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Optimal intensity of PNF stretching: maintaining 
the efficacy of stretching while ensuring its safety

Wootaek Lim, PhD, PT1)

1)	Department of Physical Therapy, College of Health and Welfare, Woosong University: Rm No. 506, 
Health and Medical Science Building, 171 Dongdaejeon-ro, Dong-gu, Daejeon 34606, Republic of Korea

Abstract.	 [Purpose] To investigate changes in hamstring flexibility in relation to intensity of proprioceptive neu-
romuscular facilitation stretching and changes in pain over time, and examine the correlations between pain level 
and target intensity or flexibility gain. [Participants and Methods] Sixty-one healthy adults were randomly divided 
into 4 groups (100% [P100], 70% [P70], 40% [P40], and 10% [P10] of maximum voluntary isometric contraction) 
according to intensity of hold-relax stretching. Hamstring flexibility was measured with the active knee extension 
test, and pain was measured using the visual analogue scale. [Results] Concerning hamstring flexibility, P100 
showed significant differences from P40 and P10, and P70 was significantly different from P10. At post-stretch, P100 
significantly differed from P70, P40, and P10 in visual analogue scale. At 1 day, P100 significantly differed from 
P40 and P10. Although there was a significant correlation between post-stretch pain level and stretching intensity, 
there was no significant correlation between pain level and flexibility improvement. [Conclusion] Repetitive high-
intensity stretching may cause heavy burden on muscle tissues, and pain caused by high-intensity stretching can 
hinder muscle performance. Moderate stretching intensity is recommended and considered conducive to maintain-
ing the effects of stretching while ensuring its safety.
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INTRODUCTION

Even well-trained athletes can incur injuries during exercise. To prevent such injuries and improve flexibility, stretching 
is recommended as a warm-up exercise. There are several types of stretching, including static, ballistic, and proprioceptive 
neuromuscular facilitation (PNF) stretching, and extensive research data comparing them are available. It is difficult to 
conclude that a specific stretching technique is superior over others, as results vary across studies depending on the study 
conditions. However, PNF is known to be more effective than other stretching techniques in that it increases both passive and 
active flexibility and improves range of motion in the short term1, 2). Multiple studies have attempted to investigate the effects 
of PNF in relation to duration, frequency, and repetition, to identify the ideal and most efficient stretching protocol. However, 
not many studies have investigated the effects of various stretching intensities and even fewer studies have examined PNF 
stretching requiring isometric contraction. The few studies that have investigated this issue mostly focused on the improve-
ment of flexibility1, 3). High intensity stretching may lead to a greater increase in range of motion than low-intensity stretching 
by inflicting higher load on the musculotendinous units (MTUs). However, radically increasing flexibility in a short period 
with high-intensity stretching may excessively strain the MTUs. Intense stretching that exceeds the physiologic range and 
beyond the yield point may cause pain and muscle injury4, 5). Therefore, it would be important to identify the submaximal 
intensity that would maintain the efficacy of stretching on flexibility without posing physical burden such as pain. In the 
present study, we aimed to investigate the improvement in flexibility after the application of different intensities of PNF 
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stretching and the change in pain level over time, as well as to examine how pain after stretching is correlated with individual 
target intensities and with flexibility improvement after stretching.

ParticipantS AND METHODS

A total of 61 adults (27 males and 34 females, age 22.4 ± 1.8 years, height 165.6 ± 14.1 cm, weight 64.4 ± 19.8 kg) were 
enrolled in this study. The study protocol was approved by the Institutional Review Board of Woosong University (1041549-
161115-SB-34). All participants provided informed consent.

Participants were randomly divided into groups according to 4 varying intensities of PNF stretching (100% [P100], 70% 
[P70], 40% [P40], and 10% [P10] of the maximum voluntary isometric contraction [MVIC]) and measured the improvement 
in flexibility by using the active knee extension (AKE) test, and the change in pain level immediately after stretching (post-
stretch). In addition, we measured the pain level at 1 day (day 1) and 2 days (day 2) after stretching to examine the changes 
in pain level over time. For the AKE test, the participants were placed in the supine position on the treatment table with their 
hip and knee joints flexed at 90°. To maintain and assist with the hip and knee position, a custom-made metal structure was 
placed on the table, which supported the hip flexion at 90°. Before stretching, AKE was performed 6 times as a warm-up, and 
the AKE value at the 6th trial was recorded as the pre-stretch value. The AKE test was performed once more after stretching, 
and the value was recorded as the post-stretch value.

