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Abstract: Utilizing the surface plasmon resonance (SPR) effect of gold nanoparticles (GNPs) enables
their use as contrast agents in a variety of biomedical applications for diagnostics and treatment.
These applications use both the very strong scattering and absorption properties of the GNPs
due to their SPR effects. Most imaging methods use the light-scattering properties of the GNPs.
However, the illumination source is in the same wavelength of the GNPs’ scattering wavelength,
leading to background noise caused by light scattering from the tissue. In this paper we present
a method to improve border detection of regions enriched with GNPs aiming for the real-time
application of complete tumor resection by utilizing the absorption of specially targeted GNPs
using photothermal imaging. Phantoms containing different concentrations of GNPs were irradiated
with a continuous-wave laser and measured with a thermal imaging camera which detected the
temperature field of the irradiated phantoms. By modulating the laser illumination, and use of
a simple post processing, the border location was identified at an accuracy of better than 0.5 mm even
when the surrounding area got heated. This work is a continuation of our previous research.
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1. Introduction

The ability to resect a tumor completely is a key merit in preventing the recurrence of the
disease. In order to achieve more complete tumor resection, the surgeon must clearly identify the
tumor margins. This identification is even more crucial when the tumor growth is adjacent to or in
neurological structures, and therefore it is dangerous to remove extra tissue [1,2]. Various methods
have been proposed to better visualize tumor margins. Among these methods are magnetic resonance
imaging (MRI) [2], CT [3] and targeted fluorescence imaging [4]. However, MRI and CT, because of
their prolonged process, suffer from limited spatial resolution due to tissue shift during surgery [5],
and targeted fluorescence imaging depends on the photophysics or photochemistry of the fluorophore,
the autofluorescence of live cells, photo toxicity and photo bleaching [6–10].

Gold nanoparticles (GNPs) have been used for the last two decades by numerous research
groups as biomarkers in multiple biological applications such as drug delivery [11], imaging contrast
agents [12,13] and therapeutics [14,15]. Important attributes of GNP are their photostability and
biocompatibility [16]. The main interest in GNPs stems from the surface plasmon resonance (SPR)
that results in high scattering and absorption cross-sections [17]. When the GNPs are illuminated
by a wavelength that matches the SPR, a strong oscillating motion of the electrons in the GNPs will
occur, resulting in amplification of their optical absorption and scattering [18,19]. The resonance
wavelength depends on the GNP’s dimensions and the refractive index of the nanoparticle and its

Materials 2017, 10, 203; doi:10.3390/ma10020203 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/journal/materials


Materials 2017, 10, 203 2 of 10

environment [17]. The light scattering is essential for imaging applications based on light-scattering
modalities, including dark field microscopy [20,21] or coherence tomography [22,23]. The approach
based on light absorption is used, for instance, for bright field microscopy and photothermal
therapy [24–26]. In photothermal therapy, the strong absorption of the GNPs is utilized to elevate the
temperature to at least 50 ◦C in order to achieve effective denaturation of proteins and cell death [27].

The method proposed in this paper is a photothermal imaging using modulated laser beam
radiation on targeted gold nanorods (GNRs) and a thermal camera. By illuminating the GNRs with
a wavelength corresponding to their SPR, the GNRs absorb optical energy which turns in to heating of
the GNRs, which spread to their environment. These particles can be specifically targeted to decorate
the surface of cancer cells [28–30]. Thus, the temperature elevation occurs inside the cancerous
tissue, enabling us to distinguish between cancerous and noncancerous areas by using a thermal
camera. In our previous study we showed the basics of detecting tumor borders using the absorptions
of GNPs and a photothermal camera [31]. However, because a continuous-wave (CW) laser was
used, the temperature was elevated continually and dissipated out of the GNPs’ area, and thus the
border detection was less accurate. In this paper, to maximize the distinction of the tumor margins,
a modulation of the laser was applied to minimize heat dissipation to noncancerous surrounding tissue.
Moreover, by subtraction between the thermal images of the maximum and minimum temperature in
each thermal cycle, improvement of the border detection spatial resolution and the signal-to-noise ratio
(SNR) was achieved, even when the overall temperature was elevated. Using photothermal imaging
instead of the widely-used imaging applications based on light-scattering modalities allowed us to
prevent the background noise caused by light scattering from the tissue, thus improving the SNR and
achieving higher contrast between the target cancerous cells and the healthy tissue.

