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ABSTRACT Waterlogging causes a significant reduction in soil oxygen levels, which in
turn negatively affects soil nutrient use efficiency and crop yields. Rhizosphere microbes
can help plants to better use nutrients and thus better adapt to this stress, while it is
not clear how the plant-associated microbes respond to waterlogging stress. There are
also few reports on whether this response is influenced by different sequencing meth-
ods and by different soils. In this study, using partial 16S rRNA sequencing targeting the
V4 region and two full-length 16S rRNA sequencing approaches targeting the V1 to V9
regions, the effects of waterlogging on soybean rhizosphere bacterial structure in two
types of soil were examined. Our results showed that, compared with the partial 16S
sequencing, full-length sequencing, both LoopSeq and Pacific Bioscience (PacBio) 16S
sequencing, had a higher resolution. On both types of soil, all the sequencing methods
showed that waterlogging significantly affected the bacterial community structure of the
soybean rhizosphere and increased the relative abundance of Geobacter. Furthermore,
modular analysis of the cooccurrence network showed that waterlogging increased the
relative abundance of some microorganisms related to nitrogen cycling when using V4
sequencing and increased the microorganisms related to phosphorus cycling when
using LoopSeq and PacBio 16S sequencing methods. Core microorganism analysis fur-
ther revealed that the enriched members of different species might play a central role in
maintaining the stability of bacterial community structure and ecological functions.
Together, our study explored the role of microorganisms enriched at the rhizosphere
under waterlogging in assisting soybeans to resist stress. Furthermore, compared to par-
tial and PacBio 16S sequencing, LoopSeq offers improved accuracy and reduced
sequencing prices, respectively, and enables accurate species-level and strain identifica-
tion from complex environmental microbiome samples.

IMPORTANCE Soybeans are important oil-bearing crops, and waterlogging has caused sub-
stantial decreases in soybean production all over the world. The microbes associated with
the host have shown the ability to promote plant growth, nutrient absorption, and abiotic
resistance. High-throughput sequencing of partial 16S rRNA is the most commonly used
method to analyze the microbial community. However, partial sequencing cannot provide
correct classification information below the genus level, which greatly limits our research
on microbial ecology. In this study, the effects of waterlogging on soybean rhizosphere mi-
crobial structure in two soil types were explored using partial 16S rRNA and full-length 16S
gene sequencing by LoopSeq and Pacific Bioscience (PacBio). The results showed that full-
length sequencing had higher classification resolution than partial sequencing. Three
sequencing methods all indicated that rhizosphere bacterial community structure was sig-
nificantly impacted by waterlogging, and the relative abundance of Geobacter was
increased in the rhizosphere in both soil types after suffering waterlogging. Moreover, the
core microorganisms obtained by different sequencing methods all contain species related
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to nitrogen cycling. Together, our study not only explored the role of microorganisms
enriched at the rhizosphere level under waterlogging in assisting soybean to resist stress
but also showed that LoopSeq sequencing is a less expensive and more convenient
method for full-length sequencing by comparing different sequencing methods.

KEYWORDS soybean, waterlogging, rhizosphere bacterial community, V4 16S rRNA
sequence, LoopSeq, PacBio

Significant decline in crop yields has been witnessed globally as a result of extreme
environments, such as waterlogging, drought, and extreme temperatures, in the

past few decades (1, 2). Waterlogging has been considered to be one of the abiotic
stresses that can adversely affect the physiological growth of plants (3–6). In particular,
soil physicochemical properties (e.g., porosity, structure, and pH) will be the worst
affected, where a sharp decrease in soil oxygen concentrations will have a negative
impact on microbial diversity and community activity (7, 8). The loss of nitrogen (N) in
waterlogged soil combined with other harmful effects, such as root hypoxia, are
expected to lead to the reduction in crop productivity (9). Therefore, collective efforts
are necessary to reduce the adverse effects of waterlogging stress on crop production
(10). Even though much has been achieved by the genetic improvement of crop culti-
vars and cultivation measures that mitigate waterlogging, the role played by rhizo-
sphere microorganisms in plant resistance to waterlogging has been limitedly studied.

Several studies have reported microorganisms with varied positive effects growing
near stressed plants (11, 12). For example, beneficial bacteria, such as Bacillus contain-
ing 1-aminocyclopropane-1-carboxylic acid deaminase, can reduce stress-induced eth-
ylene content, thereby protecting plants from waterlogging (5, 6). Moreover, some
bacteria, such as Bacillus thuringiensis, can synthesize indole-3-acetic acid in the rhizo-
sphere (13), which indirectly helps to reduce the damage caused to plants by waterlog-
ging (14). An anaerobic condition caused by waterlogging stress might change the
structure of the soil microbial community, which might further affect the composition
of the ecosystem (15, 16). Therefore, exploring the response of rhizosphere microbes
to waterlogging stress can provide a basis for using beneficial microbes to improve the
resistance of soybean (17).

High-throughput sequencing of partial 16S rRNA is the most common method used
to analyze the microbial community due to its low cost (18). Often only V1 to V3, V3 to
V5, or V4 of the nine variable regions in the 16S rRNA gene (called V1 to V9) have been
interrogated (19–21). However, the taxonomic classification as well as the abundance
and diversity of operational taxonomic units (OTUs) are affected by variable region
selection (22, 23). Moreover, the accuracy and sensitivity of taxonomic discrimination
and estimates of taxon abundance are significantly influenced by sequence read
length and primer selection (24, 25). The short-read approach by second-generation
sequencing was found to be affected by the variable region bias and could not provide
valid information beyond the genus level. This resulted in an inaccurate classification
of sequences, especially in the environmental samples (26, 27). Low-resolution classifi-
cation not only limits the accuracy of microbial ecological function inference and host
metabolic reconstruction but also affects the appropriate identification of bacterial
strains in subsequent experiments and transformation studies (27).

