylett and Löwe, 2012;
Oliva et al., 2012). Reconstitution experiments reveal that the
TubR-tubC complex tracks the depolymerizing minus-end of
the TubZ filaments (Fink and Löwe, 2015). The bacteriophage
tubulin-like protein PhuZ (TubZ8KZ), on the other hand,
resembles the eukaryotic microtubule in many aspects. It was
the first prokaryotic tubulin that was shown to exhibit dynamic
instability, a property dependent upon the energy derived from
GTP hydrolysis (Kraemer et al., 2012; Aylett et al., 2013; Erb
et al., 2014). However, unlike tubulin, it assembles into a triple-
stranded helical filament (Zehr et al., 2014). One end of the PhuZ
filaments is anchored to the cell poles, and they further assemble
into bipolar spindle-like structures. These bipolar spindles of
PhuZ resemble eukaryotic microtubules during mitosis and help
place the viral nuclei at mid-cell and control viral reproduction
(Erb et al., 2014).

THE sopABC OR parABS LOCUS IN TYPE-I
PLASMID SEGREGATION SYSTEMS

ParA—A Walker a Cytoskeletal ATPase
ParA protein function in Type-I partitioning systems is essential
for DNA segregation of the plasmids and the bacterial
chromosome, as described above. ParA belongs to the Walker
A type Cytoskeletal ATPases (WACA) family of proteins and
contains a Walker A motif, a Walker A’ motif, a Walker
B motif and a ParA specific sequence (Walker et al., 1982;
Motallebi-Veshareh et al., 1990; Koonin, 1993; Lutkenhaus,
2012) (Figure 1B). As described above, the larger ParA found
in Type-Ia systems has an auto-regulatory function and thus
directly regulates the transcription of the parAB operon from
its promoter (Ppar) and control levels of both ParA and ParB
proteins (Mori et al., 1989; Davis et al., 1992; Hayes et al., 1994;
Davey and Funnell, 1997; Hirano et al., 1998; Ravin et al., 2003;
Komai et al., 2011). ParA exists in a monomer-dimer equilibrium
in the cell wherein only the ATP-bound ParA dimers associate
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with the nucleoid, and ADP-bound dimers (and monomers) are
free (Vecchiarelli et al., 2010, 2013a; Havey et al., 2012). The
conformational change involves nucleotide-binding wherein the
ATP bound form is dimeric (Schumacher et al., 2012; Vecchiarelli
et al., 2013a). ParA exhibits a weak ATPase activity similar to
the other members of the WACA superfamily (Davis et al.,
1992; Watanabe et al., 1992; Libante et al., 2001; Leonard et al.,
2005a; Barillà et al., 2007; Havey et al., 2012) and ATP hydrolysis
activity can be stimulated 3-fold by ParB, and 1.5 fold by DNA.
However, the DNA-ParB complex can exert a much stronger
effect and stimulate the ATPase activity of ParA by 10–15-
fold (Davis et al., 1992; Watanabe et al., 1992; Bouet et al.,
2007; Ah-Seng et al., 2009). Moreover, mutants defective in
ATPase activity, like ParAP1 K122Q and ParFTP228 D111A, or
the mutants displaying hyper-ATPase activity, ParFTP228 P104A,
R169A, and G179A, are all impaired in plasmid stability. These
studies highlight the crucial role played by ATP hydrolysis of
ParA in plasmid segregation (Fung et al., 2001; Libante et al.,
2001; Dobruk-Serkowska et al., 2012; Vecchiarelli et al., 2013a;
McLeod et al., 2017; Caccamo et al., 2020). Further, ParA-
ATP dimers themselves have been postulated to exist in two
different states/conformations, an active conformation (ParA-
ATP∗) that binds to non-specific DNA and an inactive state
(ParA-ATP) that cannot bind DNA. Thus, it is the active
state ATP-bound dimer (ParA-ATP∗)2 that associates with the
bacterial nucleoid (Vecchiarelli et al., 2010, 2013a). The ParA-
ADP dimers produced soon after ATP hydrolysis can no longer
associate with the bacterial nucleoid. ParA can rebind DNA only
upon nucleotide exchange with ATP or reassociation with ATP
and the conformational change to the ParA-ATP∗ state. However,
ParA-ADP can act as a transcriptional repressor of the ParA
promoter (Davey and Funnell, 1997; Bouet and Funnell, 1999;
Libante et al., 2001; Hao and Yarmolinsky, 2002; Baxter et al.,
2020).

ParA has a weak auto-repression activity, and its full repressor
function depends on the co-repressor ParB, together with
which it strongly represses transcription of its promoter Ppar
(Friedman and Austin, 1988; Hayes et al., 1994; Libante et al.,
2001). Using surface-plasmon-resonance, Bouet and group have
revealed that three ParAF dimers, i.e., a trimer of dimers,
bind to the promoter region to suppress gene expression
(Boudsocq et al., 2021). The ParB-parS (SopA-sopC) complex
further enhances this auto-regulatory function. It was initially
thought that only ParA-ATP and ParA-ADP, but not ParA-
ATP∗ states, were competent in binding to the operator sites
parOP at the promoter (Davey and Funnell, 1997; Fung et al.,
2001; Ravin et al., 2003; Vecchiarelli et al., 2013a). However,
recent studies using the non-specific DNA binding mutant
ParAP1 R351A suggest that ParA-ATP∗ state is also proficient
in binding parOP. The abrogated ns-DNA binding results in a
free pool of excess ParA-ATP∗ dimers, resulting in repression
of transcription from parOP. This auto-repression activity of
ParA thus can solely be attributed to its specific DNA binding
activitymediated by theHTHdomain of the protein (Baxter et al.,
2020).

The active state ATP-bound dimeric conformation (ParA-
ATP∗)2, enables the binding of ParA molecules to the nucleoid

(Vecchiarelli et al., 2010, 2013a). ParA has an affinity for
DNA in a non-sequence-specific manner in this conformation.
Since bacterial cells have a lot of nsDNA in the form of the
nucleoid, ParA molecules are found localized to the nucleoid.
Work from laboratories around the world on several ParA
family proteins has shown that ParA is predominantly nucleoid
bound, and its nucleoid binding function is essential for plasmid
maintenance (Leonard et al., 2005a; Hayes and Barillà, 2006;
Hatano et al., 2007; Hester and Lutkenhaus, 2007; Castaing
et al., 2008; Vecchiarelli et al., 2010; Roberts et al., 2012; Lim
et al., 2014; Volante and Alonso, 2015; Le Gall et al., 2016;
McLeod et al., 2017; Caccamo et al., 2020). The interaction
of ParA with nsDNA has been probed in vitro by several
studies and visualized in vivo by using sophisticated fluorescence
microscopy techniques (Lim et al., 2005, 2014; Hatano et al.,
2007; Castaing et al., 2008; Hatano and Niki, 2010; Roberts et al.,
2012; Le Gall et al., 2016; McLeod et al., 2017). Further, nsDNA
binding defective mutants, ParAF K340A and ParAP1 R351A
have segregation defects suggestive of the critical role of ns-
DNA binding in the process of plasmid maintenance (Castaing
et al., 2008; Baxter et al., 2020). In addition, fluorescence
microscopy and time-lapse imaging of ParAF have suggested
that the protein assembles into helical polymeric structures that
undergo oscillatory behavior on the nucleoid. These observations
had earlier led to suggestions that the polymerisation dynamics
of ParA drove plasmid segregation (Barillà et al., 2005; Lim
et al., 2005; Hatano et al., 2007; Ringgaard et al., 2009). However,
as described in detail below, more recent studies on ParA
dynamics in vivo and in vitro biochemical assays have favored
a polymerisation-independent mechanism of DNA partitioning
by ParA.

