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Mechanism of tonifying-kidney
Chinese herbal medicine in the
treatment of chronic heart
failure

Lizhen Chen, Dayun Yu, Shuang Ling * and Jin-Wen Xu *

Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine,

Shanghai, China

According to traditional Chinese medicine (TCM), chronic heart failure has the

basic pathological characteristics of “heart-kidney yang deficiency.” Chronic

heart failure with heart- and kidney-Yang deficiency has good overlap with

New York Heart Association (NYHA) classes III and IV. Traditional Chinese

medicine classical prescriptions for the treatment of chronic heart failure

often take “warming and tonifying kidney-Yang” as the core, supplemented

by herbal compositions with functions of “promoting blood circulation and

dispersing blood stasis.” Nowadays, there are still many classical and folk

prescriptions for chronic heart failure treatment, such as Zhenwu decoction,

Bushen Huoxue decoction, Shenfu decoction, Sini decoction, as well as Qili

Qiangxin capsule. This review focuses on classical formulations and their

active constituents that play a key role in preventing chronic heart failure by

suppressing inflammation andmodulating immune and neurohumoral factors.

In addition, given that mitochondrial metabolic reprogramming has intimate

relation with inflammation, cardiac hypertrophy, and fibrosis, the regulatory

role of classical prescriptions and their active components in metabolic

reprogramming, including glycolysis and lipid β-oxidation, is also presented.

Although the exact mechanism is unknown, the classical TCM prescriptions

still have good clinical e�ects in treating chronic heart failure. This review will

provide a modern pharmacological explanation for its mechanism and o�er

evidence for clinical medication by combining TCM syndrome di�erentiation

with chronic heart failure clinical stages.

KEYWORDS

chronic heart failure, classical prescription, inflammation, neurohumoral factors,

energy metabolism

Introduction

The word “heart failure” has been recorded in the ancient Chinese medicine book
“Huangdi Neijing” more than 2,300 years ago. According to the combination of different
traditional Chinese medicine (TCM) syndrome elements, TCM can divide chronic heart
failure into 4–6 TCM syndromes (1), which are mainly related to deficiency of heart
and kidney yang and heart qi deficiency. The report of Shi et al. (2) compared the main
TCM syndromes of chronic heart failure with the New York Heart Association (NYHA)
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classification, and found that there is a certain correlation
between NYHA classification and the distribution of heart-
kidney yang deficiency and heart-qi deficiency. Heart-qi
deficiency is basically concentrated in categories I and II,
and the frequency of kidney yang deficiency and body fluid
retention in class III+IV is higher than that in class I and
II. Obviously, in the NYHA classification, heart-kidney-yang
deficiency is the stage where heart failure progresses into a more
severe stage (2). Common classic and folk prescriptions for the
treatment of chronic heart failure include Zhenwu decoction,
Lingguizhugan decoction, Sini decoction, Shenfu decoction,
Bushen Huoxue decoction, and Qili Qiangxin capsule, etc.
(Table 1). Their effectiveness on chronic heart failure has been
proved by increasing clinical investigations (3–5). They are
superior to Western medicine alone in terms of treatment
efficacy, whether judged by TCM symptom efficacy or by
NYHA functional classification (Supplementary Table 1). The
RCRI/Lee’s score, 6MWD, LVEF, and CCE were also better
to western medicine alone on the endpoints of chronic heart

TABLE 1 Composition of several classical prescriptions for treatment of chronic heart failure.

Name of

classical

prescription

Source Years Major composition and efficacy

Warming and

tonifying

kidney-Yang

Promoting blood

circulation and

dispersing blood

stasis

Dredge

meridians and

Qi activity

Relieving

diuresis and

eliminating

dampness

Jinkui Shenqi pill Zhongjing Zhang, “Synopsis

of the Golden Chamber”

200–

210A.D.

Aconite, Cassia

Twig

Chinese Peony Bark Rehmannia root,

Chinese Yams

Rhizoma Alismatis,

Tuckahoe

Zhenwu

decoction

Zhongjing Zhang, “Treatise

on Febrile Diseases”

205A.D. Aconite, Ginger Radix Paeoniae Rubra Atractylodes

Rhizome,

Tuckahoe

Lingguizhugan

decoction

Zhongjing Zhang, “Synopsis

of the Golden Chamber”

200–

210A.D.

Cassia Twig N/A Atractylodes

Rhizome, Baked

licorice

Tuckahoe

Sini powder Zhongjing Zhang, “Treatise

on Febrile Diseases”

205A.D. Aconite, Dried

Ginger

Licorice N/A N/A

Shenfu decoction Yonghe Yan, “Renewed

Yan’s Jisheng recipes”

1253A.D Aconite N/A Ginseng, N/A

BuShen HuoXue

decoction

Lian Zhao, “Great

Achievement of

Traumatology”

1891A.D. Fructus Corni,

Chinese Dodder

Seed, Herba

Cistanches, Fructus

Psoraleae, Cortex

Eucommiae

Safflower, Chinese Angelica,

Myrrha

Prepared

rehmannia root,

Chinese wolfberry

Radix angelicae

tuhuo

Qili Qiangxin

capsule

Chinese Pharmacopeia 2015

edition, Volume I

2015A.D. Aconite, Cassia

Twig

Safflower, Danshen Root Astragalus Root,

Ginseng, radix

Polygonati

officinalis

Flixweed Tansy

Mustard Seeds,

Rhizoma Alismatis,

Chinese Silkvine

Root-bark, Dried

tangerine

failure (Supplementary Table 1). In terms of blood parameters
related to cardiac function and inflammation, such as NT-
proBNP, cTnI, sST2, CK-MB, and hs-CRP, the combination of
classical prescriptions also showed more favorable improvement
in chronic heart failure (Supplementary Table 1).