2. Experimental Setup

The experimental setup was design to image the temperature distribution over the sample under
laser irradiation by a radiometric thermal imaging camera (FLIR Systems Inc., model A325, Wilsonville,
OR, USA). As shown in Figure 1, the laser illuminates the sample from above, in perpendicular to the
sample surface. A near infra-red (NIR) laser at wavelength of 808 nm and power density of 1.6 W/cm2

and less was used. This NIR laser is in wavelength near the longitudinal SPR of the GNRs we used.
The NIR region of the spectrum provides the maximal penetration depth of light into the biological
tissue. The penetration depth of red and NIR light, in this region between 650 and 900 nm, is up to
100 mm, depending on the exact type of tissue [32]. In comparison, the penetration depth of green
Nd:YAG laser (532 nm wavelength) is less than 0.5 mm [32]. The laser illumination was modulated
using a function generator (AFG3022B by Tektronix, Beaverton, OR, USA) to create a square wave,
where the rise time and the fall time are short compared to the on time of a period of the laser pulses,
with different frequencies and duty-cycles.
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The temperature change over the sample was imaged using the thermal camera which provides
the temperature field of the image. The camera has a temperature sensitivity of 0.07 ◦C and
320 × 240 pixels. The spatial resolution of the camera is 0.5 mm for one pixel. This camera sensitive
to thermal radiation at a wavelength region of 8–14 µm, and thus is completely blind to other light
sources including the laser illumination.

3. Results and Discussion

3.1. Solid Phantom Preparation

Solid tissue–like phantoms were prepared for simulating the optical properties of tissues [33].
The solid phantoms were prepared in a few phases in order to create phantoms enriched by
GNRs surrounded by a reference phantom without GNRs. First, the inside phantoms (30 mm
diameter) were prepared by adding different concentrations of GNRs (0.025, 0.05, 0.07, 0.1 mg/mL).
Following solidification, the inside phantoms were transferred into 90 mm cell culture plates, where the
background reference phantom solution was poured carefully around them to create a uniform upper
surface with a direct interface between the phantoms with and without GNRs. Finally, the combined
phantoms were cooled under vacuum conditions to avoid bubbles.

The phantoms were prepared using 2% IntraLipid (IL) (IntraLipid 20% Emulsion, Sigma-Aldrich,
Rehovot, Israel) as a scattering component, 1 × 10−3% India Ink as an absorption component [34],
double distilled water (DDW) and 1% agarose powder (SeaKem LE Agarose, Ornat, Rehovot, Israel) in
order to convert the solution into a gel. The solutions were heated and mixed (at a mixing temperature
of 90 ◦C) while the agarose powder was slowly added. The phantoms were prepared in cell culture
plates (30 and 90 mm) and were cooled under vacuum conditions to avoid bubble formation.

3.2. Gold Nanorod (GNR) Characterization

The gold nanorods used had a 37 nm length and a 10 nm diameter, purchased from Nanopartz
Inc. (Loveland, CO, USA). In Figure 2a, one can see the TEM (Transmission Electron Microscope)
(CM 100, Philips, Eindhoven, The Netherlands) image of the GNRs and the absorbance spectrum
(ultraviolet-visible spectrometer, Shimadzu, UV1650 PC, Tokyo, Japan). The peak at 530 nm arises
from the electron’s resonance at the small size (10 nm) of the GNRs and the peak at 770 nm arises from
the long size (37 nm) resonance.
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3.3. Experimental Results

In order to examine the heating profile of the phantoms, they were irradiated with a CW laser at
a 808 nm wavelength and the temperature change at the beam center was recorded until reaching about
43 ◦C for the highest concentration of 0.1 mg/mL. The illumination was stopped at this temperature in
order to prevent damage to the phantoms. Figure 3 shows the temperature elevation profiles for the
irradiated phantoms enriched with GNRs as a function of time for different GNR concentrations.
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Figure 3. The temperature elevation as a function of illumination time using 808 nm laser for phantom
with different concentrations of GNRs.

