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Microlens arrays (MLAs) and MLA-based artificial compound eyes (ACEs) are the

important miniaturized optical components in modern micro-optical systems. However,

their optical performance will seriously decline once they are wetted by water

droplets (such as fog, dew, and rain droplets) or are polluted by contaminations in

a humid environment. In this mini-review, we summarize the research works related

to the fabrication of superwetting MLAs and ACEs and show how to integrate

superhydrophobic and superoleophobic microstructures with an MLA. The fabrication

strategy can be split into two categories. One is the hybrid pattern composed of

the MLA domain and the superwetting domain. Another is the direct formation of

superwetting nanostructures on the surface of the microlenses. The superhydrophobicity

or superoleophobicity endows the MLAs and ACEs with liquid repellence and

self-cleaning function besides excellent optical performance. We believe that the

superwetting MLAs and ACEs will have significant applications in various optical systems

that are often used in the humid or liquid environment.

Keywords: microlens array, artificial compound eye, superhydrophobicity, underwater superoleophobicity, liquid

repellence, self-cleaning, anti-fogging

INTRODUCTION

Microlens arrays (MLAs) and MLA-based artificial compound eyes (ACEs) play a key role in
advanced micro-optical systems (Pan et al., 2007; Song et al., 2013; Gorzelak et al., 2014; Petsch
et al., 2016; Lin et al., 2018). By taking advantages of small size, high integration, and striking optical
capability, MLAs and ACEs are widely applied in light-field regulation (Deng et al., 2014; Wei et al.,
2018; Zhou et al., 2018; Sohna et al., 2019), fiber coupling (Elsherif et al., 2019; Liu et al., 2019; Orth
et al., 2019), lab-on-chip devices (Fei et al., 2011; Lv et al., 2016; Vespini et al., 2016), biochemical
observation (Ma et al., 2014; Holzner et al., 2018), lasermicrofabrication (Bekesi et al., 2010; Li et al.,
2020), solar cells (Chen Y. et al., 2013), sensors (Zanella et al., 2020), three-dimensional imaging (Li
et al., 2016; Kim et al., 2019; Zhang et al., 2019; Joo et al., 2020; Qin et al., 2020; Zhao et al., 2020),
and light extraction (Shin et al., 2018; Zhou et al., 2019a,b). However, the normal use of the MLA
is usually restricted by many limitations. For example, when the traditional MLA works outdoors,
dust will soon deposit on the MLA surface. For a humid environment, liquid droplets (such as fog,
dew, and rain) can easily pin on the MLA surface. Once the MLA is wetted or polluted, its optical
performance will seriously decline. To maintain good imaging ability, the regular maintenance
and clean for an MLA is highly required. Frequent clean using the lens wiping paper may result
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in damage to the fine optical microstructure on the MLA
surface, thus shorting the lifetime of MLA. The use of detergents
and organic solvents to remove dust and contaminations will
cause environmental pollution. Sometimes, the MLA-based
components need to be disassembled from the optical system
to remove the adhered water droplets or contaminations. The
abovementioned problems caused by the adhered droplets and
contaminations can be avoided if the MLAs have a great liquid-
repellent ability and self-cleaning function. Fabrication of such
superwetting MLAs has important implications from a practical
point of view, but there are still no articles that summarize the
methods of combining superwetting microstructures withMLAs.

Here, the strategy of fabricating superwetting MLAs and
ACEs is discussed and summarized. This mini-review aims to
show how to integrate superhydrophobic and superoleophobic
microstructures with an MLA. The article starts with a brief
introduction of the significance of endowing an MLA with liquid
repellence and self-cleaning ability. Then, some examples are
given to present the typical superwettability in nature, such as
superhydrophobicity and underwater superoleophobicity. The
next part shows the recent research works related to the
fabrication of superwetting MLAs and ACEs. The fabrication
strategy is split into two categories. Finally, a brief discussion
of current challenges and prospects in the fabrication and
applications of the superwetting MLAs and ACEs is provided in
our perspective.