The occurrence and development of chronic heart
failure includes a variety of processes, which are related
to inflammation of heart tissue, participation of immune
cells (macrophages, lymphocytes, and neutrophils, etc.),
regulation of neurohumoral factors, and programmed cell
death (apoptosis, pyroptosis, etc.), myocardial hypertrophy, and
cardiac fibrosis (6–8). Experimental investigations in animals
have confirmed that a lot of classic prescriptions for tonifying
kidney can improve inflammation (9, 10), oxidative stress and
cellular injury (11), inhibit cardiomyocyte death (10, 11), and
myocardial hypertrophy (12–14), regulate neurohumoral factors
(15, 16), and alleviate cardiac fibrosis (17–20). Accumulating
studies have been reported that (1) Lingguizhugan decoction
and Zhenwu decoction prevent cardiac hypertrophy by
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inhibiting MAP kinase activity (12, 13); (2) Lingguizhugan
decoction improves ventricular hypertrophy by restraining
NLRP3/Caspase-1/GSDMD inflammation and pyroptosis
pathways (10); (3) Lingguizhugan decoction also antagonizes
oxidative stress injury through the Nrf2/Keap1/HO-1 pathway
(11); (4) Shenfu recipe mitigates heart failure by activating
AMPK-mediated metabolism of fatty acids and glucose in
the heart (17); (5) Shenfu injection enhances eNOS activity
through PI3K/Akt signaling pathway, promotes vasodilation
and improves microcirculation of failing heart (21); (6) Sini
Decoction significantly decreases the levels of hs-CRP, TNF-α,
IL-6, and IL-1β in rat myocardial tissue, reduces the levels of
renin, angiotensin II, aldosterone, ANP, and ET-1 in plasma,
and limits the vascular inflammation of the heart (9, 15); (7)
Sini decoction also reduces TLR-2/4 and TGF-β1 levels to
improve early ventricular remodeling and cardiac function after
myocardial infarction (18); (8) Qili Qiangxin capsule alleviates
cardiac remodeling by inhibiting TGF-β1/Smad3 and NF-κB
signaling pathways (19).

The levels of circulating pro-inflammatory biomarkers
are closely related to disease severity and prognosis in
patients with heart failure. Despite disappointing clinical
trial results inflammation is still considered to be a major
pathophysiological factor contributing to chronic heart failure,

including heart failure with reduced ejection fraction and
heart failure with preserved ejection fraction (6, 22). Moreover,

inflammation and metabolic reprogramming are mutually

regulated objects. For example, LPS can enhance the activity
of HIF-1 and participate in the induction of glycolysis and

pro-inflammatory genes, especially IL-1β. In contrast, the

tricarboxylic acid cycle (TAC) intermediate, succinic acid, and
itaconic acid, a derivative of citric acid, have pro- and anti-

inflammatory effects, respectively (23–25). Therefore, metabolic
reprogramming during heart failure has become a hotspot
of research in recent years. Given that mitochondria are key
subcellular organelles of cardiomyocytes, important discoveries
have been made in mitochondrial energy, glucose, fatty acid,
and amino acid metabolic reprogramming (also known as
metabolic remodeling) in heart failure, which will be targets
for next-generation treatments (26, 27). Heart failure is also
a bioenergetic disease. In addition to cardiac hypertrophy
(28, 29), metabolic reprogramming also occurs during cardiac
fibrosis (30, 31). Last but not the least, neurohumoral factors,
such as the renin-angiotensin-aldosterone system, are inducers
of chronic heart failure and low-grade inflammation. Indeed,
antagonism of neurohormonal systems is a key therapy for
heart failure. In brief, this review focuses on the modern
medical characteristics of classic kidney-tonifying prescriptions
for the treatment of chronic heart failure, and discusses
the classic and modern pharmacological mechanisms of
active ingredients on inflammation, neurohumoral factors, and
metabolic reprogramming.

Immunity and inflammation in the
heart- and kidney-Yang deficiency

Insufficient tissue oxygen and nutrient supply, accumulated
harmful metabolites and cell death are the main mechanisms
of heart failure with reduced ejection fraction (HFrEF).
HFrEF happens because of chronic low-grade inflammation
and immune activation, tissue fibrosis, and remodeling,
decreased ventricular compliance caused by chronic myocardial
machinery overwork. The importance of inflammation in
heart failure has been summarized, analyzed, and prospected
by many excellent reviews (32–34), and we will not repeat
them here. Now many kinds of immune cells, such as
NK cells, T cells, B cells, monocytes, macrophages, are
known to participate in the process of heart failure. CD4+

T lymphocytes are progressively augmented and broadly
activated in circulation, failing heart and spleen, and are
also necessary for pathological left ventricular remodeling
in chronic heart failure (35). Treg, CD4+, CD8+ T cells,
and the ratio of CD4+ to CD8+ T cells are expected to be
biomarkers of heart failure (36). The plasticity of monocytes
and the heterogeneity of monocyte-derived macrophages
have important implications for cardiac remodeling.
After myocardial injury, the medulla and extramedullary
hematopoiesis enlarges, the recruitment of cardiac monocytes
CCR2+ increases, and the enhanced cell wall tension stimulates
the proliferation of local macrophages in the heart (37).
Otherwise, patients with advanced heart failure have a high
IL-6 level produced by peripheral blood monocytes, a low
level of circulating NK cell number, and impaired cytolytic
function of NK cells on IL-2 and IL-12. Furthermore, the
impaired lytic function is closely related to the level of IL-6
produced by unstimulated peripheral blood mononuclear
cells (38).

According to previous reports, inflammation and immune
disorders are important factors for heart failure with kidney-
yang deficiency. Many Chinese herbal compounds can alleviate
these inflammation and immune system disorders. The
following are some research reports. After Shenfu Injection was
used to treat 56 patients with heart failure and Kidney-Yang
deficiency, the increased levels of CD4+CD25+Foxp3+Treg
and CD4+ T cells were suppressed, while the low level of
IL-10 was elevated (39). In an early clinical study of 57
elderly people with kidney deficiency, the percentage of
OKT4/CD4+ in the elderly was significantly lower than that
of the control group, whereas OKT8/CD8+ was remarkably
increased, and as a result the ratio of OKT4/OKT8 was
also markedly decreased compared with the control group
(40). Furthermore, their immunological changes have also
been confirmed in rat and mouse models of kidney-Yang
deficiency (Supplementary Table 2). Many cellular immune
parameters are suppressed, such as thymus index, spleen index,
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T lymph and B lymph stimulation index, NK cell activity,
macrophage phagocytosis, etc. (Supplementary Table 2).
As the number of CD4+ cells decreases and the number
of CD8+ cells increases, the ratio of CD4+/CD8+ is also
reduced. The serum levels of IL-4 and the ratio of IL-
4/IFN-γ are greatly elevated (Supplementary Table 2), yet
the trend of the serum IL-2 and IFN-γ levels are contrary
to the above. A variety of prescriptions for improving
kidney-Yang deficiency, such as anti-aging tablet, Jinkui
Shenqi pill and Yougui pill, reversed these cellular and
humoral immune indicators (Supplementary Table 2). Kidney-
Yang deficiency aggravates the inflammatory response
of the heart, including the activated NF-κB pathway of
myocardium, the elevated activities of ERK1/2, p38, and
JNK in the tissues, the upregulated JAK2/STAT3 signal, and
the unbalanced homeostasis of endoplasmic reticulum stress
(19, 41–44). The application of prescriptions for resisting
kidney-Yang deficiency can reverse the failure of heart
function (Figure 1).