As shown in Figure 3, the temperature of the sample without GNRs remained almost unchanged,
while the temperatures of the samples with GNRs were elevated with the heating time. The relatively
small temperature change of the reference phantom was due to the India Ink that was added to the
phantoms as an absorption component to mimic the natural absorption of healthy tissue. Furthermore,
it demonstrated that there is a correlation between the GNR concentration and the temperature
elevation. For the highest GNR concentration (0.1 mg/mL), after 20 s, a temperature elevation of about
16 ◦C was observed, while for the lowest concentration (0.025 mg/mL), the temperature change after
20 s was about 6 ◦C. In Figure 4 the linear temperature changes as a function of the GNR concentration
are shown. One can see a linear relation between the GNR concentration and the temperature elevation.
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In order to improve the exact border detection, the laser illumination was modulated using
a function generator (AFG3022B by Tektronix). The modulated signal was a square wave with
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a frequency of 0.1 Hz and different duty-cycles. Figure 5 shows the temperature change as a function
of time when the illumination was on the border between the areas with and without GNRs in the
phantom. The temperature was measured at equal distances from the beam center, which was located
on the border, towards the two sides of the phantom, to simultaneously compare the temperature rise
on both sides of the border. The exact location of the points on the sample, where the temperature was
measured, is illustrated in Figure 5a by a cross on each side of the border.
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Figure 5. Thermal images of the sample: (a) without irradiation; (b,c): after 5 and 10 s of
continuous-wave (CW) illumination, respectively. It can be seen that the heated zone increased
during the illumination time.

In Figure 5b,c we can see the thermal images after 5 and 10 s of irradiation, where the GNRs’
phantom region and the surroundings without the GNRs are easily distinguishable. We also can
see that the heated zone was increased during the illumination time and caused the movement of
the border seen in the photothermal images, taken in situ, due to continuous heat generation by the
laser irradiation absorbed by the GNRs and dissipated to the surrounding phantom with no GNRs.
To overcome this unwanted effect, we modulated the laser beam at a frequency of 0.1 Hz in a duty-cycle
of 5% in one case. The importance of the pulsed-like laser irradiation is that even if the heat from
the GNR area diffused to the surroundings and smeared or moved the border line, on the thermal
image, each laser pulse shows again the exact location of the border on top of the global rise of the
temperature. By the use of a simple image processing algorithm, the effect of the global heating is
removed as will be shown later on. Also, it is obvious that the pulsed laser radiation decreased the
total power absorbed by the factor of the duty cycle.

In the experiment, the temperature change was measured on the two sides of the border, as shown
on Figure 5a for two different GNR concentrations of 0.05 and 0.07 mg/mL. Two different duty-cycles
were used, 5% and 20%, in order to demonstrate the differences in the heating and cooling processes,
as shown in Figure 6.
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In Figure 6, one can see that when the duty-cycle is longer, the temperature elevation is higher,
where the temperature change due to the illumination absorption in the phantom without GNRs
is negligible. Therefore, the major factor in the experiment is the very high absorption of the areas
enriched with GNRs compared to the absorption of areas without GNRs.

In order to improve the border detection spatial accuracy, a record of thermal images was taken
during the modulated laser irradiation cycles at the frequency of 1 Hz. In each cycle we took 10 images
simultaneously with the temperature records shown in Figure 6. The subtraction between the thermal
images for the maximum and minimum temperatures in two successive thermal cycles was done
as follows:

Idi f f erence(x, y) = Ion(x, y)− Io f f (x, y) (1)

where Idi f f erence is the difference in the image intensity and Ion and Io f f are the image intensities for
the maximum and minimum temperatures, respectively. The exact frames that were taken are shown
in Figure 7.
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Figure 8a,b and Figure 8d,e show the thermal images’ maximum and minimum temperatures
for two successive cycles, and the subtractions are shown in Figure 8c,f. One can see that after the
subtractions, only the regions where the temperature was changed were left. These regions are
exactly where the irradiation meets the GNRs, leading to better visualization of the phantom with the
GNR border.