ParB—Centromere Binding Protein or the
Adaptor Protein
ParB is a DNA binding protein that binds to specific repeat
sequences found in plasmids or genomes (parS) and forms an
active component of the bacterial DNA segregation machinery.
The role of chromosomally encoded ParB in various cellular
functions and DNA partitioning has been recently reviewed in
detail by Kawalek et al. (2020). The crystal structure of the full-
length ParB protein from B. subtilis (21–218 aa), also known
as SpoOJ, provides details about its domain organization (Soh
et al., 2019). ParB comprises of different domains: the N-terminal
domain, a central DNA binding HTH motif and a C-terminal
domain, all connected by flexible linkers (Funnell, 1991, 2016;
Schumacher and Funnell, 2005; Badrinarayanan et al., 2015;
Soh et al., 2019) (Figure 2A). The C-terminal domain plays a
pivotal role in the homo-dimerization of ParB (Khare et al., 2004;
Leonard et al., 2005a). Mutation R149G within the HTH motif
affects parS binding (Autret et al., 2001; Gruber and Errington,
2009; Fisher et al., 2017) and the central DNA binding domain
thus is critical for the recognition and binding of ParB to parS
sites (Leonard et al., 2005a; Schumacher and Funnell, 2005).
The DNA binding domain or HTH motif plays a vital role in
specific DNA interaction with parS sites and spreading to the
adjacent DNA after binding to the parS sites. Spreading is a
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FIGURE 2 | ParB—an adaptor protein and regulation of its activity by CTP. (A) The domain organization of ParB. The schematic representation of the ParB domain

organization indicates the NTD (N-terminal domain) marked by a green box, the central DNA binding domain (DBD; marked by a blue box) contains a helix-turn-helix

(HTH) motif that allows ParB nucleation on parS sites and is represented by an orange box. The C-terminal domain (CTD) responsible for dimerization is shaded gray.

The function of each domain is shown below. (B) Association of ParB with CTP. Upon association of apo-ParB NTD with CTP (marked by a green triangle), the ParB

molecules form homodimers and associate with parS (indicated in red). The ParB-CTP dimers clamped to the DNA further undergo sliding and spread across the

parS proximal sites. Sliding and spreading of ParB across DNA may not require CTP hydrolysis. The direction of spreading is indicated by the purple chevrons ( ).

However, upon CTP hydrolysis, the NTDs of two ParB are disassociated, leading to a switch from dimer to apo-form, leading to the release of ParB from the DNA. (C)

Liquid-Liquid Phase Separated (LLPS) condensates formed by ParB. The schematic depicts a bacterial cell with ParB condensates, and the zoomed inset shows

several ParB-CTP dimers that associate parS sites containing DNA to form the condensates.

crucial feature of ParB, and it involves the formation of higher-
ordered complexes. ParB is known to initiate binding to DNA at
parS sites and spread over parS flanking regions, often covering a
large span of the nsDNA (reviewed in Jalal and Le, 2020; Kawalek
et al., 2020). The N-terminal stretch is necessary for protein
oligomerisation as well as interaction with ParA. It is defined
by a conserved stretch of Arginine residues GERRxRA, referred
to as the arginine patch. Mutations within the arginine patch
impair ParB spreading as well as nucleoid segregation functions
(Yamaichi and Niki, 2000; Ah-Seng et al., 2013; Chen et al.,
2015). This patch is thus essential for the spreading of ParB,
foci formation and DNA partitioning (Rodionov et al., 1999;
Autret et al., 2001; Bartosik et al., 2004; Breier and Grossman,
2007; Kusiak et al., 2011; Graham et al., 2014; Funnell, 2016).
Further, ParB is thought to stimulate the ATPase activity of ParA
via an arginine finger (R-finger) motif contained within the N-
terminal region (Ah-Seng et al., 2009; Zhang and Schumacher,
2017).

ParB Activity Is Regulated by CTP Binding
and Hydrolysis
Recent structural and biochemical studies on ParB have revealed
that ParB is a CTPase with the arginine patch forming the
catalytic center (Soh et al., 2019; Jalal et al., 2020; Osorio-
Valeriano et al., 2021). This surprising finding was revealed by
crystal structures of ParB of B. subtilis and PadC, a ParB member
from M. xanthus, which were found to be associated with CDP
and CTP, respectively (Soh et al., 2019; Osorio-Valeriano et al.,
2021). The revelation of these ParB structures with CTP as a
cofactor has opened up new avenues of research and questions on
the role of CTP in regulating the process of ParB spreading and
DNA partitioning (Jalal et al., 2020, 2021). CTP binding results
in dimerization of the N-terminal domains of two ParBs in the
presence of Mg2+, which acts as a cofactor in the process. Such
self-dimerization is sufficient to cause the formation of a clamp
that entraps the DNA (Soh et al., 2019; Osorio-Valeriano et al.,
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2021). Recent studies using optical tweezers and microscopy
have shown that binding of CTP or the non-hydrolysable analog
CTPγS enhances ParB binding to parS sites and results in DNA
condensation (Balaguer et al., 2021). A conformational change
mediates ParB dimerization upon binding to CTP and parS.
Upon CTP hydrolysis, CDP has a low affinity for ParB, and thus,
it dissociates from the NBD of ParB and results in a switch to its
apo-form (Figure 2B). Moreover, studies have shown that ParB
networks show a continuous exchange and turnover of ParB at
both protein-protein and protein-DNA interfaces (Madariaga-
Marcos et al., 2019). Consistently, CTP hydrolysis defective
mutants, Q52A and E93A in M. xanthus ParB, exhibit abnormal
chromosome segregation (Osorio-Valeriano et al., 2021). Further,
ParB spreading to distal regions from parS sites could be
prevented by the presence of protein roadblocks, suggesting
that ParB spreading on nsDNA was one-dimensional. CTP
binding thus plays an essential role in ParB spreading and DNA
condensation (Balaguer et al., 2021).

ParB has been recently shown to undergo Liquid-liquid
phase separation (LLPS), favoring condensate formation in
the presence of CTP (Babl et al., 2022). Liquid-liquid phase
separation is a thermodynamic process wherein a homogeneous
mixture of two or more molecules de-mixes into distinct phases
and thus helps compartmentalize membrane-less organelles
(Hyman et al., 2014; Guilhas et al., 2020; Babl et al., 2022).
In most eukaryotic subcellular structures, like germline P-
bodies (Brangwynne et al., 2009), stress granules (Protter and
Parker, 2016) etc., compartmentalization depends upon LLPS.
In bacteria, LLPS has been implicated in the assembly of
carboxysomes and divisome protein FtsZ (Monterroso et al.,
2019; Wang et al., 2019; MacCready et al., 2020). Recently, ParB
has also been shown to exist in two different phases, a gas phase
and a liquid phase. Further, in a process similar to the LLPS
in eukaryotic proteins, ParB from Corynebacterium glutamicum
also forms spherical assemblies in the presence of crowding
agents, is affected by alterations in ionic strength and is stabilized
by potassium glutamate (Babl et al., 2022). The condensation
of ParB is further favored by the presence of parS containing
DNA and the motor protein ParA helps in the separation of these
condensates (Figure 2C). Moreover, in the case of the ParAF

K120Q mutant, the condensates merge and do not segregate
suggesting that the ParB stimulated ATPase activity of ParA is
required to separate these condensates (Guilhas et al., 2020; Babl
et al., 2022).

THE MECHANISM AND MODELS OF DNA
PARTITIONING BY ParA

François Jacob put forth the first DNA segregation and separation
model in bacteria. The bacterial inner membrane and cell growth
were proposed to play a central role in pulling the chromosome
apart during cell division. This model was primarily derived
from electron microscopy of bacterial cells showing tethering
of the genetic material to the bacterial inner membrane. As per
this model, replicated DNA becomes tethered to the cytoplasmic
membrane. As the cell elongates, the chromosomes are pulled

apart to the two opposite poles of the cells, following which
cell division ensues and separates the replicated DNA (Jacob
et al., 1963). This mode of DNA segregation was also assumed
to be true for F plasmids. A timeline depicting the evolution
of our understanding of DNA segregation in bacteria is shown
in Figure 3. The Jacob model was further supported by the
findings that the plasmid partitioning proteins ParAF of F
plasmid (FSopA) and that of Q plasmid (ParAQ/QSopA) of
Coxiella burnetii associate with the cell membranes (Lin and
Mallavia, 1998). The study involved biochemical membrane
fractionation, floatation assays and immunoelectron microscopy,
which suggested that a fraction of the respective ParA proteins
were localized to the bacterial inner membranes. Further,
phosphatase assays using the periplasmic PhoA protein indicated
that the N-terminal residues in ParAF and ParAQ might specify
membrane association (Lin and Mallavia, 1998). Consistent with
the ideas around the time, these studies resulted in a model
being proposed for plasmid partitioning, wherein the plasmid-
ParB complex became associated with the membrane via ParA,
and DNA partitioning was driven by cell elongation (Figure 4A).
Plasmid partitioning via membrane association of ParA was
further supported by beautiful genetic and plasmid localization
studies showing the abundance of F plasmids in anucleate cells
(Ezaki et al., 1991), although early studies using mukB indicated
a general role for the nucleoid as well (Niki et al., 1991). More
recently, we have identified a potential amphipathic helix in
the C-terminus of ParAF (Mishra et al., 2021). However, the
sufficiency of the C-terminal helix to bind bacterial membranes
has not been examined.