In the past 3 years, many studies have explored the
mechanism of Zhenwu decoction on chronic heart failure
by using network pharmacology methods, which revealed
many signaling pathways, key target genes and key active
ingredients of Zhenwu decoction. These studies have found
that Zhenwu Decoction has multiple key signaling pathways
for improving heart failure, including inflammation-related
MAPK, NF-κB, IL-17, TNF-α, HIF-1α, TLR, and PPARG
signaling pathways, as well as platelet activation and arachidonic
acid metabolism. It also involves apoptosis, p53 signaling,
adrenergic signaling in cardiomyocytes, renin-angiotensin
system, and Insulin resistance related to myocardial damage,
function, and fibrosis, in addition to calcium signaling and
cGMP-PKG signaling related to cardiac contraction and
relaxation (Supplementary Table 3). In the search for key
target genes, the authors found that inflammation-related
IL-6, TNF-α, PTGS2, PPARG, IKBKB, oxidative stress-
related GSTP1, GSTM1, GSTM2, cell death-related CASP3,
CASP8, CASP9, BCL2, and various receptors that affected
myocardial function, such as adrenoceptor alpha subtype
(ADRA2A, ADRA2B, and ADRA1A), androgen receptor
(AR), estrogen receptor (ESR1), angiotensin II receptor 1
(AGTR1), epidermal growth factor receptor (EGFR), and
cholinergic receptor muscarinic 1 (CHRM1), were targeted
by Zhenwu decoction (Supplementary Table 3). Moreover,
β-sitosterol, stigmasterol, kaempferol, norcoclaurine, 3β-
acetoxyatractylone, paeoniflorin, (+)-catechin, hederagenin,
and trametenolic acid were identified as key active ingredients
of Zhenwu decoction (Supplementary Table 3). These
findings indicated that the main active components in
Zhenwu decoction can effectively act on key genes related
to heart failure through molecular docking detection
(Supplementary Table 3).

Chinese herbal medicinal
ingredients for warming and
tonifying kidney-Yang target
involved in anti-inflammatory and
cardiac function homeostasis

Traditional Chinese medicine herbs for warming and
tonifying kidney-Yang account for a majority of all traditional
and folk prescriptions for chronic heart failure treatment.
Therefore, this section will discuss the effects of their active
components on anti-inflammatory and immunomodulation.
The main active ingredients are listed in Supplementary Table 4.

Higenamine, an active component of Aconitum carmichaeli,
has shown a positive effect on improving chronic heart failure.
Higenamine enhanced contractility of failing hearts and
improved energy metabolism in cardiomyocytes, inhibited
TGF-β1/Smad signaling transduction, thereby reducing cardiac
fibrosis caused by cardiac fibroblast proliferation (45, 46).
The activation of the NF-κB increases the production of
inflammatory cytokines and chemokines. In previous studies,
higenamine inhibited the activation of NF-κB, the expression
of COX-2, iNOS, TNF-α, and IL-6, and the production of
PGE2 and NO through LPS and IL-1β stimulation (47–49).
Similarly, monkshood polysaccharide also had the effect of
inhibiting inflammation by blocking NF-κB pathway, and
prevented the expression of iNOS and inflammatory cytokines
(TNF-α, IL-1β, and IL-6) (50). Macrophages and lymphocytes
are the most common immune cells. In a murine model of
spinal cord injury, Higenamine was found to promote the
activation of M2 macrophages and reduce the production
of HMGB1 through HO-1 induction (51). Other studies
have also shown that monkshood polysaccharides inhibited
the proliferation of splenic lymphocytes induced by LPS or
ConA in vivo and in vitro, and the production of antibody
in vivo in mice (52). Cinnamaldehyde, an important active
ingredient of Cinnamomum cassia Presl., is also often used
as a condiment in beverages, cakes, and perfumes. Previous
studies have supported that Cinnamaldehyde attenuated cardiac
hypertrophy and fibrosis caused by pressure overload (53)
and acute myocardial ischemia induced by isoproterenol (54).
Cardiac hypertrophy is a systemic chronic inflammation,
while myocardial ischemia initiates an intense inflammatory
response. The possible mechanisms by which cinnamaldehyde
protects the heart are anti-inflammation. Numerous studies
have demonstrated that cinnamaldehyde regulates the NF-κB,
p38, JNK, and Jak/Stat pathways to inhibit expressions of IL-6,
IL-8, and TNF-α induced by IL-1β (55) and MCP-1, MMP-2,
and LOX-1 induced by ox-LDL (56). Cinnamaldehyde also
ameliorated LPS-induced cardiac dysfunction by inhibiting
ROS production and autophagy through TLR4-NOX4 pathway
(57), suppressed fructose-induced cardiac inflammation
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FIGURE 1

The modern medical understanding that kidney-Yang deficiency promotes the development of chronic heart failure. Kidney-Yang deficiency

leads to metabolic disturbances, endocrine disorders, immune function imbalance, and low-grade chronic inflammation, which further

contributes to vascular dysfunction, hypertension, chronic kidney disease, and cardiac tissue and functional imbalance, and eventually guides to

chronic heart failure.

and fibrosis by attenuating CD36-mediated TLR4/6 and
IL-1R-associated kinase 4/1 signaling (58). In addition,
the accumulation of succinate in cytoplasm stimulated
HIF-1α activity, which activated the expression of NLRP3.
Cinnamaldehyde significantly reduced synovial inflammation
in rheumatoid arthritis rats by blocking the maturation of
IL-1β derived from NLRP3 (59). Cornuside and morroniside
are major active components of Cornus officinalis. Cornuside
and morroniside have been reported to reduce heart damage
caused by ligation of anterior descending coronary artery or
ischemia-reperfusion (60, 61). The underlying mechanisms
are that cornuside and morroniside significantly inhibit the
expression of iNOS and COX-2 induced by LPS, and production
of TNF-α, IL-1β, IL-6, NO, and PGE2 through the regulation
of TLR4/NF-κB, ERK1/2, p38, JNK, STAT3, and Nrf2/HO-1
signaling pathways (62–64).