Shown in Figure 8g,h is the intensity profile of the cross-sections marked with red lines in
Figure 8c,f and Figure 8a, respectively. One can see that the slopes of the two cross-sections’ intensities
after subtraction are at the same pixels, and thus the overall heating of the phantoms due to the
continual irradiation do not influence the accuracy of the exact border detection by using the suggested
method. Moreover, by using the suggested method we canceled the heat dissipation effect on the
border detection, and thus the heat diffusion coefficient does not play significant role. The same
slope before the subtraction (shown in Figure 8h) extends on a larger number of pixels than after the
subtraction, which means the resolution of the exact border was improved by using the proposed
method. Moreover, the constant values were removed, leading to better visualization after the
subtraction. The spatial resolution of the thermal camera was 0.5 mm, and therefore the proposed
method can differentiate between areas with and without GNRs better than 0.5 mm even when the
surrounding area is heated. By adding an extra lens, the thermal camera can achieve, at a working
distance of 80 mm, a spatial resolution of 0.1 mm. The major limiting factors in the suggested method
are the camera resolution and the temperature gradient in the boundary due to the GNR concentration
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gradient in the boundary. Because of the two-phase preparation process of the samples (Section 3.1),
there is a diffusion of GNRs to the surroundings. As shown in Figure 8g,h, there is a temperature
gradient in the boundary, which is in correspondence to the GNR gradient. Moreover, this gradient
could mimic the state of a real tumor, where the concentration of the cancerous cells is less dense in the
boundaries. However, the overall temperature elevation is canceled and the temperature gradients for
different illumination cycles are identical. The doctor's need for tumor boundary detection accuracy
varies for different types of tumors and their locations. In general, removing extra tissue reduces the
reoccurrence of the disease [2,3]. However, exact tumor border identification is most crucial when
the tumor growth is adjacent to or in neurological structures, and therefore it is dangerous to remove
extra tissue. The exact resolution that the doctors can achieve nowadays during operations is in
the range of a few millimeters [35]. However, special techniques have been developed in order to
achieve sub-millimeter resolution [36,37]. Our method is intended to be better than these techniques.
However, for post-operation methods, a resolution of a few microns and even smaller can be achieved
by nano-microscopy using targeted GNPs in cancerous cells [13,38].
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Figure 8. (a,b) and (d,e) Thermal images of the maximum and minimum temperature for two successive
cycles; (c,f) Subtractions between the maximum and minimum in each cycle; (g,h) Intensity profile of
the cross-sections marked with red lines in (c,f) and (a), respectively.

In real tumors the spatial distribution and the position of the exact border could be varied for
different types of cancer, in contrast to the usually static GNR concentration in phantoms. Moreover,
in real tissues some GNRs may be in non-cancerous tissues. Thus, the spatial transition area in real
cases is less sharp in comparison to the studied phantom case. However, we can utilize our spatial
separation ability to calibrate the GNR concentration threshold for different tumor types and then
a thermal threshold can be set to obtain the maximal spatial diagnosis ability for the tumor’s border.
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4. Conclusions

In this research we demonstrate the feasibility to identify the border of phantoms enriched with
GNRs from their surroundings with an accuracy of better than 0.5 mm using modulated laser radiation
and a thermal imaging camera. We demonstrated an image processing algorithm developed to isolate
the GNR area from its surroundings accurately even under elevated temperatures. The lateral accuracy
of the border detection can be achieved in laser power density lowered by a factor of ~5 compared
to the 1.6 W/cm2 we used in this research, if the laser wavelength will be adapted to the GNRs’
resonance or alternatively to reduce the GNR concentration. Our laser wavelength is not exactly at
the spectral location of the GNRs’ absorption peak, as shown in Figure 2b. These particles can be
specifically targeted to decorate the surface of cancer cells. Thus, the temperature elevation occurs
in the cancerous tissue, enabling us to distinguish between cancerous and non-cancerous tissues.
An essential advantage of the proposed technique is the use of the absorption properties of GNPs
rather than their scattering properties, leading to high contrast between targeted cancer cells and
normal background tissue. We expect this in vitro technique will eventually lead to intraoperative
photothermal imaging which will assist surgeons in determining tumor margins accurately during
surgery, leading to complete tumor resection and improved patient outcome with a small concentration
of GNPs and lower laser flounce.
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