Pacific Bioscience (PacBio) has developed a long-read sequencing technology that
can complete full-length 16S rRNA gene (V1 to V9) sequencing at comparatively high
throughput (24, 28). Moreover, the initial high intrinsic error rate has been improved
by the circularized library templates combined with highly processed polymerases that
allow for the “circular consensus sequence” (CCS) read with sufficiently high quality
(19). Recently, a new full-length sequencing method called LoopSeq, with high accu-
racy and less expensive prices, has started to be used in some research (29). LoopSeq
can eliminate bias caused by PCR and can sequence molecules with very low abun-
dance. In this process, quantitative PCR (qPCR) is performed to first quantify the DNA
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before pooling the DNA into a single reaction. The sequencing procedure lowers the
effects of microbial absolute abundance among different samples, and, therefore, a
more accurate picture of the species in the sample is reported. Moreover, each 16S
molecule is barcoded before clustering and assembling into a single long read. This
results in overlapping of each base position with multiple short-read sequences and
allows for consensus calling to determine the true call independent of sequencing
errors (,0.005%) (30). However, how different sequencing methods affect environ-
mental samples, which refers to the response of rhizosphere microbes in different
types of soil to waterlogging stress in this study, has not been reported.

In the current study, the effects of waterlogging stress on soybean rhizosphere bac-
terial structure in two types of soil were explored using partial 16S rRNA and full-length
16S gene sequencing with LoopSeq and PacBio. We hypothesized that (i) waterlogging
will decrease the bacterial diversity in the soybean rhizosphere, (ii) the resolution
would be similar between PacBio and LoopSeq and both will be significantly higher
than partial sequencing, and (iii) specific microorganisms will be enriched in the soy-
bean rhizosphere that may help soybeans resist waterlogging stress.

RESULTS

The advantages and disadvantages of the three sequencing methods are presented
in Table 1. In general, full-length sequencing had a high-throughput nature, which
could eliminate PCR bias and cover more sequencing areas, while V4 sequencing was
the least expensive (Table 1).

Effects of waterlogging and soil types on bacterial diversity and community
structure. The sequencing methods, waterlogging, soil types, and their interactions
significantly affected the alpha-diversity (Table S2 in the supplemental material).
Higher alpha-diversity was obtained with V4 sequencing than with full-length sequenc-
ing. In more detail, the results from the three sequencing methods showed that water-
logging had no significant impact on the soybean rhizosphere bacterial diversity,
except in the samples from acidic soil sequenced by LoopSeq (Dunn’s t tests, n = 12,
P . 0.05) (Fig. 1A). Using the V4 sequencing method, we revealed that neutral soil had
higher Shannon diversities than acidic soil (Dunn’s t tests, n = 12, P , 0.05) (Fig. 1B).
Regarding beta-diversity, constrained principal-coordinate analysis (CPCoA) revealed
that waterlogging and soil types had significant effects on rhizosphere microbial com-
munity structure in V4 and LoopSeq sequencing. However, from PacBio sequencing,
only waterlogging had a significant effect on rhizosphere microbial community struc-
ture (permutational multivariate analysis of variance [PERMANOVA], n = 12, P , 0.05)
(Fig. 1C and E and Table 2).

Taxonomic comparison of different sequencing methods. To determine whether
differences in sequencing regions affected the assignment of sequences to different taxo-
nomic levels, we analyzed the annotation proportion of 48 data sets for V4, LoopSeq, and
PacBio each at the phylum, class, order, family, genus, and species levels. The results showed
that the sequencing methods, soil types, and their interactions significantly affected the
annotation proportion at low classification levels (such as on species level) (Table S2). In

TABLE 1 Related attributes of different sequencing platforms

Sequencing characteristics V4 LoopSeq PacBio
Cloning required No No No
Avg sequence time 8 h 2.5 h 2 h/SMRT cell
Avg read length ;250 bp ;1,500 bp 1,000–1,500 bp
Read technology Short-read technology Long-read technology Long-read technology
Sequencing variable region V4 V1–V9 V1–V9
Stitching during sequencing Yes No No
Error rates High Lower Medium
Eliminate PCR bias No Yes Yes
Need stitching Yes No No
Approximate cost per Mb US$0.11 US$0.245 US$2.50
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detail, the classification resolution on all the taxonomy levels of different sequencing
methods was significantly different (P , 0.05) (Fig. 2A, C, and E; Fig. S1A, C, and E). At the
phylum level, the proportion of assigned sequences was ranked as V4. LoopSeq. PacBio
(Fig. 2A), and at the class level, the proportion of assigned sequences was ranked as
PacBio . V4 . LoopSeq (Fig. S1A). However, at other levels, the PacBio data sets had the
highest proportion of assigned sequences (Fig. 2B and E; Fig. S1C and E). Venn analysis
showed that the numbers of shared phyla, genera, and species were 16, 201, and 24, respec-
tively, among the three different sequencing methods. Furthermore, the numbers of unique
genera and species of LoopSeq and PacBio sequencing were significantly higher than those
of V4 sequencing. The numbers of shared classes, orders, and families were 33, 58, and 115,
respectively, among the three different sequencing methods (Fig. 2B, D, and F; Fig. S1B, D,
and F).

Rhizosphere microbial community structure of different sequencing methods
at the phylum level. Analysis at the phylum level showed that the effect of waterlog-
ging on soybean rhizosphere soil microbial relative abundance in the two types of soil
was different among the three sequencing methods. A total of 44 phyla were detected