SUPERWETTABILITY

Many animals and plants have developed colorful superwetting
surface microstructures through evolution (Barthlott and
Neinhuis, 1997; Parker and Lawrence, 2001; Gao and Jiang,
2004; Zheng et al., 2007, 2010; Liu et al., 2009; Ju et al., 2012;
Chen F. et al., 2013; Yong et al., 2017a, 2018a). Lotus leaf has
a great ability to repel water droplets and self-clean its surface
because of the excellent superhydrophobicity (Figure 1A;
Barthlott and Neinhuis, 1997; Yong et al., 2017a). Raindrops
or dewdrops have a sphere shape on the lotus leaf with the
water contact angle (CA) above 150◦ (inset of Figure 1C) and
can easily roll away. Such superhydrophobicity is attributed
to the combination of the hierarchical surface microstructures
and the low-surface-energy chemical composition of the lotus
leaf (Bellanger et al., 2014; Jiang et al., 2015; Wen et al., 2015;
Su et al., 2016; Yong et al., 2017b,c, 2018b; Bai et al., 2020).
The scanning electronic microscopy (SEM) image reveals that
plenty of papilla structures with a diameter of about 5 ∼ 9µm
randomly distribute on the lotus leaf surface (Figure 1C; Yong
et al., 2017a). Each papilla is further coated with abundant
nanorods with a diameter of ∼120 nm (Figure 1D). The surface
of the lotus leaf is also coated with a layer of wax crystals. The
contact area between the lotus leaf surface and water droplets is
greatly reduced by the highly roughmicro/nanoscale hierarchical
structures. An air cushion forms between the water droplet and
the rough surface microstructure. The water droplet is at the
Cassie wetting state on the lotus leaf surface, as depicted in
Figure 1B (Wang and Jiang, 2007; Yong et al., 2017c, 2018c). The

repulsive interaction between water and air just allows water to
touch the top portion of the surface microstructures. Therefore,
the hierarchical microstructures and the waxy crystals endow
lotus leaf with superhydrophobicity.

Water droplet on the superhydrophobic lotus leaf has a
spherical shape and can easily roll off. Because most dust particles
have a stronger ability to adhere to the liquid surface than adhere
to a solid surface, the rolling droplets are more likely to pick
up the heterogeneous contaminants on the superhydrophobic
surface. When the lotus leaf has a slight shake or tilted angle, the
spherical water droplets roll down and take the pollutants or dust
on the lotus leaf away, leaving a clean path behind the droplets
(Figure 1E). As a result, the lotus leaf can be self-cleaned by
the water droplets such as raindrops. This phenomenon is called
“lotus leaf effect” or “self-cleaning effect” which results from the
ultra-low adhesive superhydrophobicity of lotus leaf (Nishimoto
and Bhushan, 2013; Yong et al., 2013, 2014b; Ragesh et al., 2014).

Fogging can scatter light and cause poor optical performance
for an optical element. Interestingly, mosquitoes possess a
fascinating vision even in a humid habitat (Gao et al., 2007).
When the fog composed of many tiny water droplets is blown
toward the mosquito eyes, it is found that the tiny fog drops
are unable to stick on the surface of mosquito eyes (Figure 1F).
The mosquito eyes feature superhydrophobic and anti-fogging
properties. The mosquito compound eye consists of hundreds
of microscale hemispheres (Figure 1G; Gao et al., 2007). These
hemispheres are called ommatidia and can act as individual
sensory units. The ommatidia with a diameter of 26µm are
uniformly arranged (Figure 1H), with rich fine nanoscale nipples
on their surface (Figure 1I). These nipples with a diameter of
101.1 nm are very uniform and organize in a hexagonal non-
close-packed array (Figure 1I). It is the combination of the
microscale ommatidia and the nanoscale nipples that creates the
superhydrophobicity for preventing fog drops (moisture) from
adhering to the mosquito eye.

Fly eyes also cannot be wetted in some extremely miry and
moist environments (Figure 1J; Sun et al., 2014). The compound
eyes (around 5mm in size) are made up of repeating ommatidia
with a diameter of 20µm (Figures 1K,L; Sun et al., 2014).
The surface of ommatidia is covered with abundant bubble-like
protuberances with a diameter of ∼100 nm (Figure 1M). The fly
compound eyes are also superhydrophobic and have the ideal
anti-fogging ability.