However, further studies that directly visualized F plasmid
and other partitioning proteins in bacteria using fluorescence
microscopy and imaging techniques never revealed any
membrane localization for ParA. On the contrary, ParA was
predominantly associated with chromosomal DNA and localized
on the bacterial nucleoid. At the turn of the millennium, as the
concept of bacterial cytoskeleton had just emerged, a cytoskeletal
filament model in the year 2005 was proposed (Figure 4B). The
cytoskeletal model was based on the observations that ParAF and
ParF (ParATP228) assembled into polymeric structures (Barillà
et al., 2005; Lim et al., 2005). Pogliano and colleagues, using Nile
red staining and light microscopy, found that ParAF assembled
into filaments in vitro in the presence of ATP and grew at a
rate of ∼0.18 ± 0.05µm per minute (Lim et al., 2005). The
polymerisation of ParAF was further ascertained by in vivo
fluorescence imaging of functional C-terminal GFP fusions to
ParAF in E. coli (Lim et al., 2005; Hatano et al., 2007) and in vitro
by transmission electron microscopy (Bouet et al., 2007). ParA
of pB171 plasmid also exhibits similar polymeric structures in
the presence of DNA (Ringgaard et al., 2009). The cytoskeletal
filament model was later supported by super-resolution imaging
studies of C. crescentus ParA (Ptacin et al., 2010). A chromosome
pulling model similar to the eukaryotic burnt-bridge model for
tubulin mediated chromosome segregation was proposed (Ptacin
et al., 2010). As per this model, ParA undergoes polymerisation
forming a filament structure that pulls the plasmid to the
opposite ends of the cell via the ParB-parS complex (Ptacin et al.,
2010) and contrasted with the pushing mechanism employed in
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FIGURE 3 | A timeline depicting important milestones in our understanding of the models proposed for the mechanism of DNA segregation. In 1963, Francois Jacob

proposed the membrane tethering model wherein the chromosome was believed to be associated with the bacterial membrane. The chromosomes would be pulled

along as the cell grows and eventually separated. This was further supported by Ezaki et al. (1991) and Lin and Mallavia (1998) suggesting that the DNA was probably

linked to the membrane through the partitioning protein ParAF (SopA). Toward the early part of the twenty-first century, with the emerging concept of the cytoskeleton

in bacteria, the first polymerisation based filament models of segregation replaced the erstwhile membrane model, wherein it was proposed that the plasmid

partitioning protein ParA polymerizes to push apart the plasmids to the two opposite ends of the cell. This model was supported by the findings of Lim et al. (2005),

Bouet et al. (2007), and Hatano et al. (2007). Recent findings by Parker et al. (2021) suggest oligomerisation on DNA. Castaing et al. (2008) reported the association of

the ParA with the nucleoid and, together with several other findings from many labs across the globe, led to abandoning the popular polymerisation model and models

accounting for nucleoid association like the diffusion-ratchet mechanism and Hitch-Hiking mechanism were put forth. These form the current models and are the most

accepted models of plasmid and chromosome segregation.

the R1 plasmid by the actin-like ParM protein (described above).
Further, members of the smaller ParA family, like Soj (ParABsu

and ParATth), have been reported to undergo polymerisation
in the presence of ATP and DNA (Leonard et al., 2004, 2005a;
Barillà et al., 2005; Pratto et al., 2008; Soberón et al., 2011;
Schumacher et al., 2012; Volante and Alonso, 2015).

However, several research laboratories working on various
ParA proteins from diverse bacterial genera found the
polymerisation and filament-pulling model inconsistent
with the emerging biochemical and cell biological evidence in
the following decade. Thus, the models based on polymerisation-
mediated DNA segregation by ParA proteins of the Type-I
system were soon superseded by models favoring chemophoretic
gradients formed by ParA on the bacterial nucleoids along the
cell’s long axis (Figure 4C).

An overwhelming amount of literature on ParA from
several species and exhaustive biochemistry and super-resolution
imaging argue against polymerisation mediated partitioning.
Instead, they support a diffusion-ratchetmechanism (Hatano and

Niki, 2010; Hwang et al., 2013; Vecchiarelli et al., 2013b; Hu
et al., 2017; reviewed in Brooks and Hwang, 2017) or DNA-
relay mechanism (Lim et al., 2014; Surovtsev et al., 2016) for the
movement of plasmids or chromosomal oriC proximal ParB-parS
complexes toward the cell poles. The diffusion ratchet models are
principally derived from the in vitro reconstitution experiments
which more or less replicate the in vivo conditions (Vecchiarelli
et al., 2010, 2013b, 2015; Hwang et al., 2013; reviewed in Brooks
and Hwang, 2017). Mizuuchi and the group utilized in vitro
reconstitution experiments mimicking the minimalistic plasmid
partitioning apparatus on a glass slide coated with DNA to
resemble the bacterial nucleoid. They were able to observe the
dynamics of the partitioning machinery and the relevance of
non-specific DNA binding in the ParA mediated movement of
the partitioning complex using TIRF microscopy (Hwang et al.,
2013; Vecchiarelli et al., 2013b, 2014). Moreover, this was also
supported by in vivo imaging data reported for other members of
the ParA superfamily (Fogel and Waldor, 2005; Lim et al., 2005;
Hatano et al., 2007; Hester and Lutkenhaus, 2007; Hatano and
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FIGURE 4 | Model depicting the mechanisms of ParA proteins in DNA partitioning. (A) Early membrane attachment model. An early model for DNA partitioning had

suggested membrane tethering of the genetic material. As per this model, DNA is associated with the membrane, and cell elongation pulls the replicated DNA apart,

which physically separates into the newly formed daughter cells upon cell division. It was originally proposed for chromosomal DNA and later proposed for F plasmids

(Continued)
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FIGURE 4 | as well. ParAF (SopA) was suggested to be the membrane tether for the plasmids. (B) Filament pushing/pulling model. A filament model invokes the

formation of long-range polymeric structures (µm scale). The filament polymerisation mechanisms are utilized by Type-II and Type-III systems. In the case of the Type-II

system, the polymerisation of an actin-like ATPase (ParM) generates the pushing forces to segregate the plasmids, whereas treadmilling of the polymers (TubZ) drives

the plasmids to cell poles in the Type-III system. Although a filament model in which the plasmids are pulled to the cell poles has been proposed for ParA (Type-I) as

well, the existence of continuous filaments of ParA in vivo is debatable. (C) Diffusion-ratchet models. The diffusion-ratchet models posit that a chemophoretic gradient

formed by ParA-ATP molecules bound to the nucleoid drives the movement of the plasmid bound partitioning complex up the gradient. The ParB-parS partition

complex, on encountering DNA bound ParA-ATP dimers (ParA-ATP* state), stimulates the ATP hydrolysis of ParA, converting it into ParA-ADP and can no longer be

associated with the nucleoid. The released ParB-parS complex undergoes Brownian motion but is constrained by the cell membrane and rebinds the

nucleoid-associated ParA-ATP complex in its vicinity. Cycles of such release, diffusion and capture allow the partition complex to move up the ParA-ATP gradient on

the nucleoid to achieve a unidirectional motion. (i) In a simplistic Brownian diffusion and capture of the partition complex (ParB-parS) by ParA-ATP dimers on the

surface of the nucleoid, the plasmid surfs on the nucleoid and migrates toward the cell poles. (ii) In the DNA-relay models, the elasticity of the chromosomal DNA

(indicated by haze around the DNA and double arrows in the inset) supports the movement of the partition complex, and simple diffusion by Brownian motion alone is

not sufficient to achieve the long-distance directional motion observed in cells. Both the above models imply that the movement of the partition complex occurs on the

surface of the nucleoid. (iii) The DNA Hitch-Hiking model instead suggests that the DNA segregation complex undergoes diffusive movement deep within the

chromosomes in the High-density regions (HDRs). The direction of movement of the partitioning complex is indicated by gradient arrows (blue in the case of filament

models and green in the case of diffusion-ratchet models).