FIG 1 (A, B) Effects of waterlogging and soil types on soybean rhizosphere soil bacterial Chao1(A) and Shannon index (B) with Illumina MiSeq, LoopSeq,
and PacBio full-length sequencing methods (Dunn’s t tests, n = 6, P , 0.05). (C to E) Constrained principal-coordinate analysis (CPCoA) of V4 (C), LoopSeq
(D), and PacBio (E) data based on Bray-Curtis distance showing differences in rhizosphere bacterial community structure under waterlogging in neutral and
acidic soil (PERMANOVA, n = 6, P , 0.05). Different letters indicate significant differences (P , 0.05). Ne, neutral soil; Ac, acidic soil; W, waterlogging; CK,
without waterlogging; NeCK, soybean rhizosphere soil without waterlogging in neutral soil; NeW, soybean rhizosphere soil with waterlogging in neutral
soil; AcCK, soybean rhizosphere soil without waterlogging in acidic soil; AcW, Soybean rhizosphere soil with waterlogging in acid soil; V4, Illumina MiSeq;
LoopSeq, full-length Loop Genomics sequencing technology; PacBio, full-length PacBio single-molecule, real-time (SMRT) technology.
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by V4 sequencing, among which Proteobacteria, Acidobacteria, and Chloroflexi were
dominant, with relative abundances ranging from 31.1% to 39.1%, from 15.0% to
21.9%, and from 5.9% to 7.3%, respectively. A total of 36 phyla were detected by
LoopSeq sequencing, among which Proteobacteria, Acidobacteria, and Actinobacteria
were the most pronounced, with relative abundances from 33.5% to 40.3%, from
18.4% to 25.7%, and from 7.6% to 10.8%, respectively. PacBio sequencing detected 29
phyla, among which Proteobacteria, Planctomycetes, and Bacteroidetes were dominant, with
relative abundances from 30.7% to 35.4%, from 15.9% to 21.1%, and from 9.8% to 12.8%,
respectively (Fig. S2). Waterlogging increased the relative abundance of Firmicutes and
Gemmatimonadetes in the two types of soil, but the increase was significantly higher in the
acidic than in the neutral soil for the three sequencing methods (P, 0.05) (Fig. S3J and K).

Rhizosphere microbial community structure of different sequencing methods
at the genus level. Discrepancies among microbial community profiles represented by
different sequencing methods were obvious at the genus level (Fig. 3). The first 30 genera
with higher relative abundance were selected from the shared 201 genera from the three
methods. Waterlogging was shown to increase the relative abundance of Pirellula in the
two types of soil in only the PacBio sequencing method. However, the relative abundance
of Geobacter was increased by waterlogging in all the sequencing methods.

Rhizosphere microbial community structure of different sequencing methods
at the OTU level. Differential expression analysis of OTUs was also performed. In V4
sequencing, waterlogging increased 60 OTUs that were shared among both neutral and
acidic soils (P, 0.05). These OTUs were classified at the genus level and were mainly com-
posed of Geobacter (7 OTUs, 2.4%), Nitrospira (1 OTU, 0.7%), and Anaeromyxobacter (3
OTUs, 0.4%) (Fig. S4A). In LoopSeq sequencing, waterlogging increased 10 OTUs that were
shared between neutral and acidic soils (P , 0.05). Classification of these OTUs at the ge-
nus level showed that most of them were Oryzihumus (1 OTU, 0.5%), Massilia (1 OTU,
0.18%), and Acidothermus (1 OTU, 0.16%) (Fig. S4B). Waterlogging increased the 9 OTUs in
PacBio sequencing that were shared between the two types of soil (P, 0.05). These OTUs
were classified at the genus level and were mainly made up of Flaviolibacter (1 OTU,
0.67%), Ramlibacter (1 OTU, 0.64%), and Geobacter (4 OTUs, 0.43%) (Fig. S4C). After assign-
ing these OTUs to the genus, we did not find the coenriched microbial species in the three
sequencing methods (Fig. S4D).

Core microbiome analyses. There were 18, 4, and 10 core OTUs in V4, LoopSeq,
and PacBio sequencing, respectively (Table S3). In V4 sequencing, the core OTUs only

TABLE 2 Effects of waterlogging and soil types on bacterial community structure in soybean
rhizosphere analyzed by permutational multivariate analysis of variance (PERMANOVA)

Sequencing methods Factora F R2 P
V4 Soil 111.7140 0.66882 0.001b

Water 10.2152 0.06116 0.002c

Soil:water 1.1018 0.00660 0.246
NeW vs NeCK 7.0589 0.24292 0.001b

AcW vs AcCK 6.7174 0.23391 0.001b

LoopSeq Soil 17.5165 0.26413 0.001b

Water 2.6542 0.04002 0.012d

Soil:water 2.1465 0.03237 0.026d

NeW vs NeCK 2.5809 0.105 0.002c

AcW vs AcCK 3.0537 0.12189 0.001b

PacBio Soil 0.9707 0.01801 0.358
Water 7.9983 0.14838 0.001b

Soil:water 0.9332 0.01731 0.386
NeW vs NeCK 2.5963 0.10556 0.001b

AcW vs AcCK 7.9223 0.26476 0.001b

aNeCK, soybean rhizosphere soil without waterlogging in neutral soil; NeW, soybean rhizosphere soil with
waterlogging in neutral soil; AcCK, soybean rhizosphere soil without waterlogging in acidic soil; AcW, soybean
rhizosphere soil with waterlogging in acid soil.

bSignificant P value of,0.001.
cSignificant P value of,0.01.
dSignificant P value of,0.05.
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accounted for 0.69% of the total number of OTUs. Proteobacteria was the most abun-
dant in the core rhizosphere microbial community and was composed of 8 OTUs and
accounted for 5.2% of the average relative abundance. Other OTUs represented in the
core rhizosphere microbiome were 5 Acidobacteria OTUs (1.56% relative abundance), 1
Bacteroidetes OTU (0.99% relative abundance), 1 Firmicutes OTU (0.61% relative abundance),

FIG 2 Taxonomy profiles in different sequencing method data sets. (A, C, E) The proportion of annotation sequences
from the V4 (n = 48, blue), LoopSeq (n = 48, yellow), and PacBio (n = 48, orange) data sets was determined by comparing
the sequence with the SILVA database and is represented at the phylum (A), genus (C), and species (E) levels. (B, D, F)
Venn diagram showing the numbers of unique and shared phyla (B), genera (D), and species (F) between the three
sequencing methods. Blue denotes V4, yellow denotes LoopSeq, and orange denotes PacBio.
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1 Gemmatimonadetes OTU (0.54% relative abundance), 1 Nitrospirae OTU (0.32% relative
abundance), and 1 Verrucomicrobia OTU (0.32% relative abundance) (Fig. 4A). In LoopSeq
sequencing, core OTUs only accounted for 0.061% of the total number of OTUs. This core
rhizosphere microbiome consisted of 2 Actinobacteria OTUs (1.24% relative abundance) and 2
Firmicutes OTUs (1.12% relative abundance) (Fig. 4B). In PacBio sequencing, the core OTUs rep-
resented only 0.026% of the total number of OTUs. This core rhizosphere microbiome had 4
Proteobacteria OTUs that made up 2.09% of the mean relative abundance. Other OTUs in this
core rhizosphere microbiome were 2 Bacteroidetes OTUs (1.18% relative abundance), 1
Nitrospirae OTU (0.36% relative abundance), and 1 Planctomycetes OTU (0.31% relative
abundance) (Fig. 4C). Among them, OTU4 (Bacillus) and OTU4746 (Bacillus) were the core
species shared by V4 and LoopSeq sequencing, while OTU17 (Nitrospira) and OTU22
(Nitrospira) were core species shared by V4 and PacBio sequencing.