Fish (inset of Figure 1N) can maintain its skin clean even in
oil-contaminated waters. Such underwater oil resistance results
from the underwater superoleophobicity of fish scales (Liu et al.,
2009; Yong et al., 2018a). Fish scales are mainly composed of
protein, calcium phosphate, and a thin layer of mucus. There are
many hill-like microstructures orderly arranging on the surface
of the fan-shaped fish scales (Figures 1N,O; Yong et al., 2018a).
The surface of each convex structure is decorated with abundant
nanoscale bleb structures (Figure 1P). The high-surface-energy
chemical composition and rough microstructure make fish scales
superhydrophilic in the air and become superoleophobic after
immersion in water. The oil droplets on the fish scale surface have
an oil CA above 150◦ (inset of Figure 1P). In water, the fish scale
is fully wetted by water and a layer of water is trapped between
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FIGURE 1 | Superwettability in nature. Superhydrophobicity and self-cleaning effect of a lotus leaf surface: (A) photo of lotus leaves, (B) Cassie wetting state between

the water droplet and the microstructure of a lotus leaf, (C,D) SEM images of the microstructures on the lotus leaf surface, and (E) schematic of the self-cleaning

(Continued)
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FIGURE 1 | effect of a superhydrophobic surface. The inset in (C) shows a water droplet on the surface of a lotus leaf. Anti-fogging property of mosquito’s eyes: (F)

photo of a mosquito blown with fog, (G) SEM image of the mosquito compound eye, (H) SEM image of ommatidia on a mosquito eye, and (I) SEM image of the fine

nanoscale nipples on the surface of mosquito ommatidia. Anti-fogging property of fly eyes: (J) photo of a fly blown with fog, (K,L) SEM images of a fly compound eye,

and (M) SEM image of the nanoscale protuberances on the ommatidia of the fly compound eye. Underwater superoleophobicity of fish scales: (N,O) SEM images of

the fish scale surface covered with hill-like microstructures, (P) SEM image of the nanoscale bleb structures on the hill-like microstructure of fish scale, (Q) underwater

Cassie wetting state between an oil droplet and the surface microstructures of fish scale in a water medium. The inset in (N) is the photo of a fish, and the inset in (P)

shows an underwater oil droplet on a fish scale. Reproduced from Yong et al. (2017a) with the permission of the American Chemical Society. Reproduced from Yong

et al. (2014b) with the permission of the Royal Society of Chemistry. Reproduced from Gao et al. (2007) and Sun et al. (2014) with the permission of the WILEY-VCH.

Reproduced from Yong et al. (2018a) with the permission of Yong et al.

the oil droplet and the fish scales. The trapped water cushion
hinders the effective contact between the oil droplet and the fish
scales so that the oil is only in contact with the tip of the surface
microstructures of fish scales, as shown in Figure 1Q. Such an oil
droplet is at the underwater Cassie wetting state on the fish scales
(Figure 1Q; Yong et al., 2014a, 2017c, 2018c). As a result, the fish
scale has remarkable repellence to oils in water.

The superhydrophobicity and underwater superoleophobicity
in nature can provide some inspiration toward endowing MLAs
and ACEs with advanced liquid repellence, anti-contamination,
and anti-fogging property by the combination of proper surface
microstructure and chemical composition (Wang et al., 2015).

FABRICATION OF SUPERWETTING MLAs

Rough surface microstructures are required to achieve
superwettability (Wang et al., 2015). However, a rough surface
structure usually reduces the transparency for an optical material
because of the light scatter. To prepare a superwetting MLA, it is
important to skillfully integrate a superwetting microstructure
on an MLA surface, without weakening the optical performance
of the MLA. Two strategies have been proposed to prepare such
superwetting MLAs. One is the fabrication of a hybrid pattern
which is composed of the MLA domain and the superwetting
domain. Another is the direct formation of superwetting
nanostructures on the surface of the microlenses.