Niki, 2010; Le Gall et al., 2016; McLeod et al., 2017). One of the
main attributes of this model was that the ParA proteins bind the
non-specific DNA (nucleoid) as dimers in the presence of ATP
and do not assemble into polymers or filamentous structures.
DNA-relay mechanism was subsequently proposed to explain the
movement and dynamics of C. crescentus ParA observed during
the relocation of the replicated origin from the old pole to the
new pole (Lim et al., 2014). The model also considered the elastic
properties of the bacterial nucleoid that helps in segregating the
plasmids. The initial asymmetry in ParA localization is brought
about by the stochasticity in the ATP hydrolysis in the region
surrounding the partition complex. This asymmetry creates an
imbalance in the elastic forces experienced by the partitioning
complex and results in an incremental movement of the complex
in the direction opposite to the site of ATP hydrolysis. When
two partition complexes are in close proximity, a large zone
of depletion of ParA dimers occurs and results in an apparent
repulsion and change in the direction of motion of the partition
complexes (Surovtsev et al., 2016). Fluctuations in the DNA
positions caused by stretching forces and the elastic dynamics of
the nucleoid act to position the partitioning complex at a new
location and relay it across the length of the cell (Lim et al.,
2014; Surovtsev et al., 2016). The diffusion-ratchet and DNA-
relay models assume the DNA partitioning process ensues on the
surface of the nucleoid. Further, the diffusion-ratchet mechanism
invokes confinement by the inner membrane to prevent diffusion
of the free plasmid in three dimensions and limit movement to
almost a 2D surface (Vecchiarelli et al., 2014). However, recent
super-resolution imaging, using structured illumination (SIM)
and multi-focus microscopy (MFM), of ParAF and ParFTP228
strongly suggest that the movement of the plasmid (the ParB-
parS complex) is not the surface but rather appears to be deep
within the nucleoid space (Le Gall et al., 2016; McLeod et al.,
2017). These data have led to the proposition of a DNA Hitch-
Hiking mechanism, a model that is fully consistent with the
diffusion-ratchet and DNA-relay mechanisms (Le Gall et al.,
2016) (Figure 4C). Our current understanding of the ParA
mediated DNA segregation can thus be summarized as below:

The accurate positioning and partitioning of DNA during
each round of cell division begins with its replication. The
active form of ParA, i.e., the ParA-ATP∗ state, binds nsDNA

as a dimer (ParA-ATP∗)2 and remains associated within the
high-density regions (HDR) within the bacterial nucleoid. The
repetitive centromeric sequence, parS, in the plasmids or in the
chromosome that lies proximal to the origin (oriC), is bound by
ParB and results in clustering or spreading of ParB around parS
sequences. This ParB-parS complex then hovers around the cell
space of the bacterium, searching for the nucleoid bound ParA-
ATP∗ dimers. The ParB-centromere complex, upon encountering
(ParA-ATP∗)2, stimulates the ATPase activity of ParA. ATP
hydrolysis results in the conversion of ParA-ATP∗ to ParA-ADP,
which can no longer remain bound to the bacterial nucleoid and
is thus released into the cytosol. The release of ParA molecules
from the nucleoid creates a zone of depletion of DNA-bound
ParA-ATP in the vicinity of the ParB-centromere complex. This
results in a local gradient of (ParA-ATP∗)2 on the nucleoid,
and the ParB-centromere complex, driven by Brownian motion,
moves up the concentration gradient toward the DNA-bound
ParA-ATP. The randomly chosen initial direction of motion of
the ParB-parS complex can bias the movement in the same
direction driving the long-range unidirectional movement of the
plasmid. In the DNA Hitch-Hiking model, ParA-ATP molecules
are bound to the nucleoid in regions of high density (HDR),
and the partition complex hops from one HDR to another
resulting in the progressive directional motion of the ParB-bound
DNA complex.

Meanwhile, the ParA-ADP or the apo-ParA can possibly
associate with ATP to form the ParA-ATP dimer [(ParA-ATP)2]
almost instantly, given the relatively higher concentrations
of ATP in the cell, which are usually in the millimolar
range. However, the ParA-ATP dimer [(ParA-ATP)2] cannot
immediately bind DNA and is slowly converted to a (ParA-
ATP∗)2 state, which can re-associate with the bacterial nucleoid
and contribute to the gradient. This time-delay in the nucleoid
association of ParA-ATP is crucial to the sustenance of the ParA-
ATP gradient and the unidirectional motion of the partitioning
complex in all diffusion-ratchet based models (Vecchiarelli et al.,
2010, 2013a; Hu et al., 2015, 2017; Le Gall et al., 2016; Surovtsev
et al., 2016; McLeod et al., 2017). Cycles of such binding and
release of the ParA-ATP within the nucleoid eventually mediate
displacement of the replicated plasmids away from the cell
division site, ensuring equipartitioning of the genetic material.
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Interestingly, recent electron microscopy studies on V.
cholerae ParA2 and archaeal SegAB complex show that ParA2Vch
and SegA assemble into filaments in the presence of DNA
and ATP or non-hydrolysable ATP (Hui et al., 2010; Parker
et al., 2021; Yen et al., 2021). Further, electron microscopy and
chromatography of purified ParAP1 in the presence of ATP
and ns-DNA indicate the assembly of ParAP1 into polymeric
structures at very high concentrations of the protein. While its
physiological relevance is yet to be determined, they suggest that
the filament structures are also likely in the ParA-ATP∗ state
(Dunham et al., 2009; Vecchiarelli et al., 2010). Although, these
findings could revitalize the polymeric cytoskeleton models for
ParA mediated DNA segregation, ParA2Vch does not form stable
polymers and is likely to bind DNA cooperatively as higher-order
oligomers, which could be compatible with Brownian-ratchet
models and not filament pulling models (Chodha et al., 2021).

WALKER A CYTOSKELETAL ATPases IN
BACTERIAL CHROMOSOME
SEGREGATION

Soj in Bacillus subtilis
The partitioning locus in the case of B. subtilis consists of two
proteins, Soj and SpoOJ and a centromere-like sequence parS
(Ireton et al., 1994; Leonard et al., 2005a; Lee and Grossman,
2006). While Soj belongs to the ParA family, SpoOJ is a ParB-
like protein, both of which were initially isolated as sporulation
genes and hence the names Soj-SpoOJ.We refer to Soj and SpoOJ
proteins as ParABsu and ParBBsu, respectively. Overexpression of
ParABsu or deletion of ParBBsu leads to the formation of aberrant
nucleoid morphology and anucleate cells (Lee and Grossman,
2006). ParABsu is a smaller Type-Ib Walker A ATPase with
only 21% sequence similarity to ParAF protein. ParABsu works
cooperatively with ParBBsu to enable chromosome segregation.
ParBBsu binds to the eight repetitive sequences on parS located
on both sides of the origin of replication oriC. When visualized
by fluorescence microscopy, this complex appears as discrete
spots on binding ParABsu proteins. A green fluorescent protein
(GFP) fusion of ParABsu shows nucleoid localization of the
protein. However, when co-expressed with ParABsu, it leads to
the formation of discrete spots that colocalise with the ParB-
parS complex in the cell (Leonard et al., 2005a; Scholefield
et al., 2011). GFP fusions of ParABsu seem to undergo oscillatory
movement (Leonard et al., 2005a), a characteristic feature of the
ParA superfamily (Raskin and de Boer, 1999; Hatano et al., 2007;
McLeod et al., 2017). While ParABsu controls the condensation
of ParBBsu foci, ParBBsu regulates the dynamic behavior of
ParABsu, and thus both the proteins are functionally interlinked.
Biochemical studies show that ATP bound ParABsu exists as a
dimer, and an ATPase mutant D44A was crystallized in dimeric
form (Leonard et al., 2005a). Non-specific DNA binding and
nucleoid association of ATP-bound ParABsu is mainly mediated
by surface-exposed arginine residues (Hester and Lutkenhaus,
2007). Further, electron microscopy data suggest that, like
Thermus thermophilus ParA (ParATth/TthSoj), ParABsu also
forms a nucleoprotein filament, showing that the dimeric form of

ParABsu recruits other ParABsu dimers facilitating the formation
of a polymeric structure (Leonard et al., 2004, 2005a). Interaction
with ParBBsu stimulates the ATPase activity of ParABsu, and ADP-
bound forms dissociate from DNA (Scholefield et al., 2011). In
addition to its role in DNA segregation, the ParABSu is also a
transcriptional regulator that controls the expression of many
sporulation genes, including spo0A, spoIIA, spoIIG, and spoIIE
(McLeod and Spiegelman, 2005).