Modular analysis of the cooccurrence network. Network modeling was applied
to assess the composition and structure of microorganisms with different sequencing
methods, and the OTUs with sequence numbers greater than five were screened as
nodes. The networks of the V4, LoopSeq, and PacBio data sets were each divided into
seven major modules. In V4, modules I, II, and III accounted for 35.85%, 32.76%, and
28.45% of the whole network, respectively (Fig. 5A). In LoopSeq, modules I and II
accounted for 32.98% and 14.61% of the whole network, respectively (Fig. 5B), whereas
in PacBio, modules I, II, III, and IV accounted for 28.82%, 22.94%, 20.59%, and 20% of
the whole network, respectively (Fig. 5C).

FIG 3 Relative abundance analysis of common genera in three sequencing methods. The most abundant 30 genera were selected from shared 201 genera
of the three sequencing methods. Color pairs denote samples of three sequencing methods in neutral or acidic soil with different waterlogging times.
Bubble sizes indicate the averaged relative abundance of an individual genus across each treatment. The explanations of the abbreviations of different
treatments were the same as in the legend to Fig. 1.

Effects of Waterlogging on Rhizosphere Microorganisms

Volume 10 Issue 1 e02011-21 MicrobiolSpectrum.asm.org 7

https://www.MicrobiolSpectrum.asm.org


To evaluate the differences in OTUs in different soils and under different waterlog-
ging treatments using the three sequencing methods, we created a generalized linear
model of the negative binomial distribution to analyze modules with high percen-
tages. OTU numbers in the rhizospheres of the three sequencing methods under non-
waterlogging and acidic soil conditions were used as the controls to compare the
enriched or depleted OTUs under the waterlogging and neutral soil conditions, respec-
tively (Table S4).

The volcano plot of V4 sequencing showed that all OTUs of module II and module
III had higher relative abundances in the waterlogging treatments than in the nonwa-
terlogging treatments, whereas all the OTUs of module I had lower relative abundan-
ces in the waterlogging treatments than in the nonwaterlogging treatments. The most
OTUs of modules I, II, and III had higher relative abundances in neutral soil than in
acidic soil. In LoopSeq sequencing, the 4 OTUs of module I had higher relative abun-
dances in the waterlogging treatments than in nonwaterlogging treatments, whereas

FIG 4 Core microorganisms of the three sequencing methods. (A to C) Rhizosphere core microorganisms of the V4 (A),
LoopSeq (B), and PacBio (C)sequencing methods. The different parts inside the double pie chart represent the bacterial
phyla of the soybean core microbiome. The different parts outside the double pie chart represent the OTU (genus) of the
soybean core microbiome, and each OTU (genus) is assigned to the corresponding bacterial phyla. The size of the different
double pie chart portions represents the percentage of phylum/genus relative abundance in all core microbial components.
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the 2 OTUs of module I and all OTUs of module II had lower relative abundances in the
waterlogging treatments. Most OTUs of module I and 4 OTUs of module II had higher
relative abundances in neutral soil than in acidic soil. For PacBio sequencing, all OTUs
of modules II, III, and IV had higher relative abundances in the waterlogging treatments
than in the nonwaterlogging treatments. All OTUs of module I had lower relative abun-
dances in the waterlogging treatments than in the nonwaterlogging treatments. The 8
OTUs of module I had higher relative abundances in neutral soils than in acidic soils,
whereas most OTUs of module I and all OTUs of modules II, III, and IV had lower relative
abundances in neutral soils than in acidic soils.

Nodes with high node degree, closeness centrality, and betweenness centrality were
defined as the key species of the rhizosphere network (Table S5). In general, OTU7370
(unclassified_Sphingobacteriales), OTU405 (unclassified_Verrucomicrobia), OTU2287 (unclassified_
Ellin6513), and OTU769 (unclassified_SJA-28) were identified as keystone species for V4
sequencing, while OTU1516 (Solirubrobacter), OTU5896 (Conexibacter), OTU791 (Geobacter),
and OTU3146 (Massilia) were key species for the LoopSeq sequencing. For the PacBio

FIG 5 (A to C) Network analysis reveals the symbiotic pattern between OTUs. The nodes are colored according to the modular type. The
connections between nodes indicate strong and significant (Spearman’s r . 0.8 or r , 20.8) (P , 0.01) correlation. The volcano map shows
the amount of OTU enriched and depleted in neutral soil and after waterlogging in the modules of different sequencing methods,
respectively. Data from V4 (A), LoopSeq (B), and PacBio (C) are shown. Violet denotes module I, green denotes module II, blue denotes
module III, black denotes module IV, orange denotes module V, red denotes module VI, cyan denotes module VII, and gray denotes other
modules.
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FIG 6 (A to C) Paired comparison of environmental factors and microbial community with a color gradient
denoting Pearson’s correlation coefficient. A Spearman’s correlation coefficient of .0 indicates positive

(Continued on next page)
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sequencing, the key species were OTU17 (Gemmatimonas), OTU18 (Flavisolibacter), OTU355
(Aquisphaera), and OTU10711 (Algisphaera).