Superwetting microstructure can be created on the flat
area between microlenses rather than the top surface of
the microlenses, making the whole MLA surface finally
present superwettability. Li M. et al. (2019a) reported a
superhydrophobic MLA pattern consisted of a convex MLA
and the surrounding superhydrophobic microstructures on a
polydimethylsiloxane (PDMS) substrate. An MLA was firstly
obtained by the femtosecond laser wet etching technology and
the template replicatedmethod. To achieve superhydrophobicity,
rough microstructures were further prepared on the rest flat
area between the microlenses by laser direct ablation, as
shown in Figure 2A. Figure 2B shows the SEM image of the
as-prepared PDMS pattern. The surface of the microlenses
is not ablated by laser and thus remains smooth (inset of
Figure 2B). The smoothness is important to the imaging
capability for a microlens. Each microlens is surrounded by
the grid-patterned laser-ablated domain with rough surface
microstructures between the microlenses (Figure 2C). The laser-
induced PDMS microstructures have great superhydrophobicity.
Water droplet on the laser-structured PDMS surface is at the

Cassie wetting state (Figure 1B) and can only touch the tip
of the surface microstructures. As a result, the hybrid pattern
composed of a MLA and the surrounding superhydrophobic
microstructure is prepared. A water droplet can maintain a
spherical shape with a CA of 161.5◦ (Figure 2D) on the as-
prepared MLA pattern and can roll off easily with a sliding
angle (SA) of 0.5◦, like on a superhydrophobic lotus leaf. The
laser-structured region is enough to provide a repellent effect to
water droplets for the hybrid pattern. Therefore, the formation of
the surrounding microstructure endows the MLA substrate with
superhydrophobicity and ultralow adhesion to water.

The superhydrophobic MLA still has excellent imaging
performance because the surface of the microlenses is not
treated by laser and remains smooth. As shown in Figure 2E,
when a jet of water (blue color) is randomly sprayed onto
the superhydrophobic MLA, no water residual leaves on the
superhydrophobic MLA, whereas water can stick on the surface
of the normal MLA, demonstrating that the as-prepared
superhydrophobic MLA has remarkable water repellence (Li
M. et al., 2019a). The imaging ability of the superhydrophobic
MLA is not affected by the water droplets because water is
unable to adhere to the MLA. Similar to a lotus leaf, the
superhydrophobicity also endows the MLA with a remarkable
self-cleaning function. Once the MLA surface is polluted, the
contaminants will be easily removed by water droplets. During
the spherical water droplets rolling off on the MLA sample, the
droplets concurrently take away the dust and contaminants on
their path (Figure 2F; Li M. et al., 2019a).

Similar to the superhydrophobic MLA pattern, Bian et al.
(2020) prepared an underwater superoleophobic MLA pattern
on a transparent K9 glass substrate through the ingenious
combination of the smooth microlenses and the laser-induced
rough micro/nanostructures, as shown in Figures 2G,H. The
smooth MLA can be used for underwater imaging while the
surrounding microstructures endow the sample with underwater
anti-oil ability. Underwater oil droplet on the MLA pattern has
a CA of 160.0◦ (inset of Figure 2G) and a SA of 1.5◦. The
underwater superoleophobicity enables the MLA pattern to have
the self-cleaning ability in the water, ensuring its impressive
imaging capability even after oil contamination.

Superwetting structures can also be directly created on the
top surface of the microlenses, allowing the whole MLA surface
to be decorated with a layer of superwetting structures. Li J.
et al. (2019) reported a novel manufacturing strategy to prepare
superhydrophobic MLA and ACE. A concave MLA was firstly
achieved on the elastomer substrate by a template replication.
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FIGURE 2 | Fabrication of superwetting MLAs and ACEs based on two strategies: (A–H) the hybrid pattern composed of the MLA domain and the superwetting

domain and (I–P) the hierarchical structure of superwetting microstructures on the top surface of the microlenses. Superhydrophobic MLA pattern consisted of a

convex MLA and the surrounding superhydrophobic microstructures on a PDMS surface: (A) schematic of generating superhydrophobic microstructures between