MipZ and ParA in Caulobacter

crescents—Two WACA Proteins
Coordinate DNA Segregation
In C. crescentus, two WACA family members coordinate to
promote segregation (Mohl and Gober, 1997; Thanbichler and
Shapiro, 2006; Toro et al., 2008; Corrales-Guerrero et al., 2020).
Both proteins can interact with the centromere binding protein,
ParB, which binds to the parSDNA sites that lie close to the origin
of replication (oriC) in C. crescentus. At the beginning of the cell
cycle, parS sites are anchored to the cell poles by the interaction
of ParB with PopZ, a polarly localized protein. However, at the
onset of the S-phase, the chromosome duplicates and one copy
of the ParB-parS complex moves to the other pole of the cell
driven by the nucleoid bound ParA-ATP gradient (Thanbichler
and Shapiro, 2006). MipZ, another ParA member, binds to ParB
at both the cell poles and forms a concentration gradient along
the cell length, with the highest concentration being on the poles
and the lowest at the mid-cell site (Easter and Gober, 2002;
Thanbichler and Shapiro, 2006). MipZ is an antagonist of FtsZ,
and a high concentration of MipZ prevents the formation of
Z-ring at the poles but promotes its assembly at the mid-cell
site (Thanbichler and Shapiro, 2006; Du and Lutkenhaus, 2012).
Although ParB can bind both ParA and MipZ, the roles played
by ParB at the two poles are different. At the old pole, where ParB
is bound to parS and interacts with ParA, ParB acts to stimulate
the ATP hydrolysis of ParA-ATP. This stimulation of the ATPase
activity of ParA by the ParB-parS complex aids in generating
the ParA gradient for the effective movement of the ParB-parS
complex to the new pole of the cell (Corrales-Guerrero et al.,
2020).

In contrast, MipZ binds ParB at both the old and new poles;
ParB plays a role of a catalyst and promotes dimerization and
binding of MipZ to DNA by recruiting monomers. However,
ATP hydrolysis due to the intrinsic ATPase activity of MipZ
results in a release of the MipZ monomers from the nucleoids
at ParB distal regions. Since ParB is localized at cell poles,
the association of MipZ with the nucleoid is at its lowest
concentration at the mid-cell position (Kiekebusch et al., 2012).
Both MipZ and ParA have conserved residues that bind nsDNA
and have nucleoid binding activities that help DNA segregation
(Du and Lutkenhaus, 2012). Thus, both MipZ and ParA work
synergistically in C. crescentus DNA segregation, and both are
indispensable for accurate chromosome partitioning. Further,
MipZ serves another critical function of precisely positioning the
Z-ring for cell division in C. crescentus.

Frontiers in Microbiology | www.frontiersin.org 12 May 2022 | Volume 13 | Article 856547

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mishra and Srinivasan ParA Family of Proteins in DNA Segregation

Chromosome Segregation Machinery in
Bacterial Pathogens
Vibrio cholerae
V. cholerae, the causative agent of cholera, is a gram-negative
bacterium with two chromosomes, each with its par locus
(Heidelberg et al., 2000). Although both the chromosomes
encode the Type-I mechanism of segregation (Fogel andWaldor,
2005, 2006; Yamaichi et al., 2007), they employ different strategies
for their transmission to daughter cells (Venkova-Canova et al.,
2013). The 2.4-Mb chromosome I makes use of the Type-
Ib system, while the smaller 1.6-Mb Chromosome II uses the
Type-Ia segregation mechanism. Studies on the partitioning of
chromosome II have indicated a role for ParA2Vch. Genetic
studies have shown that the deletion of parAB2 causes loss of
Chromosome II from the cells, and thus parAB2 locus seems
essential for Chromosome II segregation (Yamaichi et al., 2007).
Further, it has been shown that ParA2Vch binds to the non-
specific DNA like many other members of the superfamily,
as mentioned above (Hui et al., 2010; Chodha et al., 2021).
Interestingly, recent cryo-EM studies on ParA2Vch have reported
its assembly into a polymeric nucleoprotein complex in the
presence of ATPγS and DNA (Parker et al., 2021).

Helicobacter pylori
While Soj in H. pylori is a member of the ParA superfamily of
proteins and bears 22–48% sequence similarity to ParAF protein,
SpoOJ (HP1138 gene) is the ParB homolog. The soj (HP1139)
and spoOJ (HP1138) genes, together with the two putative parS
sites, are located within 20–30% of the origin-proximal region
of the circular chromosome of H. pylori, as observed in other
species (Lee et al., 2006; Chu et al., 2019). On binding to
nucleotide, HpSoj/ParAHpy forms a dimer, a feature that has
also been observed in its crystal structure. ParAHpy is a weak
ATPase, and its activity is stimulated by non-specific DNA and
ParBHpy/HpSpoOJ, a typical trait of the ParA family of proteins.
However, unlike ParATth or ParAVch, electron microscopy
failed to detect any ParAHpy filaments and thus excluded the
possibility of ParA polymers driving DNA segregation.Moreover,
a stretch of basic residues that allows ParAHpy to bind nsDNA
was identified, suggesting that a diffusion-ratchet mechanism
(described below) might be operative to partition DNA (Chu
et al., 2019).

Pseudomonas aeruginosa
P. aeruginosa, a γ-proteobacterium, is an opportunistic pathogen
and is the causative agent of morbidity in cystic fibrosis patients
(Stover et al., 2000). It encodes a parABS system in its genome
that helps segregate its large 6.3Mb chromosome (Lagage et al.,
2016). The par genes are located ∼8 kb from oriC, and the
deletion of ParA or ParB leads to chromosomal segregation
defects resulting in an increased production of anucleate cells
(Lasocki et al., 2007). ParB of Pseudomonas has been postulated
to be a NAP (Nucleoid Associated Protein) exhibiting specific
interaction with parS sites (Kusiak et al., 2011), interaction with
several hepta-nucleotide sequences in the genome and regulating
transcription of various genes (Kawalek et al., 2018). Although
ten 16-bp palindromic parS sites have been reported in the

genome (Bartosik et al., 2004; Jecz et al., 2015), only four are
proximal to the origin, oriC (Livny et al., 2007). Although, ParB
binds to these oriC proximal four parS sites (Kusiak et al., 2011;
Lagage et al., 2016), just one of them is sufficient for ParB
binding and accurate chromosome segregation (Jecz et al., 2015).
Surprisingly, displacement of parS from its native site does not
affect chromosome segregation. The parABS locus remains the
first locus to be segregated following replication, suggesting parS
action is independent of its location in the chromosome (Lagage
et al., 2016).

Mycobacterium tuberculosis
M. tuberculosis is the causative agent of tuberculosis, and its
genome also encodes a parABS system that includes a parS
site, parA (Rv3918) and parB (Rv3917) genes, in addition to
two other parA homologs (Rv1708 and Rv3213). A study using
Transposon site hybridization (TraSH) indicated that the parAB
genes within the parABS loci are essential for growth and
viability and could not be deleted in M. tuberculosis (Sassetti
and Rubin, 2003). However, in M. smegmatis, ParA is not
essential but is required for normal growth (Ginda et al., 2013).
While all the three ParA homologs are localized at the cell
poles, ParAMtb_Rv3918 colocalises with ParB at either of the poles
and exhibits localization at the polar or mid-cell position that
overlaps with nucleoid or inter-nucleoid regions, which suggests
oscillations but require further time-lapse imaging to ascertain
foci movements (Maloney et al., 2009). In M. tuberculosis,
ParB is phosphorylated by a Ser/Thr Protein Kinase (STPK)
and negatively regulates ParB activity by inhibiting interaction
with parS and ParA. Mutations that mimic phosphorylation
affect the cellular localization of ParBMtb and lead to impaired
chromosome segregation (Baronian et al., 2015). Further, many
studies utilizing M. smegmatis as a model organism confirm the
dynamic localization of the ParA and ParB-parS complexes in
mycobacteria (Jakimowicz et al., 2007; Ginda et al., 2013; Santi
and McKinney, 2015; Trojanowski et al., 2015; Uhía et al., 2018).
Interestingly ParA also associates with Wag31/DivIVA, a protein
that dictates polar growth in Streptomyces and Mycobacterium
smegmatis (Hempel et al., 2008; Ginda et al., 2013).