Psoraleae Fructus is a Traditional Chinese herb with
the effect of warming kidney and enhancing yang. It
contains terpenoids, coumarins, isopentenyl flavonoids,
chalcones, and other active components, such as bakuchiol,
psoralen, isopsoralen, corylifol A (also known as corylinin),
neobavisoflavone, and isobavachalcone. It has been reported
that bakuchiol in studies can attenuate myocardial

ischemia-reperfusion injury, pathological myocardial
hypertrophy, and heart failure (65, 66). Bakuchiol,
psoralen, and isopsoralen demonstrated the effect of
stimulating vasodilation through endothelium-dependent
and endothelium-independent pathways (67). Other active
constituents in Psoraleae Fructus such as Psoralen, corylifol A,
neobavisoflavone, and bakuchiol inhibited the expression and
secretion of TNF-α, IL-1β, and IL-6 (68). Bakuchiol also blocked
NF-κB pathway activity (68).

Epimedium, Eucommia, Cistanche, and Cnidium are all
important herbs for warming and tonifying kidney-Yang.
Many studies have revealed that their active ingredients, such
as icariin, icariside II, aucubin, echinacoside, and osthole
improved myocardial hypertrophy, remodeling and fibrosis
induced by pressure overload (69–73), or myocardial injury
and remodeling caused by isoproterenol (74, 75). Moreover,
icariin, syringaresinol, and osthole also prevented myocardial
ischemia/reperfusion injury (76–78), and aucubin significantly
reducedmyocardial infarction-induced cardiac remodeling (79).
Overall, accumulating reports indicate that icariin, icariside II,
aucubin, echinacoside, and osthole all inhibited the activity of
NF-κB (71, 73, 80–84). Other reports also pointed out that
icariin blocked JNK (80), echinacoside prevented STAT3 (83),
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and echinacoside and aucubin reduced activity of inflammasome
NLRP3 (75, 85). To sum up, the active ingredients of herbs
for warming and tonifying Kidney-Yang basically demonstrated
anti-inflammatory ability.

E�ect of prescriptions on changes of
sympathetic excitability and
neurohumoral factors in chronic
heart failure

Sympathetic hyperactivity is an identified hallmark of
chronic heart failure. Cardiac sympathetic afferent reflex
(CSAR), a sympathetic excitatory reflex with positive
feedback characteristics, can be activated by endogenous
substances during chronic heart failure, such as Ang II, AT1
receptor, NF-κB, and NADPH oxidase pathways (86–88).
The pathological enhancement of CSAR is one of the major
reasons for sympathetic excitation in chronic heart failure.
The paraventricular nucleus (PVN) of the hypothalamus is an
important component of the central pathway of the CSAR, and
also plays a key center for integration of neuroendocrine and
sympathetic nerve activities. The subfornical organ (SFO), as
a periventricular structure, senses circulating IL-1β, TNF-α,
and Ang II, elevates sympathetic excitability and transmits
it to the downstream PVN (89–91). In addition, Ang II has
been reported to promote the release and synthesis of PVN’s
excitatory neurotransmitter norepinephrine (92), enhancing
the plasma norepinephrine level and eventually leading to
impaired cardiac function in heart failure (90, 93). Furthermore,
compared with normal rats, the norepinephrine gene expression
and plasma concentration in the hypothalamus of rats with
Yang deficiency reached a high level, suggesting its sympathetic
hyperactivity (94). Two tonifying kidney-Yang prescriptions,
Qili Qiangxin Capsule and Bushen Ningxin Granule, can
downregulate the expression and secretion of norepinephrine
in the hypothalamus due to heart failure or anxiety (95, 96)
(Figure 2). For example, the 20(S)-protopanaxadiol of Ginseng
in Qili Qiangxin Capsule, and the cedrol of Boziren in Bushen
Ningxin Granules, reduce levels of norepinephrine in the
hippocampus of rodents (97, 98) (Supplementary Table 5).

Corticotropin-releasing hormone (CRH) is one of a variety
of neuroendocrine hormones secreted by PVN. The expression
of CRH in PVN of rats with ischemia-induced heart failure
is elevated with the increased expression of pro-inflammatory
cytokines and pro-inflammatory genes, even up to two times
(99, 100). Corticotropin-releasing hormone has been reported to
enhance the excitability of hypothalamic sympathetic nerves in
heart failure (101). However, the function of the hypothalamic-
pituitary-adrenal axis decreases with age, especially in very
elderly patients with heart failure, the gene expression and
secretion of related neurohumoral declines, such as CRH

(102, 103), 11β-HSD2 (104). Due to negative feedback, the
expression and activity of mineralocorticoid receptor (MR)
increased instead (105). Moreover, it is worth noting that
chronic heart failure patients based on NYHA classes III and IV
have a higher proportion of hypothermia (106, 107), anorexia
(108, 109), depression (110, 111), and a poor prognosis, which
is similar to the phenomenon of kidney-Yang deficiency of
TCM (112) or a lower response of ACTH and cortisol (102,
113). Many classic prescriptions for warming and nourishing
kidney-Yang, such as Sini decoction reverses hypothermia and
balances hypothalamic-pituitary-adrenal axis in vivo (114–117)
and improve chronic heart failure (38, 114, 118) (Figure 3).
Urotensin II is a homolog of corticotropin-releasing factor,
and its tissue UTR2 distribution is highly consistent with its
receptor (119, 120). The activity of urotensin is mainly regulated
by autocrine and paracrine mechanisms. Urotensin is a strong
vasoconstrictor and proinflammatory mediator in patients with
heart failure, which can lead to cardiac fibrosis, myocardial
hypertrophy, and remodeling (121–124). These characteristics
can explain the clinical findings related to heart failure. The
plasma urotensin level of patients with heart failure is much
higher than healthy individuals (125, 126). Studies have revealed
that the traditional prescription Shenfu injection and Fuling
Sini decoction effectively reduce the plasma urotensin levels
in patients with chronic heart failure (127, 128). In addition,
vasopressin (AVP) is another neurohumoral factor, which
is secreted by magnocellular neurosecretory neurons in the
hypothalamic supraoptic nucleus and PVN, and regulates blood
pressure, hyponatremia, and edema associated with heart failure
(129, 130). According to the dialectical classification of TCM,
the expression levels of AVP and AQP-2 are much higher in
patients with Yang deficiency and water retention syndrome
(equivalent to NYHA class III+IV) than in those with both
Qi and Yin deficiency syndrome (equivalent to NYHA class II)
(131). The warming Yang prescriptions, such as Qili Qiangxin
capsule, Shenfu injection, and Zhenwu decoction, can reduce
plasma AVP levels, AVP V2 receptor and AQP-2 expression in
renal tissue, and improve hemodynamics and cardiac function
(16, 132, 133).