Environmental drivers of different sequencing methods. The two-way analysis of
variance (ANOVA) revealed that waterlogging, soil types, and their interaction significantly
affected some soil physicochemical properties. For example, waterlogging significantly
affected the Olsen P, NH4

1, and NO3
2, and their interaction significantly affected the NO3

2

(Table S1). To determine the correlation between soil properties and microbial commun-
ities, we conducted a paired comparison of environmental factors. Our results showed that
V4, LoopSeq, and PacBio sequencing had significant correlations with all soil physical and
chemical factors (Fig. 6A). As the physical and chemical properties of the two soils were sig-
nificantly different, we compared the relationship between the physical and chemical
properties of the two soils and the microbial communities of the three sequencing meth-
ods, respectively. In neutral soil, the microbial structure sequenced by the V4 method was
significantly correlated with available phosphorus (AP) (P , 0.05) and extremely signifi-
cantly correlated with NO3

2 (P , 0.01). The microbial structures sequenced by LoopSeq
and PacBio were only significantly correlated with NO3

2 (P , 0.05) (Fig. 6B). In acidic soil,
the microbial structure sequenced by V4 was extremely significantly correlated with NH4

1

and NO3
2 (P , 0.01). The microbial structure sequenced by LoopSeq was only extremely

significantly correlated with AP (P , 0.01). For PacBio, the microbial structure was signifi-
cantly correlated with AP (P , 0.05) and extremely significantly correlated with NH4

1 and
NO3

2 (P, 0.01) (Fig. 6C).

DISCUSSION

In this study, we used three sequencing methods to evaluate the impact of water-
logging on the structure of soybean rhizosphere microbial communities in two types
of soil. Our first hypothesis was not verified, as the results from the three sequencing
methods showed that waterlogging had no significant impact on the bacterial alpha-
diversity (Fig. 1A and B). However, V4 sequencing, but not full-length sequencing,
showed significantly more alpha-diversity in neutral soil than in acidic soil. A reasona-
ble conclusion might be that if the researchers had relied on V4 sequencing, they
would have concluded (probably incorrectly) that soil type clearly influenced bacterial
alpha-diversity, whereas with a better sequencing method (PacBio or LoopSeq), they
would have accurately found no (or context-dependent) differences in soil types. For
the other two hypotheses, they were fully verified, where the resolutions of PacBio and
LoopSeq were significantly higher than partial sequencing, and some beneficial micro-
organisms, such as Geobacter, were enriched in the soybean rhizosphere that may help
soybeans resist waterlogging stress.

Based on CPCoA, the results from all the sequencing methods showed that water-
logging significantly affected the rhizosphere bacterial community structure (Fig. 1C to
E), and this was in agreement with the arguments put forward by Evans and
Wallenstein (17). When the soil is waterlogged, the oxygen content of the soil sharply
decreases, which reduces the respiration rate and activity of soil microorganisms. This
in turn leads to the expected changes in microbial community structure (31–34).
Furthermore, changes in crop root exudates induced by waterlogging also directly
affect rhizosphere microbial community structure (35). Crops suffering from waterlog-
ging stress affect the underground carbon input (36, 37), which then affects the rhizo-
sphere microbiome (38). We selected acidic soil and neutral soil in this study, with an
expectation that soil could significantly affect the rhizosphere microbial community

FIG 6 Legend (Continued)
correlation, and a coefficient of ,0 indicates a negative correlation. Effects of environmental factors in two
types of soil (A), neutral soil (B), and acidic soil (C) on the microbial communities of the three sequencing
methods are shown. The edge width corresponds to the distance dependence of Mantel’s r statistic, and
statistical significance based on 9,999 permutations represents edge color. Mantel’s r size indicates the
strength of the correlation. The color of the connecting line indicates the correlation between different
sequencing methods and environmental factors.
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structure irrespective of the sequencing methods. However, we found that soil type
was not a significant factor driving changes in microbial community structure in
PacBio sequencing. This could be attributed to long sequencing, which could lead to
the reconstruction of phylogeny and thus affect the similarities or differences of micro-
bial communities (39).

Our results showed that full-length sequencing (except at the phylum level) had a
higher classification resolution (Fig. 3; Fig. S1; Table S2). This was anticipated, as full-length
read sequence has been shown to provide a higher phylogenetic classification resolution
(40). When sequencing with different variable regions, almost all the sequences of V1 to V9
were annotated to the species level compared with other variable regions (25, 41). Because
full-length sequencing covers most of the target genes, it has a high-resolution capacity to
discriminate many phylogenetic closely related taxa (42, 43). However, the resolution of
LoopSeq was lower than PacBio, which could be due to differences in the sequencing plat-
form. LoopSeq uses the Illumina platform for full-length sequencing. PacBio’s CCS library
can improve the accuracy by sequencing a single fragment for multiple rounds, leading to
a more accurate species classification (41). Similar to previous studies (44), we found that
the classification of microbial groups is affected by a smaller 16S amplicon. The V4 data
sets suffered from this bias, which further supported the use of longer readings for micro-
bial ecological analysis (45).

To determine whether the high species classification resolution of full-length sequenc-
ing could help in identifying more microorganisms related to waterlogging resistance, we
compared the microbial community structure at the genus level using three sequencing
methods. Our results revealed that the effect of waterlogging on rhizosphere soil bacteria
was different across the sequencing methods. For example, a significant difference in
Variovorax was only detected in V4 sequencing and has been previously reported to
manipulate plant ethylene levels to balance normal root development (46), thus alleviating
the harm of waterlogging (5). The increased relative abundance of Pirellula, which plays an
important role in nitrogen cycling, was only found in PacBio sequencing (47, 48). These
results indicated that there were differences in the information about the recruited bacteria
detected by different sequencing methods. Due to the high resolution of full-length
sequencing, we may conclude that the use of V4 sequencing may not give us very accu-
rate information about the recruited microorganisms, which might affect our screening of
waterlogging tolerance-related microorganisms. However, we still found some common
features in some microbial genera that respond to waterlogging among the three
sequencing methods (Fig. 4). The increased abundance of Geobacter in waterlogging stress
was detected in the three sequencing methods. Geobacter plays an important role in plant
nitrogen fixation (49, 50) and can secrete fulvic acid and participate in plant electron trans-
fer (51–53), which may be related to electrical signals mediated by plant potassium chan-
nels (54). The hypoxic environment under waterlogging stress results in a sharp decline in
microorganisms involved in the nitrification reaction. This inhibits the activity of the nitrify-
ing community, leading to increased nitrogen loss (55). The enrichment of anaerobic bacte-
ria (such as Geobacter) may fix more nitrogen, thereby allowing plants to grow healthily.
However, the extent to which and the mechanism through which Geobacter improves the
adaptability of a plant to waterlogging stresses remains unknown and needs to be
explored in the future.