WALKER A TYPE CYTOSKELETAL
ATPases IN ARCHAEAL DNA
SEGREGATION

Recent work on Archaea, the third branch of life, has
led to a better understanding of the cellular functions and
intracellular dynamics of cytoskeletal proteins in this group.
In the thermophilic crenarchaeon Sulfolobus solfataricus, segA
encodes for a ParA-like protein with a weak ATPase activity (She
et al., 2001; Schumacher et al., 2015). SegB, on the other hand, is
an archaeon specific protein that shares homology with proteins
found in crenarchaea and euryarchaeal but has no sequence
similarity to ParB or any other bacterial or eukaryotic proteins
(Kalliomaa-Sanford et al., 2012). SegB is a DNA binding protein
that binds specifically to palindromic sequences that constitute
the centromeric sites, S1 and S2, found upstream of segAB genes
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in the S. solfataricus chromosome (Kalliomaa-Sanford et al.,
2012; Barillà, 2016). While SegA assembles into polymers in the
presence of ATP in vitro, SegB interacts with SegA in the presence
of nucleotides and influences SegA polymerisation, which drives
chromosome segregation (Kalliomaa-Sanford et al., 2012; Yen
et al., 2021). Recent crystal structures of the SegA and SegB
proteins complexed with DNA have revealed new insights into
this archaeal DNA partitioning system.

Interestingly, SegA forms a non-canonical dimer that does
not resemble the typical ATP-sandwich dimers observed in
many ParA structures (Yen et al., 2021). Although SegB lacks
any sequence similarity to bacterial or eukaryotic proteins
(Schumacher et al., 2015), the structure of SegB reveals the
presence of a ribbon-helix-helix (RHH) motif that is important
for binding to the centromere-like DNA sites (Yen et al., 2021)
and is reminiscent of many bacterial plasmid-encoded CBPs
(Schumacher, 2008). Furthermore, SegB forms a superhelical
chromatin-like structure and wraps around the DNA, giving
rise to a left-handed helix as has been observed for the omega
protein (ParB) of the S. pyogenes plasmid pSM19035. However,
significant differences have been noted in regions that form
the protein dimer interfaces (Weihofen et al., 2006; Soberón
et al., 2011; Yen et al., 2021). Thus, the organization of archaeal
chromosomal segregation genes and functions bear a close
resemblance to bacterial parABS systems. Moreover, electron
microscopy of SegA-SegB-DNA complexes in the presence of
ATP revealed short oligomers that were rod-like or arc-shaped.
The rod-like structures were only 30–40 nm in length. However,
the formation of such oligomers only in the presence of ATP
but not ADP suggests a role for SegA oligomers in segresome
formation, chromosome organization and segregation in archaea
(Yen et al., 2021).

Like many bacteria, archaea too rely on ParA proteins to
segregate and maintain plasmids. pNOB8 is an archaeal plasmid
from Sulfolobus and contains a unique partitioning system
comprising three proteins and a centromeric site (She et al.,
1998; Schumacher et al., 2015). While ParANOB8 forms the
NTPase motor protein with a Walker A motif, AspA is the
centromere binding protein and thus performs the analogous
function of a typical ParB. The archaeal plasmid, pNOB8,
also carries an atypical ParB whose N-terminal domain shares
homology with bacterial ParBs, but the C-terminal domain bears
structural similarity to CENP-A, a eukaryotic protein involved in
chromosome segregation (Schumacher et al., 2015). Nonetheless,
ParBNOB8 acts as the adaptor protein that links the DNA to
ParANOB8 by binding to the AspA-centromere complex. AspA
binds to the centromere sequence and creates a superhelical
structure for ParBNOB8 binding. ParANOB8 binds to this ParB-
AspA-centromeric complex and facilitates the partitioning of
the plasmid into the daughter cells (Schumacher et al., 2015).
Recent crystal structures of ParA-AMPPNP-DNA complexes
have revealed the presence of a multifaceted nsDNA binding
site in ParANOB8 (Zhang and Schumacher, 2017). The structural
resemblance of the C-terminal domain of ParBNOB8 to CENP-
A and its binding to ParA reveal a unifying theme that
underlies the DNA segregation process in the three domains
of life.

SPECIALIZED POLAR TETHERING
PROTEINS—ACCESSORY FACTORS FOR
ParA MEDIATED CHROMOSOME
SEGREGATION IN BACTERIA

Bactofilin
Bactofilins belong to a group of polymeric cytoskeletal proteins
defined by a conserved DUF583 domain, also known as the
bactofilin domain (Kühn et al., 2010; Punta et al., 2012). They
are characterized by extended beta-sheet structures and are
ubiquitous in both Gram-positive and Gram-negative bacteria
(Lin and Thanbichler, 2013; Zuckerman et al., 2015). In the rod-
shaped bacterium Myxococcus xanthus, four bactofilin paralogs
have been identified. They serve diverse functions like cell-
shape maintenance (Koch et al., 2011), cell motility via polar
localization of a small GTPase, SofG (Bulyha et al., 2013)
and chromosome segregation (Lin et al., 2017; Anand et al.,
2020). Three paralogs of bactofilin, BacNOP assemble into a
polymeric structure and form a complex with the ParB-like
protein, PadC, to restrict ParABS machinery to a well-defined
position in the subpolar region of the cell. The ParAMxa ATPase
decorates the entire length of the bactofilin filament using the
ParB-like adaptor protein PadC. The pole-distal ends of the
bactofilin filaments are bound by the centromeric DNA (parS)
binding protein ParBMxa ensuring that the genome is equitably
transferred after each round of cell division (Lin et al., 2017;
Anand et al., 2020).

DivIVA
Discovered in B. subtilis, DivIVA was named so due to the
defects in septum placement in its absence (Edwards et al.,
2000; Perry and Edwards, 2006; Oliva et al., 2010; van Baarle
et al., 2013). It is a tetrameric coiled-coil protein that binds to
the membrane by sensing negative curvature (Lenarcic et al.,
2009; Ramamurthi and Losick, 2009; Oliva et al., 2010) and is
mainly found in Gram-positive bacteria (Lin and Thanbichler,
2013). During sporulation, DivIVA localizes to the poles of the
cell and binds to RacA and Soj/SpoOJ (ParABBsu) complex
(Wu and Errington, 2003; van Baarle et al., 2013). In addition,
DivIVA associates with the peptidoglycan synthesis proteins in
Streptomyces, Corynebacterium and Mycobacterium, organizes
the growth directing tip-complex and interacts with ParB
(Hempel et al., 2008, 2012; Donovan et al., 2012; Ginda et al.,
2013; Holmes et al., 2013). Interestingly, a DivIVA bound protein,
Scy, associates with the ParA ATPase in S. coelicolor (Ditkowski
et al., 2013).

PopZ
While DivIVA is restricted to Gram-positive bacteria, PopZ
(polar organizer protein Z), an evolutionarily unrelated small,
acidic protein with an alpha-helical structure present in many
Gram-negative species of α-proteobacteria, serves a similar
function (Bowman et al., 2008; Ebersbach et al., 2008; Holmes
et al., 2016). PopZ has a highly conserved N-terminal and a
C-terminal domain, analogous to DivIVA, required for higher-
order assembly (Oliva et al., 2010; Bowman et al., 2013). PopZ
assembles into polymers that form a network with gel-like
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properties, which is impermeable to macromolecules (Bowman
et al., 2010). However, this 3D network of PopZ at the cell pole
captures the ParA released from the nucleoid by the migrating
ParB-parS complex. This capture of released ParA is mediated by
direct interactions with PopZ (Ptacin et al., 2014). The increased
concentration of ParA at the PopZ proximal new pole triggers the
ParA DNA binding activity, which reinforces the movement of
the ParB-parS complex in the same direction, prevents reversals
and immobilizes the origins at cell poles via interactions with
ParB. In C. crescentus, cells lacking PopZ have chromosome
segregation defects, highlighting the important role played by
PopZ in regulating ParA mediated chromosome segregation
(Bowman et al., 2008, 2010; Ebersbach et al., 2008; Schofield et al.,
2010; Ptacin et al., 2014; Holmes et al., 2016).