microlenses by selective laser ablation, (B) SEM image of the as-prepared MLA pattern, (C) SEM image of the laser-induced microstructures on PDMS surface, (D)

water droplet on the superhydrophobic MLA pattern, (E) remarkable water repellence of the superhydrophobic MLA, and (F) remarkable self-cleaning function of the

superhydrophobic MLA. The inset in (B) shows the SEM image of a single microlens of the MLA pattern. (G,H) SEM images of an underwater superoleophobic MLA

pattern consisted of a concave MLA and the surrounding laser-induced microstructures on a glass substrate. The inset in (G) shows an oil droplet on the underwater

superoleophobic MLA pattern in a water medium. Superhydrophobic MLA with nanostructure on the top surface of the microlenses produced by crystal growth

method: (I) SEM image of the hierarchical MLA structure, (J) SEM image of the surface of a single microlens, and (K) uniform nanorods grown on the surface of

microlenses. The inset in (K) shows a water droplet on the hierarchical MLA pattern. (L) SEM image of the hierarchical MLA fabricated by the sacrificial layer mediated

nanoimprinting. Formation of underwater superoleophobic micro/nanostructure on the top surface of the microlenses of an MLA: (M) SEM image of the underwater

superoleophobic MLA, (N) 3D profile of the MLA, (O) oil droplet on the MLA surface in water, and (P) self-cleaning ability of the underwater superoleophobic MLA as

the oil-polluted MLA is dipped into the water. Reproduced from Li M. et al. (2019a) with the permission of the WILEY-VCH. Reproduced from Bian et al. (2020) with the

permission of Bian et al. Reproduced from Raut et al. (2015) and Li J. et al. (2019) with the permission of the American Chemical Society. Reproduced from Li M. et al.

(2019b) with the permission of Li et al.

Then, ZnO nanorods were easily grown on the surface of the
microlens through the crystal growth method (Figures 2I,J).
The uniform nanorods have a length of 202–621 nm and a

diameter of 90–127 nm (Figure 2K). The water droplet on
the nanostructured MLA surface has a CA of ∼161◦, so
the as-prepared MLA surface exhibits superhydrophobicity
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(inset of Figure 2K). Such superhydrophobic MLA can be
easily extended to a dome-like profile, thus generating a
superhydrophobic ACE structure. In addition to the achievement
of the superhydrophobicity, the surface reflectance of the MLA is
also reduced by the nanostructures, with a decline of∼25% in the
wavelength range of 400–800 nm compared with a planar surface.
Therefore, the integrated nanostructure endows the MLA and
ACE with antireflection and water repellence.

Raut et al. (2015) reported an improved method to fabricate
multiscale ommatidia arrays by sacrificial layer mediated
nanoimprinting, as shown in Figure 2L. Nanostructures with a
size of 200 nm were firstly prepared on a polycarbonate (PC)
film by imprinting mold. Then, poly(sodium 4-styrene sulfonate)
(PSS) solution was spin-coated on the PC substrate to form a
500 nm thin film. To mold the nanostructured surface into the
shape of MLAs, a second imprinting process was implemented
on the nanostructured pattern which was encapsulated in the
PSS thin film. As a sacrificial layer, the PSS layer protected the
underlying nanostructures from buckling or deforming and was
finally dissolved away after mold release. As a result, highly
uniform multiscale microlenses with nanostructures on their
surface were produced (Figure 2L). When the methacrylate-
containing resin was used to replicate the multiscale ommatidia
arrays on glass, a superhydrophobic MLA was obtained with a
water CA of ∼151◦. The CA hysteresis, which is the difference
between advancing CA and receding CA, was as low as 2◦,
indicating that such superhydrophobic MLA exhibits extremely
low adhesion to water droplets (Yong et al., 2017c). The
superhydrophobicity endows the as-prepared MLA with an
anti-fogging property which is crucial in the retention of the
wealthy optical property of the multiscale MLA even in wet and
humid conditions.