The renin-AngII-aldosterone system is an endocrine axis
that maintains blood pressure and body fluid homeostasis.
Homeostatic imbalance is directly involved in the various
processes required for the progression of heart failure: oxidative
stress, inflammation, cardiac hypertrophy, cell death, and tissue
fibrosis. Multiple clinical investigations of hospitalized patients
have found that elderly patients (average age about 73 years) with
heart failure and kidney-Yang deficiency have higher plasma
AngII level, slightly lower left ventricular ejection fraction (EF)
and fractional shortening (FS), and much lower left ventricular
diastolic function (E/A ratio) than heart failure patients with
non-kidney-Yang deficiency (2, 5, 134). Moreover, patients with
kidney-Yang deficiency are mostly distributed in NYHA class
III and IV, and non-kidney-Yang deficiency exists in NYHA
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FIGURE 2

Inhibitory e�ect of classic formulations and their active ingredients on norepinephrine secretion and neural excitability in the hypothalamus.

Circulating pro-inflammatory factors enhance sympathetic excitability and the risk of heart failure. SFO’s perception of circulating

proinflammatory factors leads to increased secretion of norepinephrine in PVN neurotransmitters and promotes sympathetic excitability,

resulting in microvascular contraction, renal fluid retention and increased renin release, raising the level of angiotensin II and aldosterone in

blood, elevating heart rate and arrhythmia, and causing left ventricular hypertrophy.

class II (2, 5, 134). It has been proved in animal experiments
that a variety of herbal formulas, including Sini decoction, Qili
Qiangxin capsules, and Shenfu QiangxinMixture, can effectively
reduce the plasma Ang II and aldosterone level in rats in a
dose-dependent manner (38, 135–137).

Abnormal energy metabolism in
kidney-Yang deficiency

It was reported many years ago that pro-inflammatory
stimuli inhibited Myc activity and cell proliferation, and
participated in the enhancement of HIF-1α-dependent
transcriptional programs and glycolysis (138). HIF-1α was
induced in LPS-activated macrophages, which contribute to
the induction of pro-inflammatory genes, especially IL-1β.
The HIF-1α induction mechanism involved succinic acid,
an intermediate product of the TAC with pro-inflammatory
effects. HIF-1α also regulated pyruvate kinase M2 (PKM2)
function (23). Metabolic reprogramming under inflammation is
multifaceted. Sun et al. (25) summarized two main features of
metabolic reprogramming of inflammation. First, it increased
glycolysis and decreased lipid oxidative phosphorylation,

which accelerated ATP production and biosynthesis; second,
it showed epigenetic reprogramming to promote histone
acetylation and inhibit DNA methylation, which is based
on changes in the activity of acetyl and methyl donors and
their metabolic enzymes. Fatty acid oxidation of myocardial
mitochondria is the main source of ATP production. In
the inflammatory state of heart failure, myocardial fatty
acid uptake and mitochondrial oxidation are impaired, and
energy metabolism is abnormal (Figure 1). The increased
production of ATP by glycolysis and ketone oxidation was
compensated to some extent (139). The changes in energy
metabolism that lead to the reduction of the efficiency of the
failing heart are due to the transcriptional changes of the key
enzymes of the metabolic pathway and epigenetic changes (27).
Na+/K+-ATPase and Ca2+-ATPase are important pumps to
maintain the homeostasis of intracellular sodium and potassium
levels and the excitability of cardiomyocytes, and they are
also the main energy consumers of myocardium. A lot of
evidence shows that glycolysis and Na+/K+-ATPase pumps
are coupled in function, which provides ATP fuel for the pump
(140, 141). As shown in Supplementary Table 6, the deficiency
of kidney yang leads to disorders of energy metabolism. In
animals with Kidney-Yang deficiency, the Na+/K+-ATPase
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FIGURE 3

Improvement of heart failure by classic prescription via HPA axis. Kidney Yang deficiency is linked to heart failure via the

hypothalamic-pituitary-adrenal axis. Under the condition of kidney-Yang deficiency driven by factors such as advanced age, the secretion of

CRH secreted by PVN decreases, the activation of the hypothalamic-pituitary-adrenal axis is inhibited, the expression of 11β-HSD2 drops while

the expression of mineralocorticoid receptor (MR) rises, cardiac hypertrophy and fibrosis, and functional events increased.

and Ca2+-ATPase activities in the liver, skeletal muscle and
myocardium were reduced (Supplementary Table 6), while the
mitochondrial ATP production decreased and AMP increased
in the liver and myocardium (Supplementary Table 6). The
activities of SDH and respiratory chain complexes I, II, and III
in the liver, skeletal muscle, and myocardium of kidney-Yang
deficiency rat models also declined (Supplementary Table 6).
The mitochondrial protein expressions and urine metabolite
levels changed both in rat models and patients with kidney-Yang
deficiency symptoms (Supplementary Table 6). A recent study
showed that 27 metabolites involving amino acid, energy, ketone
body, fatty acid, and methane metabolism changed significantly
with the treatment of Yougui pill, a classic prescription for
kidney-Yang deficiency (Supplementary Table 6).

The mechanism of active ingredients
regulating metabolic
reprogramming in heart failure

Inflammation induces reprogramming of cellular energy
production and biosynthesis to ensure faster ATP production
and biosynthesis for defense response and damage repair

by increasing glycolysis and reducing fatty acid β-oxidation
and promoting mitochondrial glutaminolysis (25). Now, many
studies have revealed that glycolysis promoted inflammation,
and that inflammation and glycolysis formed an interdependent
and mutually promoting relationship (142–144), and on the
contrary, controlling glycolysis reversely regulated inflammation
(145). Metabolic remodeling precedes occurrence of cardiac
hypertrophy, and more importantly, metabolic remodeling
promotes cardiac hypertrophy (145, 146). Changes in cardiac
energy metabolism promoted the development of heart failure
and increased the severity of heart failure (147, 148). In patients
with heart failure, the protein expression of the TAC enzymes
and the pyruvate dehydrogenase complex subunits of the heart
are up-regulated, and the expression of the proteins related to
fatty acid oxidation and oxidative phosphorylation complex are
down-regulated, which indicated that the substantial metabolic
switch from free fatty acid oxidation to glycolysis in heart
failure (149, 150). Numerous studies have determined that
hexokinase 2 (HK2) (151, 152), PKM2 (153, 154), and lactate
dehydrogenase A (LDHA) (155, 156) are key genes involved
in glycolysis (Figure 4). Moreover, glycolysis is regulated by
transcription factors such as HIF-1α (23, 157), mTOR (158,
159), STAT3 (160, 161), c-Myc (162, 163) (Figure 5), and
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FIGURE 4