The PNF stretching intensity was measured by connecting a wireless tension dynamometer (Re-live Inc., Kimhae, Korea) 
with an LCD to the sling system. The tension dynamometer was connected between the sling rope attached to the ceiling and 
a sling strap where the participant’s ankle was placed. The LCD provided real-time feedback to the participants to let them 
adjust the stretching intensity by themselves. The position of the sling was adjusted such that the sling wire hanging from the 
ceiling was at a 90° angle with the lower extremity of the participant. After fixing the lower extremity of the participant to 
the sling system, the hold-relax PNF technique was performed 3 times (10-s for each trial with 5-s rest between trials). After 
a sufficient rest period, each group additionally performed 6 trials of hold-relax PNF stretching at their designated stretching 
intensity (100%, 70%, 40%, and 10% of the MVIC), based on the mean MVIC value of the previous 3 trials.

The Kruskal-Wallis test with Dunn’s post hoc test was used to compare the visual analogue scale (VAS) scores at each 
time point between groups, and to compare the differences in AKE value before and after stretching (ΔAKE) between groups. 
The correlations between the VAS score at post-stretch and the target intensity or ΔAKE were analyzed using Spearman’s 
rank order correlation coefficients. Data analysis was performed using IBM SPSS Statistics 23 (IBM Corp., Armonk, NY, 
USA). Statistical significance was set at p<0.05 for all tests. All values are presented as the mean ± standard deviation unless 
otherwise noted.

RESULTS

The Kruskal-Wallis test, which was used to compare VAS scores between groups, showed that the groups significantly dif-
fered at post-stretch (p=0.002) and day 1 (p=0.006) but not at day 2 (p=0.927). When analyzed in a pairwise manner, the P100 
group significantly differed in VAS scores from the P70 (p=0.000), P40 (p=0.012), and P10 (p=0.036) groups at post-stretch 
(Table 1). On day 1, the P100 group significantly differed from the P40 (p=0.021) and P10 (p=0.001) groups only. There 
were no significant differences in VAS scores across groups on day 2. With regard to improvement in flexibility, the P100 
group significantly differed from the P40 (p=0.004) and P10 (p<0.000) groups, whereas the P70 group significantly differed 
from the P10 (p=0.004) group (Table 2). The P100 group did not significantly differ from the P70 (p=0.291) group. There 
was a significant correlation between the pain level after stretching and the individual stretching target intensity (p=0.006); 
however, it was a weak positive correlation (rho=0.349) (Fig. 1). There was no significant correlation between the pain level 
after stretching and the improvement in flexibility.

DISCUSSION

PNF stretching is one of the most widely used stretching techniques, and its effects have been extensively documented 
in the literature. The concept of neuromuscular facilitation and inhibition, which is the basis of PNF, was first introduced 
by Sherrington in 1909, after which it has been clinically implemented by Kabat6, 7). However, the GTO, which has been 
believed to respond only to maximal contraction, has also been found to respond to a very low force, and it has been 
observed that there is very weak or no GTO activity after contraction8, 9). Furthermore, reciprocal inhibition is assumed to 
be realized through a complex mechanism; however, electromyography or the Hoffmann reflex method, which are widely 
used to identify and understand the mechanisms of reciprocal inhibition, are limited in that they are easily influenced by 
other factors and that they can only explain a part of the complex mechanism10). In addition to the characteristics of PNF 
stretching, the general features of static stretching are also involved in PNF stretching. The viscous and elastic properties of 
the MTUs, involving stress relaxation and elongated MTUs (creep) as a result of prolonged stretching, play an important role 
in increasing flexibility. However, the reduced passive resistance of the MTUs after stretching is only temporary and does 
not persist in the long term11).
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Although the exact underlying mechanism of PNF stretching remains incompletely understood, its efficacy has been 
demonstrated in experimental studies. Numerous studies have investigated the efficacy of PNF stretching in relation to 
the duration and frequency of PNF, and several recent studies have examined the effects of PNF according to stretching 
intensity. Some studies found that not only high-intensity but also low-intensity stretching significantly increased flexibility 
with no significant differences between the 2 groups. In the present study, we assessed the pain level after stretching as 
well as the differences in hamstring flexibility before and after stretching in relation to stretching intensity. First, the P100 
(high-intensity) group showed greater improvement of flexibility than did the P40 (low- to moderate-intensity) and P10 
(low-intensity) groups, and the P70 (high- to moderate-intensity) group also showed greater improvement of flexibility than 
did the P10 group. In other words, in our study, high-intensity stretching led to a greater increase in flexibility. Similarly, 
Sheard and Paine’s study found that low-intensity stretching (20% of MVIC) led to a smaller increase of flexibility than that 
shown by the high-intensity group12). In some studies, there were no differences in flexibility improvement between 20% and 
100% of MVIC1, 3). Although most previous studies set low-intensity stretching to 20% of MVIC, we set the low-intensity 
group to 10% of MVIC, maybe the minimum intensity that can cause a significant increase. Our results showed that high-
intensity stretching was superior in terms of increasing flexibility; however, there were some concerns about the increase 
in pain level as determined using the VAS. The P100 group showed significantly higher VAS scores than the P70, P40, and 
P10 groups immediately after stretching, and still significantly higher VAS scores than those of the P40 and P10 groups even 
on day 1 after stretching. In contrast, the P70 group did not show a significant difference in pain level from the P40 or P10 
groups. Furthermore, all participants in the P100 (100%) group complained of pain (VAS score>0) at post-stretch, whereas 
a considerable number of participants in the P70 (33.33%), P40 (26.67%), and P10 (56.25%) groups did not complain of 
pain (VAS score 0) after stretching. Considering that high-intensity stretching (P100) caused pain that persisted until the day 
after stretching, repeated high-intensity stretching before recovery may lead to muscle tissue injury4). Excessively intense 
stretching exceeding the physiological limit would induce microtears in muscle tissues, which may cause pain. In fact, T2-