MLAs also have wide applications in the aqueous
environment. The surface pollution by oil contaminations
usually weakens the optical imaging ability of the normal MLA.
Li M. et al. (2019b) fabricated an underwater superoleophobic
MLA with great oil-repellent and self-cleaning abilities in water.
An MLA was firstly formed on a commercial K9 glass substrate
by a femtosecond laser wet etching method. The surface of the
original microlenses is smooth, without any noticeable particles
on its surface. To generate micro/nanostructures on the MLA
surface, the MLA surface was further ablated by laser. As a result,
the whole surface of the laser-treated microlenses is covered
with micro-bump structures (about 1µm in size) (Figure 2M).
Even though the microlenses are roughed, they still maintain
the lens-curved surface profile (Figure 2N). The formation of
microstructures on the microlens surface makes the textured
MLA have superhydrophilicity with a water CA of 7.8◦. Various
oils are repelled by the MLA in water. An oil droplet on the
textured MLA has an oil CA of 158.0◦ (Figure 2O) and an
oil SA of 2.0◦ in a water medium, revealing the underwater
superoleophobicity of the structured MLA. The underwater
superoleophobicity is attributed to that the oil droplet is at the
underwater Cassie state on the textured MLA surface, like an
underwater oil droplet on the fish scale (Figure 1Q; Yong et al.,
2018c). In a water medium, oil droplets can only touch the peaks
of the micro/nanostructures on the MLA surface.

The underwater superoleophobicity endows the MLA with
oil resistance and self-cleaning ability. As the oil-polluted
MLA is dipped into water, the oil molecules in the surface
microstructure are easily replaced by water because of the
superhydrophilicity and underwater superoleophobicity of the
laser-textured MLA surface (Figure 2P). Under such a process,
all the oil contaminants detach from the MLA surface and
float onto the water surface, without any oil residues on the
MLA surface.

Each approach has its benefits and drawbacks. For the
superwetting MLA fabricated by the hybrid pattern method,
the surface of its microlenses is not roughed, so the MLA
remains original imaging capacity. However, the arrangement
of the microlenses is unable to reach a highly close-packed
state. Regarding the superwetting MLA based on hierarchical
structures, the size of the required nanostructures on the surface
of the microlenses should be not too large (usually less than
half wavelength of light), otherwise, the nanostructures will cause
obvious light scatter.

CONCLUSIONS AND OUTLOOK

In conclusion, the recent achievements related to the fabrication
of superwetting MLAs and ACEs are reviewed. Inspired by the
superwettability in nature, superwetting micro/nanostructures
are integrated into the MLA surface, thereby endowing the
MLAwith anti-liquid and self-cleaning properties. Two strategies
are generally utilized to prepare such a superwetting MLA. A
superwetting microstructure can be created on the flat area
between microlenses, resulting in a hybrid pattern composed
of the MLA domain and the superwetting domain. On the
other hand, the superwetting nanostructures can also be
directly created on the top surface of the microlenses. The
resultant MLAs and ACEs exhibit superhydrophobicity or
superoleophobicity, which endows those optical components
with excellent liquid repellence and self-cleaning function besides
good optical performance.

Although several superwetting MLAs and ACEs have
been reported, the fabrication of such superwetting optical
components is currently still in its infancy. Many development
problems need to be solved before practically applying the
superwetting MLAs and ACEs in various optical systems.
Firstly, poor mechanical/chemical durability of the superwetting
micro/nanostructures may result in the decline of the surface
superwettability and optical performance for a superwetting
MLA after a short period of use. Stable superwettability can
extend the service life of the superwetting MLAs and ACEs.
Secondly, the influence of the surface micro/nanostructures on
surface wettability as well as the optical performance of an MLA
should be deeply studied and optimized, which has a positive
role in designing and fabricating different superwetting MLAs
and ACEs. Finally, how to effectively integrate the superwetting
MLAs with other optical components in a micro-optical system
is also a technical problem. The adverse effect of the generated
superwetting micro/nanostructures on the basic optical function
of themicro-optical system should beminimized.We believe that
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the liquid repellence and self-cleaning function will broaden the
applications of the superwetting MLAs and ACEs in the medical
endoscope, solar cells, microfluidic system, bioscience research,
ocean exploration, and other optical systems that are often used
in the humid or liquid environment.
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