Inhibitory e�ect of the active ingredients of the classic formulas of invigorating kidney on the key enzymes related to glycolysis in the

mitochondrial hexose pathway caused by heart failure. The active ingredients in the classic formulas have inhibitory e�ects on the enzymatic

activity or expression of HK2, PKM2, LDHA, and PDK, respectively.

others. Alteration of mitochondrial fatty acid oxidation is
another side of metabolic reprogramming. The change of heart
fatty acid oxidation varies with the type of heart failure.
Fatty acid oxidation of myocardium increases in diabetes and
obesity related heart failure, and decreases in hypertensive heart
failure related to ischemia. Earlier reports pointed out that
the activity of the long-chain fatty acid transporter carnitine
palmitoyltransferase I (CPT1) in the hypertrophic heart was
lower than that in the heart of control animals (164). As the rate-
limiting step of mitochondrial β-oxidation, the CPT1 deficiency
exacerbates cardiac hypertrophy caused by pressure overload
(165) Moreover, inhibition of CPT1 induced myocardial
hypertrophy and premature death in mice (166). Specific
expression of acyl-CoA synthase-1 (ACSL1) in the mouse
heart promoted the synthesis of long-chain fatty acids (LCFA),
contributed to the oxidation of LCFA, reduced the lipotoxicity
caused by transverse aortic constriction stress, and delayed
progressive heart remodeling and failure (167). Long-chain 3-
hydroxyacyl-CoA dehydrogenase (LCAD) is a β-oxidation rate-
limiting enzyme. In the hearts of LCAD deleted mice, acetyl
carnitine was extremely insufficient, which resulted in severe
cardiac energy deficiency, and the mice developed cardiac
hypertrophy and decreased left ventricular ejection fraction and

diastolic filling rate (168–170) (Figure 6). Studies have reported
that the HIF-1 transcription factor, which is sensitive to hypoxia,
inhibited the expression of CPT1 and LCAD, and controlled
fatty acid metabolism (171, 172). Cardiac fibrosis is the core
pathology of heart failure. Inflammation and specific pro-
fibrotic factors, such as transforming growth factor-β, contribute
to the accumulation of extracellular matrix in the heart and the
proliferation of cardiac fibroblasts (173, 174). Glutaminolysis
is a part of metabolic reprogramming and is required for
tissue fibrosis (175, 176). The differentiation and activation of
fibroblasts induced by TGF-β1 includes glutaminolysis (177).
Inhibition of glutaminase 1, a key enzyme of glutaminolysis in
fibroblasts, attenuates tissue fibrosis (178). In addition, many
reports point out that glutaminolysis is the driver of pulmonary
hypertension and cardiac remodeling (179, 180). c-Myc is
believed to be involved in the development of heart failure
(181, 182) and the regulation of glutaminolysis (183, 184). The
basic pathology of inflammation and metabolic reprogramming
exist in heart failure. In recent years, accumulated evidence
has gradually established the knowledge that heart failure
includes the underlying pathology of inflammation and the
phenomenon of metabolic reprogramming, which provides new
pharmacological targets (Figures 4–7).
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FIGURE 5

Transcriptional regulation of gene expression related to metabolic reprogramming by active ingredients in classical formulas. Heart failure and

inflammation trigger the activity of transcription factors c-Myc, mTOR, STAT3, and HIF-1 to change the expression and activity of enzymes

related to glycolysis, fatty acid β-oxidation, and glutaminolysis.

In view of the fact that metabolic remodeling precedes
and promotes the occurrence of myocardial hypertrophy, the
inhibition of metabolic remodeling will contribute to the
improvement of myocardial hypertrophy and heart failure.
Animal and cell experiments have confirmed that the active
ingredients of many herbs for “warming and tonifying Kidney-
Yang” and “promoting blood circulation and dispersing blood
stasis” from classic prescriptions have the effect of inhibiting
metabolic reprogramming. Cinnamomum cassia is an important
herbal medicine for warming and tonifying Kidney-Yang,
whose active ingredients have the ability to inhibit glycolysis.
Cinnamic acid blocks pyruvate dehydrogenase kinase activity
(185), while 2’-hydroxycinnamaldehyde ameliorates PKM2-
STAT3 signaling (186) (Figure 4). Epimedium brevicornum has
been widely used in warming and nourishing kidney-yang
for centuries. Its component icariside II acts as a natural
inhibitor of mTOR to correct abnormal energy homeostasis
(187), while icaritin inhibits IL-6-induced STAT3 pathway and
HK2 expression (188) (Figure 5). Genipin, an active ingredient
of Eucommia ulmoides, is also an inhibitor of UCP2. Studies
have pointed out that genipin prevents the expression of
glycolysis-related genes hnRNPA2/B1 and PKM2 (189, 190)
(Figure 7). The active components of dodder seeds, such as

astragalin, quercetin, and kaempferol, also play a role in
reducing the expression of HK2 and improving glycolysis (191–
193) (Figure 4). A recent study indicated that Kaempferol also
reversed aerobic glycolysis by modulating hnRNPA1-PKM2 axis
(194) (Figure 7). Besides, quercetin has also been found to
stabilize HIF-1α, reduce the formation of heterodimers with β

subunits (HIF-1β/ARNT), and inhibit aerobic glycolysis against
glucose fluctuations (195, 196) (Figure 5). Salvia miltiorrhaza

is an important herb for promoting blood circulation and
removing blood stasis. Its main active components tanshinone
IIA and cryptotanshinone have good anti-inflammatory effects
(197–203). Tanshinone IIA inhibits HK2-mediated glycolysis,
glucose consumption, and lactic acid production, blocks the
effect of c-Myc conduction (200) (Figure 5). Cryptotanshinone
down-regulates the expression of glycolysis-related genes, such
as GLUT1, LDHA, and HK2, also cuts off STAT3-mediated
glycolysis (201, 202) (Figure 5). Moreover, rosmarinic acid, is
one of the components of Salvia miltiorrhiza, also has the effect
of inhibiting glycolysis (203, 204). In addition, many other active
ingredients of kidney-tonifying and blood-activating herbs, such
as bergapten, baohuoside I, ligustilide, isoliquiritigenin, and
curcumin, all reveal inhibitory effects on glycolysis (205–209)
(Figure 4).
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FIGURE 6

Active ingredients in the classic formulas activate the expression or activity of CPT1 and improve fatty acid β-oxidation with or without the AMPK

pathway. CPT1 is a key channel for long-chain fatty acids across the mitochondrial outer membrane, and its activity or expression a�ects the

β-oxidation of fatty acids.