At the OTU level, the effect of waterlogging on the two soils was also different among
the three sequencing methods. The OTUs that significantly changed in both types of soil af-
ter waterlogging belonged mainly to Geobacter, Anaeromyxobacter, and Nitrospira in V4,
Oryzihumus, Massilia, and Acidothermus in LoopSeq, and Flavisolibacter, Ramlibacter, and
Geobacter in PacBio, respectively. Among them, Geobacter was observed in both V4 and
PacBio sequencing methods, which was consistent with analysis at the genus level. Previous
studies have shown that Geobacter and Nitrospira are related to microbial nitrogen fixation
(50, 56). These genera are reductive microorganisms (57), which can use a wide range of car-
bon and/or electron donors to participate in metabolic pathways. The broad metabolic di-
versity of microorganisms was considered to be advantageous, particularly at times of

Yu et al.

Volume 10 Issue 1 e02011-21 MicrobiolSpectrum.asm.org 12

https://www.MicrobiolSpectrum.asm.org


nutrient scarcity (58). However, long sequencing revealed more differences in OTUs that
have other functions. Some microorganisms identified by LoopSeq and PacBio are related
to phosphorus cycling and high soil fertility. For instance,Massilia could help the turnover of
root exudates, such as amino acids, sucrose, and fatty acids, and provide phosphorus solu-
tion to plants (59, 60). Acidothermus can decompose organic matter and utilize carbon sour-
ces, thus enriching the soil organic matter content (61). Flavisolibacter has the effect of dis-
solving phosphorus in the soil (62, 63). Based on these results, long sequencing might
detect more microbial information related to waterlogging tolerance.

Core microorganisms with different functions are involved in the coordination and
organization of plant-microbe interactions (64). Three sequencing methods resulted in
different species of the core microbiome, which mainly included Nitrospira, Geobacter,
Variovorax, and Bacillus in V4 sequencing, Bacillus and Dactylosporangium in LoopSeq
sequencing, and Nitrospira, Flavisolibacter, Gemmatimonadetes, and Ramlibacter in
PacBio sequencing (Fig. 5). In particular, Nitrospira was the core microorganism shared
by V4 and PacBio sequencing, while Bacillus was the core microorganism shared by V4
and LoopSeq sequencing. Nitrospira is the most common genus affecting soil nitrogen
metabolism (65–67). Bacillus can utilize multiple electron donors or collectors to enrich
nutrients (57) and maintain normal root growth (46). Additionally, Geobacter, which is
related to nitrogen fixation (50, 56), and Flavisolibacter, which can dissolve soil phos-
phorus (62, 63), were the core microorganisms for V4 and PacBio sequencing, respec-
tively. These core microorganisms might help plants resist waterlogging stress through
different nutrient cycling or recruit other beneficial microorganisms to resist the effects
of waterlogging together with plants. Nevertheless, whether the core microorganisms
that we discovered could establish a defense mechanism against waterlogging dam-
age with soybeans is still unclear. To address these issues, the use of high-throughput
cultivation and identification of microbes (68) as well as synthetic communities (69)
can help explore the extent to which these recruited microorganisms contribute to
soybean resistance to waterlogging stress.

Cooccurrence patterns are ubiquitous in nature and are particularly involved in the
analysis of microbial community structure. Network cooccurrence analysis can provide an
in-depth and unique perspective for understanding microbial interactions and ecosystem
assembly rules rather than simple species diversity and composition (70–72). Network
modularity may reflect collaborative relationships, competitive interactions, and niche dif-
ferentiation, which leads to nonrandom patterns of interaction and affects the complexity
of the ecological network (73). Dividing the network into modules helps to clarify different
node groups that perform different functions (74). For example, the main modules with a
high percentage in V4 (except module I) and LoopSeq sequencing are enriched with some
microorganisms related to nitrogen cycling (e.g., Mucilaginibacter, Candidatus Solibacter,
Candidatus Koribacter, Geobacter, and Bacillus) after waterlogging (49, 75). This agrees with
previous studies where the nitrogen-fixing microorganisms might be enriched in the
waterlogging soil (76, 77). Moreover, the main modules with a high percentage of
LoopSeq and PacBio sequencing are enriched with some microorganisms related to phos-
phorus cycling (e.g., Massilia and Flavisolibacter) after waterlogging (62, 63). This showed
that waterlogging can selectively increase or decrease part of the microbial abundance
related to nitrogen cycling. However, the functions of depleted microorganisms in the
main modules of LoopSeq and PacBio sequencing have not been reported. It is worth not-
ing that the conclusions we obtained using network analysis were speculative and cannot
be taken as definitive information. This is because networks provide a valuable tool, but
they are best seen as hypothesis generators rather than solid conclusions. This is because
these methods only infer ecological associations. Furthermore, the choice of network anal-
ysis method and network size can affect the accuracy and significance of the network,
even when assumptions are met (78, 79).

Compared with acidic soil, the microorganisms related to nitrogen fixation (e.g.,
Geobacter, Nitrospira, Candidatus Koribacter, and Candidatus Solibacter) in the main modules
of the network are enriched in neutral soil (49, 56, 75, 80, 81). This might indicate that
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waterlogging is less harmful to neutral soils than acidic soils, at least on the level of micro-
bial functions. However, microorganisms related to phosphorus cycling (e.g., Flavisolibacter,
Massilia, and Gemmatimonas) were depleted in neutral soils (62, 63, 65). In this study, acidic
soil had lower phosphorus content than neutral soil. A previous study showed that when P
availability in soil is low, the enrichment of inorganic phosphate-solubilizing bacteria could
efficiently transform immobilized P into bioavailable P with high phosphatase activities
(82). Moreover, the keystone species in the rhizosphere varied among V4, LoopSeq, and
PacBio sequencing, which might be a key determinant of the composition of other com-
munities in the rhizosphere of plants (83).