TipN
In C. crescentus, TipN (Tip of New Pole) is a polarly localized
landmark protein and contains a large C-terminal coiled-coiled
domain and two transmembrane domains at its N-terminus.
TipN relocalises at the cell division site in an FtsZ and FtsI
dependentmanner late during the pre-divisional stage and is thus
present at the new pole in both the daughter cells (Huitema et al.,
2006; Lam et al., 2006). At the new pole, TipN recruits TipF, a
receptor for the second messenger c-di-GMP [bis-(3

′

-5
′

)-cyclic
dimeric guanosine monophosphate] and a positive regulator of
flagella assembly. However, this interaction between TipN and
TipF is restricted in the swarmer cells due to the low level of c-di-
GMP but allows the formation of a “flagella organizing center”
at the new pole of the stalked cell due to the high levels of c-
di-GMP in stalked cells (Davis et al., 2013). Interestingly, while
1tipN cells exhibit mild chromosome segregation defects (Ptacin
et al., 2010), deletion of popZ leads to synthetic lethality in 1tipN
cells due to severe DNA segregation and cell division defects
(Schofield et al., 2010). TipN directly interacts with ParACcr at
the new pole and regulates the movement and overall speed of
the ParB-parS complex (Ptacin et al., 2010; Schofield et al., 2010).

DIVERSE BIOLOGICAL FUNCTIONS OF
ParA FAMILY OF ATPases

Proteins with the deviant Walker A motif, or the P-loop, serve
diverse functions in different life forms (Walker et al., 1982;
Koonin, 1993). These include DNA replication and partitioning,
cell cycle and division, subcellular localization and spatial
organization. Examples include the ParA family of proteins found
in bacterial genomes and plasmids, which play a role in DNA
segregation. A few that are involved in cell division, like MinD
and MipZ have been extensively reviewed (Motallebi-Veshareh
et al., 1990; Ebersbach and Gerdes, 2005; Leonard et al., 2005b;
Hayes and Barillà, 2006; Michie and Löwe, 2006; Thanbichler
and Shapiro, 2006; Schumacher, 2007; Du and Lutkenhaus, 2012;
Lutkenhaus, 2012; Barillà, 2016; Jalal and Le, 2020). At the
same time, some others play an important role in positioning
large macromolecular complexes such as carboxysomes within
cells (Savage et al., 2010). These deviant Walker A motif-
containing proteins are found in all life forms, ranging from

Archaea to Bacteria and constitute a versatile system to build
the spatial organization in biological systems (Figure 5). Thus,
members of the ParA superfamily are not only involved in
plasmid and chromosome partitioning but are also involved in
the maintenance of other cellular cargo in many bacteria. We
outline a few examples here that highlight the diversity of this
superfamily of proteins within the domain Bacteria.

MinD—A Spatial Regulator of Cell Division
Site
MinD, a component of the min system, is a Walker A ATPase
member majorly recruited for regulating cell division in bacteria
(Lutkenhaus and Sundaramoorthy, 2003; Lutkenhaus, 2012). The
structure of the MinD dimer reveals its similarity to the ParA
proteins such as Soj (ParABsu) (Wu et al., 2011). The min
locus consists of two other genes, minC and minE, wherein
MinC functions as an inhibitor of FtsZ ring assembly via its
interaction with MinD (Hu et al., 1999; Hu and Lutkenhaus,
2000; Dajkovic et al., 2008). MinD, along with MinE, undergoes
pole-to-pole oscillations and produces a gradient of MinCD
division inhibitory complex (Hu and Lutkenhaus, 1999; Raskin
and de Boer, 1999; Hale et al., 2001; Meinhardt and de Boer,
2001) with the maximum time-averaged concentration at the
cell poles (Lutkenhaus, 2012). MinD, in its ATP bound dimeric
form, binds to the membrane via a C-terminal amphipathic
helix (Hu et al., 2002; Szeto et al., 2002; Hu and Lutkenhaus,
2003; Zhou and Lutkenhaus, 2003). Following this membrane
association, MinE is recruited, which stimulates the ATPase
activity ofMinD and thus releases it from the bacterial membrane
(Hu and Lutkenhaus, 2001; Hu et al., 2002; Park et al., 2011; Wu
et al., 2011). Crystal structures of the MinD-MinE complexes
reveal the conformational changes in MinE upon interaction
with MinD. The structures also show how two released β-sheets
in a four-stranded β-sheet MinE dimer convert into α-helices
and suggests how MinE remains associated with the MinD-
membrane complex (Park et al., 2011). Repeated binding and
release cycles of MinD driving oscillation of MinCD complex
that acts as a spatial regulator of FtsZ ring in bacteria. The
period of the oscillations is dictated by the built-in delays in
the system, such as nucleotide hydrolysis and exchange rates in
MinD (Howard et al., 2001; Meinhardt and de Boer, 2001; Huang
et al., 2003; Kretschmer and Schwille, 2016). Numerous studies
have reconstituted the dynamics of the MinDE system in vitro
on supported membrane bilayers and observed standing waves of
MinD being chased by MinE and recapitulate oscillations within
confinement (Loose et al., 2008, 2011; Ivanov and Mizuuchi,
2010; Zieske and Schwille, 2013, 2014; Vecchiarelli et al., 2016).

Further, the deletion of MinD results in the production of
anucleate cells suggesting that MinD plays a critical role in
chromosome segregation (Di Ventura et al., 2013). Numerical
computer simulations have proposed that the min system may
contribute to the movement of the chromosome from the mid-
cell to the poles and might be mediated by the binding of
MinD to DNA (Di Ventura et al., 2013). However, recent
in vitro reconstitution experiments of MinDE on membrane
bilayers failed to detect any direct recruitment of DNA to
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FIGURE 5 | The diverse functions of the ParA family of ATPases in bacteria. The schematic representation depicts the various cellular functions performed by the

ParA superfamily of ATPases in bacteria. Chromosome segregation is carried out by ParA carried in bacterial chromosomes. Plasmid segregation is carried out by

ParAF (in F plasmid) or ParAP1 (P1 bacteriophage) ParFTP228 (TP228, a plasmid from S. newport), FleN/FlgH regulates flagellar biosynthesis. McdA plays a role in

carboxysome maintenance, and MinD controls cell division site positioning. ParI, an orphan ParA, regulates genomic island mediated incompatibility. BcsQ helps in

cellulose biosynthesis. PpfA and ParCVch (ParA-like ATPase in V. cholerae) control polar localization of chemotaxis clusters in Rhodobacter and Vibrio, respectively.

MinD, suggesting that the chromosome segregation defects in the
absence of Min proteins might be due to indirect effects (Ramm
et al., 2018).

McdA—ParA-Like Proteins in
Carboxysome Maintenance in
Cyanobacteria
Carboxysomes are membrane-bound organelles in
Cyanobacteria that help in carbon fixation. These proteinaceous
micro-compartments exist in low-copy numbers in the cells
and thus depend on partitioning machinery to ensure their
transmission during cell division (MacCready et al., 2018, 2020).
Fluorescent labeling of the nucleoid, carboxysomes and McdA
inside these cells has enabled the tracking of carboxysomes in
live cells. Fluorescence imaging of carboxysomes has shown
that these organelles are arranged linearly and segregate
equally during cell division that was dependent upon a
ParA homolog in Synechococcus elongatus (Savage et al.,
2010). Recent studies have further shown that the ParA-like
Walker A ATPase partitioning machinery, now named McdA
(for Maintenance of Carboxysome Distribution), mediates
Carboxysome maintenance (MacCready et al., 2018). Although
McdA lacks the signature amino-terminal lysine residue
(Table 1), it has a strong ATPase and non-specific DNA binding

activity. Moreover, another small protein McdB, unrelated to
ParB, has been shown to stimulate the ATPase activity of McdA
and regulate carboxysome positioning. AlthoughMcdB shows no
sequence similarity to ParB, it can form higher-order oligomers
like ParB (Schumacher et al., 2019). McdB (like ParB) stimulates
ATPase activity of McdA driving the directed movement of
carboxysome toward a higher concentration of McdA on the
nucleoid by a diffusion ratchet mechanism. Thus, Carboxysomes
also employ a McdAB protein complex in a manner very similar
to the ParAB complex (MacCready et al., 2018).