CPT-1 is a key restriction enzyme for LCFA β-oxidation.
In inflammation and sepsis, the activity of myocardial CPT-1
is inhibited, which is a target of oxidative modification and a
marker of myocardial dysfunction (210). Studies have shown
that the active ingredients of Ramulus Cinnamomi, cinnamic
acid, and syringaresinol, up-regulate the expression of CPT-
1 through activating AMPK and PPARβ signaling (211, 212)
(Figure 6). CPT-1 is a downstream gene regulated by AMPK
pathway (213, 214). Activating blood herbal components,
paeoniflorin from Paeonia suffruticosa and Paeonia veitchii,
and tanshinone IIA from Salvia miltiorrhiza, restored the
expression of CPT-1 through AMPK signaling pathway (215,
216) (Figure 6). Many components of kidney-tonifying herbs
activate AMPK activity, such as cinnamaldehyde, quercetin,
and bavachalcone (217–219), indicating that these active
components may regulate fatty acids β-oxidation (Figure 6).
The psoralen extract and the active ingredient bakuchiol, from
kidney-tonifying herbal Psoraleae Fructus, reversed reverse the
decline in the expression of PGC-1α and CPT-1 caused by cell
senescence (220). Similar to the above examples, osthol, the
active component of Cnidium monnieri, also has been reported
to decrease SREBP-1c and increase CPT-1α expression (221)
(Figure 6).

Metabolic reprogramming is a significant feature of failing
hearts. As a biomarker of the Warburg effect, the activity
of PKM2 is enhanced (222). While PKM2 maintains the
aerobic glycolysis pathway, PKM2 also plays a key role
in glutaminolysis (153, 223). Because the differentiation
and activation of fibroblasts induced by TGF-β1 includes
glutaminolysis (177), the prevention of glutaminolysis can
contribute to antagonize cardiac fibrosis. However, there are
few reports on glutaminolysis inhibitors, only tanshinone IIA
and curcumin were found to down-regulate PKM2 expression
(209, 224).

Conclusion and expectations

Deficiency of heart- and kidney-Yang is the key pathogenesis
of chronic heart failure, which reflects the more serious
pathological phenotype of heart failure. According to NYHA’s
classification of heart failure, patients with kidney-Yang
deficiency are mainly elderly and distributed in classes III +
IV. Warming and invigorating kidney-Yang has become an
important TCM therapy for chronic heart failure. Numerous
classic and folk prescriptions embody the therapeutic cogitation
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FIGURE 7

Inhibitory e�ect of active ingredients in classical recipes on hnRNP A1-mediated alternative splicing of PKM2, either directly or via activation of

Sirt1. The heterogeneous nuclear ribonucleoprotein, which packs newly produced precursor mRNA, is acetylated and stabilized under

conditions of heart failure and inflammation, and then selectively splices PKM2 mRNA to promote glycolysis.

of warming and tonifying kidney-Yang. An important
modern pharmacological mechanism of this therapy is anti-
inflammatory, neurohumoral regulation, and maintaining
the homeostasis of cardiac function. Given that metabolic
reprogramming is closely linked to inflammation, cardiac
hypertrophy, and fibrosis, abnormal energy metabolism is a
reflection of the inflammatory phenotype in chronic heart
failure on metabolic reprogramming. The key components
of classic tonifying-kidney prescriptions can regulate the
energy metabolism abnormality of heart- and kidney-yang
deficiency, and modulate the expression and activity of enzyme
genes in glycolysis and fatty acid β-oxidation pathways. These
discussions provide a modern pharmacological interpretation
of the mechanism of tonifying-kidney therapy in the treatment
of chronic heart failure.

At present, the design of clinical studies on chronic
heart failure with classic prescriptions for kidney-tonifying
lacks a multi-center, randomized, double-blind, placebo-
controlled study based on standard treatment and parallel
groups, and the production of classic prescriptions used
lacks standardization, which requires major improvements.
Besides, network pharmacology and protein target discovery

of animal experiments on chronic heart failure with classic
kidney-invigorating prescriptions and active ingredients need
further improvements to discover and screen core targets,
and finally fully elucidate the molecular mechanism of
classic kidney-invigorating prescriptions on chronic heart
failure treatment. Metabolic reprogramming is an important
mechanism of chronic heart failure, which is linked to
inflammation, cardiac hypertrophy, and fibrosis. Considering
the different pathological mechanisms between HFpEF and
HFrEF, it is of great clinical significance to study the
classical formulations and their active components on the
metabolic phenotypes, underlying molecular mechanisms,
and potential therapeutic targets of fatty acid oxidation,
glucose oxidation, and ketone body oxidation in chronic
failing hearts.
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Glossary

6MWD: 6-min walking distance;
11β-HSD2: 11 beta-hydroxysteroid dehydrogenase-2;
AAT: anti-aging tablet;
ABC transporters: ATP-binding cassette transporters;
ACE: angiotensin-converting enzyme;
ACHE: acetylcholinesterase;
ACSL1: acyl-CoA synthase-1;
ADRA: adrenoceptor alpha subtype;
ADRBK1: androgenic, beta, receptor kinase 1;
AGTR1/AT1 receptor: angiotensin II receptor type 1;
AHR: aryl hydrocarbon receptor;
AKR1C3: aldo-keto reductase family 1 member C3;
ALD: aldosterone;
ALOX5: arachidonate 5-lipoxygenase;
AMP: adenosine monophosphate;
AMPK: AMP-activated protein kinase;
Ang II: angiotensin II;
ANP: atrial natriuretic peptide;
AQP-2: aquaporin 2;
AR: androgen receptor;
ARNT: aryl hydrocarbon receptor nuclear translocator;
ATP: adenosine triphosphate;
ATP1A1/2: ATPase Na+/K+ transporting subunit alpha 1;
AVP: arginine vasopressin;
BCL2: BCL2 apoptosis regulator/B-cell CLL/lymphoma 2;
BNP: brain natriuretic peptide;
Ca2+-ATPase: calcium pump in sarcoplasmic reticulum or

plasma membrane;
CACNA1G/L: low-voltage-activated Ca (v)3.1 T-type

calcium channel subtypes G/L;
CASP: caspase;
CAT: catalase;
CCE: composite cardiac event;
cGMP: cyclic guanosine monophosphate;
CHRM1: cholinergic receptor muscarinic 1;
CK-MB: creatine kinase-MB;
CI: cardiac index;
CO: cardiac output;
COX-2/ PTGS2: cyclooxygenase 2 or prostaglandin-

endoperoxide synthase 2;
CPS: carbamyl phosphate synthase;
CPT1: carnitine palmitoyltransferase 1;
CRH: corticotropin-releasing hormone;
CSAR: cardiac sympathetic afferent reflex;
CYP: cytochrome P450;
DLD: dihydrolipoamide dehydrogenase;
E/A ratio: the ratio of the early (E) to late (A) ventricular

filling velocities;
EF: ejection fraction;
EGFR: epidermal growth factor receptor;
eNOS/NOS3: endothelial nitric oxide synthase;