To determine environmental factors affecting the microbial communities of three
sequencing methods in different soils, we performed Pearson’s correlation coefficient
analysis using all samples from both types of soil. The results showed that all the envi-
ronmental factors affected the microbial communities in both types of soil in the three
sequencing methods. This might have been caused by the soil heterogeneity between
neutral and acid soils (84). In neutral soil, NO3

2 was the main environmental factor that
affected the microbial community in all sequencing methods. Previous studies have
shown that some period after waterlogging, the soil nitrogen form is still dominated
by NO3

2, which could be transported into the host by microorganisms (85, 86). For the
acidic soil, NH4

1 and NO3
2 were the major environmental factors that affected the mi-

crobial community in V4 and PacBio sequencing. Total phosphorus (TP) affected the
microbial community in LoopSeq and PacBio sequencing methods. These results were
in line with the network module association analysis, which showed that phosphorus-
related microorganisms were enriched in acidic soil. It has been previously reported
that soil microbial community structure is significantly affected by soil phosphorus
content (87). From these results, the impact of environmental factors on the microbial
community was different among the three sequencing methods and with the soil type.

The nonnegligible difference of bacterial diversity, comparisons at the level of bacterial
phyla and genera, core microorganisms, network cooccurrence analysis, and correlation
with environmental factors was in line with that the sequencing bias should be taken into
account by different sequencing methods for microbial community analysis (88, 89). Our
results are consistent with previous findings that showed that while short-read sequencing
is effective in microbiome analyses at higher taxonomic levels (e.g., phylum level), LoopSeq
and PacBio analyses show greater power to delve deeper into taxonomic capabilities (24,
30). We cannot deny that the conclusions or predictions of previous studies based on V4
sequencing may be indicative of importance, but, at the least, in this study, we show that
both full-length sequencing methods showed similar results and identified more functional
microorganisms than V4 sequencing.

Conclusion. In summary, this study explored the effects of waterlogging on soy-
bean rhizosphere microbial communities in different soils using three sequencing
methods. Our results showed that full-length sequencing had a higher resolution than
partial sequencing. Waterlogging had a significant impact on the rhizosphere microbial
community structure, while only two sequencing methods (V4 and LoopSeq sequenc-
ing) showed that soil type could also significantly influence microbial community struc-
ture. Furthermore, both LoopSeq and PacBio detected that waterlogging enriched
microorganisms related to phosphorus cycling, such as Flavisolibacter and Massilia.
Core microorganisms and network modularity analysis further revealed that enriched
different species might play central roles in maintaining the stability of bacterial com-
munity structure and ecological functions. Together, our study not only explored the
role of microorganisms enriched at the rhizosphere level under waterlogging treat-
ment in assisting soybeans to resist stress but also showed that LoopSeq sequencing is
a less expensive and more convenient method for full-length sequencing by compar-
ing different sequencing methods.

MATERIALS ANDMETHODS
Soil and soybean material. Neutral and acidic soils were collected at the surface layer with a depth of

10 cm from Yingde County (113°409N, 24°189E) and Suixi County (110°259N, 21°329E), Guangdong Province,
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China, respectively. Then, 500 kg of each type of soil were air dried for 5 days and sieved through 2-mm
mesh to remove impurities before planting the soybeans. The neutral and acidic soil were classified as
Kanhaplohumults and Paleustults, respectively, according to United States Department of Agriculture (USDA)
soil taxonomy. Two soybean varieties (i.e., Qihuang34 and Jidou17) that are widely grown in central and
southern China were used in this study. Soil physicochemical properties and rhizosphere microorganisms of
both varieties were mixed as replicates for the subsequent analysis (90, 91).

Experimental design. We conducted a random pot experiment in the greenhouse at the Agricultural
College of South China Agricultural University, Guangzhou, China. The experiment was a completely random-
ized block design. In total, 48 pots of soybeans with or without waterlogging treatment in two types of acidic
soil (two soil types � two waterlogging treatments = four treatments) were used. For each treatment, there
were 12 replicate pots (6 replicates for each variety) with 4 seedlings per replicate. Each pot (top diameter of
13.8 cm, bottom diameter of 10.4 cm, and height of 12.2 cm) used in this study contained about 2.5 kg of air-
dried soil. Eight strong and full soybean seeds with similar shapes were sown in each pot. The soybean
growth process was carried out in a greenhouse with controllable conditions (temperatures of 26 to 32°C in
the daytime and 15 to 21°C in the nighttime). After 6 days of emergence, 3 healthy soybean plants with the
same growth were left. Waterlogging stress examination was performed on soybeans in the V2 stage (the pe-
riod of ternary compound leaf expansion) in order to explore three sequencing methods for examining
waterlogging-affected soybean rhizosphere microbes. For waterlogging treatment, water was added to the
pots up to 4 to 6 cm above the soil, and more water was added to the soil twice a day for 3 days to ensure
the water level. For control plants, the water content was left in an ideal environment.

Soil sampling. After 3 days of waterlogging treatment, the bulk soil was removed from the root by
manually shaking, and then the entire root of all three soybean plants in each pot was transferred into a
50-mL centrifuge tube filled with phosphate-buffered saline (PBS) to collect the rhizosphere soil (defined
as the soil that adheres to the root). After that, the centrifuge tubes were placed on a shaker (120 rpm/
min at 25°C) for 20 min and then centrifuged for 10 min (6,000 � g, 4°C). Five grams of deposited rhizo-
sphere soil was collected from each sample and placed in a sterilization centrifuge tube for storage at
280°C for DNA extraction. The remaining rhizosphere soil was stored at 4°C prior to determination of
soil physical and chemical properties.

Analysis of soil properties. After sampling for 1 week, the soil was air dried for 5 days and sieved
through 2-mm mesh to remove plant residues. Then, soil physical and chemical properties were meas-
ured according to previous studies (92, 93). In general, soil pH was determined using a pH meter (FE20-
FiveEasypH, Mettler Toledo, Germany) in soil water suspension (5:1 water-to-soil ratio). Total nitrogen
(TN) was determined using a UV spectrophotometer (UV-1800, Suzhou, China). Total potassium (TK) in
soil was measured using a flame atomic absorption spectrometer (AA-7000, Shimadzu, Japan). Soil or-
ganic carbon (SOC) content was assessed using a TOC-5000A analyzer (Shimadzu, Kyoto, Japan). The
content of NH4

1, NO3
2, TP, and Olsen P in soil was determined by a continuous flow analytical system

(Skalar San11, Netherlands). The effects of waterlogging on soil chemical properties are summarized in
Table S1 in the supplemental material.