PpfA—An Orphan ParA Promoting
Chemoreceptor Cluster Formation
Certain par loci in bacterial chromosomes contain only parA
sequences and lack parB and centromeric sequence parS. These
additional par loci are located outside the parAB operon (found
close to the oriC) and are referred to as orphan ParA systems.
These orphan ParAs can be found in many metabolic operons of
bacterial genomes. Also, reports suggest that bacterial genomes
encode multiple orphan ParAs. One such orphan ParA, called
PpfA, is involved in chemotactic signaling in Rhodobacter
sphaeroides. The chemotaxis protein cluster is formed by the
partner proteins TlpT and CheW proteins. Mutants in the
conserved Walker A motif are known to affect cluster formation.
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Thus, PpfA helps in the dispersion and segregation of the
chemoreceptor clusters (Thompson et al., 2006; Roberts et al.,
2012). Remarkably, a distinct clade of ParA-like ATPase is
encoded within the chemotaxis operon in V. cholerae (named
ParC) and many γ-proteobacteria that have polar flagella
(Ringgaard et al., 2011). In V. cholerae, the ParA-like ATPase,
ParC, regulates the polar localization of the chemotaxis proteins
CheW1 and CheY3 (Ringgaard et al., 2011). The subcellular
localization dynamics of ParC are altered by its binding partner,
ParP, which promotes the polar assembly of the chemotaxis array
(Ringgaard et al., 2011, 2018; Alvarado et al., 2017).

ParI—An Incompatibility Factor Residing
on a Genomic Island
ParI is an Orphan ParA member of the Walker A ATPase
family present in the genomic island of Pseudomonas putida
(Miyakoshi et al., 2012). The expression of ParI negatively
regulates the maintenance of IncP-7 plasmids and results in their
loss from cells. Studies on ParI have revealed that mutations
in the conserved Walker A motif region (mainly the ATPase
domain) of ParI fail to destabilize IncP-7 plasmids. ParI is an
example of plasmid-mediated incompatibility residing within a
genomic island.

BscQ—An Orphan ParA Involved in
Cellulose Biosynthesis
Bacteria produce cellulose as a biofilm matrix polymer to enable
the cohesion of biofilms. BcsQ (bacterial cellulose synthesis)
proteins help produce cellulose in enterobacteria. BcsQ is a
homolog of the ParA/MinD family of ATPase and is activated
by cyclic di-GMPmediated signalling. Using fluorescently tagged
BcsQ, it has been confirmed that this protein mainly localizes to
the cell poles in bacteria and cell-cell adhesion mainly occurs via
cellulose production at the cell poles. Thus, a ParA/MinD family
of ATPase controls cell-cell adhesion and biofilm formation by
regulating cellulose biosynthesis (Le Quéré and Ghigo, 2009).

FleN/FlhG/MinD2—A ParA Protein
Regulating Flagellar Biosynthesis
Flagella serves as a locomotory organ in many organisms. The
bacterial flagella is a complex structure requiring ∼40 genes
for its assembly (Dasgupta et al., 2003). The flagellar genes
in bacteria are involved in locomotion, biofilm formation, and
pathogenesis (O’Toole and Kolter, 1998; Gellatly and Hancock,
2013; Guttenplan and Kearns, 2013; Mukherjee and Kearns,
2014). The flagella number and distribution are characteristic
features of each organism. In P. aeruginosa, the number of flagella
is regulated by FleN (Dasgupta et al., 2000, 2003; Köhler et al.,
2000; Dasgupta and Ramphal, 2001; van Ditmarsch et al., 2013).
FleN, also called FlhG or MinD2, is a ParA/MinD superfamily
protein (Table 1), whose absence leads to the upregulation of
genes involved in the synthesis of the flagellar motor, basal
body, hook proteins etc. and conferring the multi-flagellate
phenotype (Dasgupta et al., 2003; Chanchal et al., 2017). FleN
acts antagonistic to FleQ and is known to inhibit FleQ dependent
transcription. Such effect is essential for maintaining the correct

number of flagella in the cell (Dasgupta and Ramphal, 2001;
Chanchal et al., 2017). Homologs of FleN are also present in
many other bacteria, including B. subtilis,V. cholerae,Geobacillus
thermodenitrificans, and Campylobacter jejuni (Correa et al.,
2005; Guttenplan and Kearns, 2013; Schuhmacher et al., 2015;
Gulbronson et al., 2016).

CONCLUDING REMARKS

Central to all life is the duplication and equal partitioning of
the genetic material into the daughter cells. Studies over the
last century have revealed that complex dynamic structures
such as the spindle microtubules assembled during a specific
time in the cell cycle govern these processes in eukaryotic
cells. On the contrary, how simple unicellular bacterial cells
achieve DNA partitioning has remained elusive for a long
time. It is now appreciated how several bacterial genomes and
multi-drug resistance carrying plasmids, including the historic
Fertility factor or the F plasmid, utilize a Walker A class of
cytoskeletal ATPases (WACA) protein ParA (present in Bacteria
and Archaea) to partition DNA. While ParA functions as an
ATP-dependent motor protein, ParB constitutes the adaptor
protein that stimulates the ATPase activity ParA and drives the
dynamicity of the system.

Studies on various members of the ParA superfamily of
proteins have established that the binding of ParA to non-
specific DNA is vital for its function in plasmid maintenance.
A chemophoretic gradient of ParA across the bacterial
chromosome (nsDNA) is thought to drive the unidirectional
movement of the plasmid DNA toward the cell poles. The
nsDNA binding activity of ParA itself is regulated by ATP
binding and a conformational switch. In the future, it would
be important to establish the existence of the conformational
switch to the ParA-ATP∗ state for multiple members of the ParA
family of proteins. Further, deciphering the structural changes
associated with the conformational switch and kinetics of
substrate binding should lead to a better understanding of ParA
binding to nsDNA and stimulation of its ATPase activity by ParB.
Overall, the structures of ParA proteins are highly conserved,
and a unified molecular understanding of the mechanism by
which ParA protein functions has emerged. However, given the
wide range of cellular functions and evolutionary divergence,
it would be fascinating to probe the subtle differences in the
molecular mechanisms employed by various ParA proteins.

Moreover, recent EM studies of the ParA2Vch and archaeal
SegAB complex revealing a DNA-ParA filament complex are
compelling and have reignited the idea that ParA functions
require its polymerisation or oligomerisation (Parker et al.,
2021; Yen et al., 2021). These studies could revive the
polymeric cytoskeleton models proposed for ParA mediated
DNA partitioning, especially given the earlier observations on
ATP-dependent aggregation or polymerisation of some ParA
members (Ebersbach and Gerdes, 2001; Suefuji et al., 2002;
Leonard et al., 2004, 2005a; Barillà et al., 2005, 2007; Lim et al.,
2005; Bouet et al., 2007; Dunham et al., 2009; Schumacher
et al., 2012; Volante and Alonso, 2015). While the physiological
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relevance of such polymeric structures formed by ParA in
vitro is still debated, unequivocal evidence for the existence
of such polymeric or oligomeric structures of ParA in vivo
could be challenging. However, experiments using mutants that
have distinct activities of nsDNA binding and polymerisation
might help reveal the role of polymerisation/oligomerisation
in ParA functions. Moreover, given the overarching conserved
design in the structure of the ParA proteins, subtle changes
to the structure and conformation might drive these diverse
mechanisms. Extensive biochemical and structural studies
leveraging the advances in single-molecule techniques, single-
particle and cellular correlative-electron microscopy should
reveal the underpinnings of mechanisms by which the ParA
superfamily of proteins function across domains of life.

It is evident that ParA proteins are vital for bacterial survival
and maintenance of virulence factors and antibiotic resistance
on plasmids. Since the ParA family of proteins is unique to
bacteria and archaea, they could potentially be considered targets
for developing new antibiotics. Insights into subtle differences
in the interactions of ParA proteins with nsDNA, ParB and
itself could be significant for such studies. However, a major
challenge could be the development of specific assays and high-
throughput screening platforms. The positive selection assay for
loss of plasmids developed by Swaine Chen’s group could be a
way forward (Chen et al., 2017). Understanding the evolution
of variations and diverse mechanisms in ParA functions could
also be leveraged in synthetic biology applications to design and
dictate spatial organization in artificial cell-like systems.

Finally, the recent findings on the CTP binding, hydrolysis
and formation of LLPS condensates by ParB have indeed added

an entirely new dimension and complexity to our understanding
of the plasmid and chromosomal segregation mechanisms. It
will be interesting to see the influence of ParB-CTP on ParA
functions, especially on the conformational changes to the
proposed ParA-ATP∗ state, nucleoid association and dynamics
and polymerisation. Reconstitution experiments and in vivo
live-cell imaging at high-resolution of the segresome complex
from diverse species, together with structural studies employing
cryo-electron microscopy and cellular tomography, should help
provide more insights into the functioning of these amazing and
unique family of proteins.
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