EPO: erythropoietin;
ERK1/2: extracellular signal-regulated kinases 1/2;
ESR1: estrogen receptor alpha;
FGF23: fibroblast growth factor 23;
FS: fractional shortening;
GLUT1: glucose transporter type 1;
GR: glutathione reductase;
GSTM1/2: glutathione S-transferase mu 1;
GSTP1: glutathione S-transferase pi 1;
GUCY1B3: guanylate cyclase 1 soluble subunit beta 3;
HFpEF: heart failure with reduced ejection fraction;
HIF-1α: hypoxia inducible factor-1alpha;
HK2: hexokinase 2;
HMGB1: high mobility group box 1;
hnRNPA2/B1: heterogeneous nuclear

ribonucleoprotein A2/B1;
HO-1: heme oxygenase-1;
HR: heart rate;
hs-CRP: high-sensitivity C-reactive protein;
ICAM1: intercellular adhesion molecule 1;
ICR: the Institute of Cancer Research in the USA;
IFN-γ: interferon-gamma;
IKBKB: inhibitor of nuclear factor kappa B kinase

subunit beta;
IL-1β: interleukin-1beta;
IL-6: interleukin-6;
iNOS/NOS2: inducible nitric oxide synthase;
JNK: c-Jun N-terminal kinase;
JSP: Jinkui Shenqi pill;
α-KGDH: alpha ketoglutarate dehydrogenase;
KM: Kunming;
LCAD: long-chain 3-hydroxyacyl-CoA dehydrogenase;
LCFA: long-chain fatty acids;
LDH: lactate dehydrogenase;
LOX-1: lectin-like oxidized low-density

lipoprotein receptor-1;
LPS: lipopolysaccharides;
LVDD: left ventricular diastolic dysfunction;
LVEDd: left ventricle end diastolic dimension;
LVEDV: left ventricular end-diastolic volume;
LVEF: left ventricular ejection fraction;
LVESd: left ventricular end-systolic diameter;
LVESV: left ventricular end systolic volume;
LVSD: left ventricular systolic dysfunction;
MAPK: mitogen-activated protein kinase;
MCAD: acyl CoA dehydrogenase;
MCP-1: monocyte chemoattractant protein-1;
MLHFQ: Minnesota living with heart failure

questionnaire;
MMP-2/9: matrix metallopeptidase 2/9;
MR: mineralocorticoid receptor;
mTOR: mammalian target of rapamycin;
Mφ: macrophages;
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Na+/K+-ATPase: sodium-potassium pump in outer
plasma membrane;

NCOA1: nuclear receptor coactivator 1;
NE: norepinephrine;
NF-κB: nuclear factor kappa light chain enhancer of

activated B cells;
NK cells: natural killer cells;
NLR: nucleotide-binding domain, leucine rich repeat

containing receptor;
NLRP3: NLR family pyrin domain containing 3;
NO: nitric oxide;
NOX: nicotinamide adenine dinucleotide phosphate

oxidase;
Nrf2: nuclear factor erythroid 2-related factor 2;
NT-proBNP: N-terminal pro-B-type natriuretic peptide;
NYHA: New York Heart Association;
ox-LDL: oxidized low-density lipoprotein;
OXPHOS: oxidative phosphorylation;
PaO2: partial pressure of oxygen;
PaCO2: partial pressure of carbon dioxide;
PDH: pyruvate dehydrogenase;
PDK: pyruvate dehydrogenase kinase;
PGC-1α: peroxisome proliferator-activated

receptor-gamma coactivator-1alpha;
PGE2: prostaglandin E2;
PGR: progesterone receptor;
PI3K: phosphatidylinositol-3 kinase;
PKG: cyclic GMP-dependent protein kinase;
PKM2: pyruvate kinase M2;
PLAU: plasminogen activator, urokinase;
PON1: paraoxonase 1;

PPARs: peroxisome proliferator-activated receptors;
PRKCA: protein kinase C alpha;
PVN: paraventricular nucleus;
RCRI/Lee’s score: revised cardiac risk index score;
RELA: RELA proto-oncogene, NF-kB subunit;
RVID: right ventricular internal diameter;
RVOT: right ventricular outflow tract;
SaO2: oxygen saturation;
SARDH: sarcosine dehydrogenase;
SV: stroke volume;
SD: Sprague-Dawley;
SDH: succinate dehydrogenase complex;
SELE: selectin E;
SFO: subfornical organ;
SI: stimulation index;
SLP: splenic lymphocyte proliferation;
SOD: superoxide dismutase;
Stat3: signal transducer and activator of transcription 3;
TAC: tricarboxylic acid cycle;
TC: therapeutic compound;
TCM: traditional Chinese medicine;
TGF-β1: transforming growth factor-beta1;
TLR: Toll-like receptor;
TNF-α: tumor necrosis factor-alpha;
TRPC6: canonical transient receptor potential

channel 6;
UTR: urotensin II receptor;
VCAM1: vascular cell adhesion molecule 1;
VEGFA: vascular endothelial growth factor A;
WBC: white blood cell;
Yang-Qi: Yang energy.

Frontiers inCardiovascularMedicine 20 frontiersin.org

https://doi.org/10.3389/fcvm.2022.988360
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org

	Mechanism of tonifying-kidney Chinese herbal medicine in the treatment of chronic heart failure
	Introduction
	Immunity and inflammation in the heart- and kidney-Yang deficiency
	Chinese herbal medicinal ingredients for warming and tonifying kidney-Yang target involved in anti-inflammatory and cardiac function homeostasis
	Effect of prescriptions on changes of sympathetic excitability and neurohumoral factors in chronic heart failure
	Abnormal energy metabolism in kidney-Yang deficiency
	The mechanism of active ingredients regulating metabolic reprogramming in heart failure
	Conclusion and expectations
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References
	Glossary