DNA extraction from soil samples and sequencing process. Total soil DNA was extracted using a
Fast DNA Spin kit for soil (MP Biomedicals, Santa Ana, CA) following the manufacturer’s recommendations.
The DNA was eluted with 80 mL of water and analyzed by Nanodrop 2000 spectrophotometry. Primers 515F
(59-GTGCCAGCMGCCGCGGTAA-39) and 806R (59-GGACTACHVGGGTTCTAAT-39) with variable 12-bp barcode
sequences were used to amplify the V4 region of the 16S rRNA gene (94). Primers 27F (59-AGRGTTY
GATYMTGGCTCAG-39) and 1492R (59-RGYTACCTTGTTACGACTT-39) were used for full-length (V1 to V9) 16S
rRNA gene amplification (LoopSeq and PacBio sequencing) (95). The qPCR system included 22.5 mL of PCR
SuperMix, 1.0 mL of positive primer, 1.0 mL of reverse primer, 10 ng of template DNA, and double-distilled
water (ddH2O) supplemented to 25 mL. The amplification program was 1 cycle of 95°C for 60 s, 28 cycles of
95°C for 60 s, annealing at 58°C for 60 s, and primer extension at 72°C for 2 min and finally 1 cycle of 72°C for
10 min. Both V4 and full-length sequencing were performed according to the company of the HUADA BIG's
standard procedures. An Illumina MiSeq platform was used to sequence the V4 amplicon (reagent kit v.3;
Illumina). Full-length sequencing of PacBio was completed on the PacBio RS II platform.

A LoopSeq 16S microorganism 24-plex kit (Loop Genomics, San Jose, CA, USA) was used to ana-
lyze the microbial genome of rhizosphere soil. The unique molecular markers of a single 16S gene
used in LoopSeq sequencing were distributed in the whole gene, and then the full-length 16S gene
was recombined through short reading and sequencing on an Illumina platform. Briefly, 10 ng of
DNA from different rhizosphere soil samples was used to build a sequencing library. The raw data were
collected on an Illumina NextSeq, with generated FASTQ files (96). All raw data from V4 16S sequencing,
LoopSeq sequencing, and PacBio sequencing were deposited in the National Microbiology Data Center
(NMDC) under accession numbers NMDC10017771, NMDC10017785, and NMDC10017787, respectively.

Data analysis. For V4 16S and LoopSeq sequencing, the raw FASTQ sequence file was processed by
QIIME 2. In brief, the divisive amplicon denoising algorithm 2 (DADA2) in the QIIME 2 plugin was used to
obtain OTUs, which detected and corrected amplicon errors and filtered out the potential base error
and chimeric sequences (30, 97). All the raw sequences were filtered, trimmed, and dereplicated. The
representative sequence generated after denoising was based on sklearn’s naive Bayes classifier for bac-
terial classification on the SILVA 16S full-length database (97, 98). For PacBio 16S sequencing, the raw
sequence files were processed using single-molecule, real-time (SMRT) Link software version 5.1.0.26412
(Pacific Biosciences). The OTUs were clustered using the UPARSE algorithm (99), and parameters were
used to tune the full-length sequencing. The OTUs were iteratively classified according to the latest non-
redundant small subunit SILVA using the RDP classifier at a 99% cutoff. In order for amplicon sequence
variants (ASVs) produced by the DADA2 algorithm to be consistent with OTUs produced by the UPARSE
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algorithm and to be more concise in the description below, we replaced the ASVs with OTUs. Archaea
information was removed from the sequence for subsequent analysis. In total, 1,716,803, 168,704, and
214,645 bacterial 16S rRNA high-quality reads were obtained from 48 samples, with an average of
35,766, 3,551, and 4,759 reads per sample after rarefied for the three sequencing methods, respectively.
These read were sorted into 7,673, 6,494, and 38,106 OTUs of the three sequencing methods, respec-
tively, for subsequent analysis.

Statistics analyses. Using the “vegan” package in R V3.6.3, constrained principal-coordinate analysis
(CPCoA) based on the UniFrac distances, an Adonis test (PERMANOVA), and the Mantel test were per-
formed (100). A three-way analysis of variance (ANOVA) and Dunn’s multiple comparison with
Bonferroni correction were used to identify significant differences in classification resolution, bacterial
alpha-diversity, and the relative abundances of bacterial phyla and genera among all treatments.
Moreover, a two-way ANOVA and multiple-comparisons testing were used to identify the significant dif-
ferences in soil chemical properties (101). With each sequencing method, the relative abundance of
OTUs in different treatments was determined using the “DESeq2” package with the Benjamini-Hochberg
correction (DESeq2, n = 12, P, 0.05). Origin was used for the visualization of bar graphs of the classifica-
tion resolution of different sequencing methods. A Venn diagram was used to show the numbers of
unique and shared microbial species on different taxonomic levels of different treatments with the three
sequencing methods (102).

The core bacteria, which contain a list of OTUs observed in 60% of V4, LoopSeq, and PacBio, were
obtained using Microbiome Analyst (103). Additionally, we constructed three cooccurrence networks to
analyze the correlations between OTUs in different sequencing methods (sequence number of .5). The
“psych” package in R was used to calculated Spearman’s rank correlation and P value, and Gephi was
used for visualization (104). Nodes were colored according to different modules. It is generally consid-
ered that nodes with a high degree, closeness centrality, and betweenness centrality values are the key
species (105). To identify the OTUs that were significantly different for the network module between
neutral soils and acidic soils as well as rhizosphere soil with and without waterlogging, we established a
generalized linear model of the negative binomial distribution for differential OTU relative abundance
analyses (98). Moreover, Spearman correlations in R were used to analyze the relationship between mi-
crobial communities and environmental factors in all the samples and the samples in two types of soil,
respectively (106).

Data availability. All raw data from V4 16S sequencing, LoopSeq sequencing, and PacBio sequenc-
ing were deposited in the NMDC under accession numbers NMDC10017771, NMDC10017785, and
NMDC10017787, respectively.
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