Table 1.	 Changes in visual analogue scale (VAS) scores over time for each stretching intensity

Group P100 (n=16) P70 (n=15) P40 (n=15) P10 (n=15)
Post-stretch 4.63 ± 1.63 2.80 ± 2.24* 2.53 ± 2.36* 1.47 ± 2.00*
Day 1 2.13 ± 1.89 1.93 ± 2.40 0.54 ± 0.78* 0.27 ± 0.80*
Day 2 0.46 ± 0.88 0.45 ± 1.04 0.27 ± 0.47 0.33 ± 0.82
Values are expressed as mean ± standard deviation. *Significance against the P100 group.

Table 2.	 Increase in flexibility (ΔAKE) after stretching

Group P100 (n=16) P70 (n=15) P40 (n=15) P10 (n=15)
−13.88 ± 6.59 −11.40 ± 6.50 −6.80 ± 5.72* −5.00 ± 4.77*,#

ΔAKE: difference in active knee extension value before and after stretching; Values are expressed 
as mean ± standard deviation. *Significance against the P100 group, #Significance against the P70 
group.

Fig. 1.	  Correlation between individual target intensity and visual analogue scale (VAS) score.
P100, P70, P40, and P10 are groups that performed stretching at 100%, 70%, 40%, and 10% of the maximum voluntary isometric contrac-
tion, respectively.



1111

weighted magnetic resonance images related to inflammation showed an elevation of signal intensity after intense eccentric 
or isometric exercise that inflicts high load on the MTUs13, 14).

The VAS scores were weakly correlated with the individual target intensities but were not correlated with flexibility 
changes. In other words, high-intensity stretching may cause pain, but severe pain during stretching does not translate to an 
increase in flexibility. Among various scales that are clinically used to measure pain, VAS is superior in terms of its psycho-
metric characteristic and quick and easy to measure. Thus it is preferred over other scales15). However, the fact that this scale 
can be influenced by the subjective characteristics of participants must not be neglected. Since the study by Zborowski16), 
there has been a large research interest in pain from a sociological perspective. Pain can be classified into different types 
(e.g., cold-pressor, contact heat, acute post-surgical pain, and low back pain); however, those types also have individual 
differences. For instance, pain threshold and pain tolerance may differ with race, gender, genetic factors, and environmental 
factors17). Perceived pain may actually differ from the actual degree of pain18), and there is always a chance that the pain level 
may be overestimated or underestimated depending on the characteristics of the person feeling the pain. Overall, pain level 
was significantly higher in the high-intensity group; however, the pain level measured in our experiment would encompass 
other factors in addition to the actual load delivered to the MTUs of the hamstring.

PNF is often performed at high intensity in clinical practice in order to maximize the improvement in flexibility. However, 
when repeatedly performed, it may induce muscle tissue injury. As shown in our experiment, high-intensity stretching can 
cause severe pain in muscle tissue, and this may cause discomfort during exercise and consequently hinder muscle perfor-
mance. Moderate-intensity stretching is recommended to maintain the effects of stretching while ensuring its safety.
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