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Abstract: The integration of the Internet of Things (IoT) with Wireless Sensor Networks (WSNs)
typically involves multihop relaying combined with sophisticated signal processing to serve as
an information provider for several applications such as smart grids, industrial, and search-and-rescue
operations. These applications entail deploying many sensors in environments that are often
random which motivated the study of beamforming using random geometric topologies. This paper
introduces a new algorithm for the synthesis of several geometries of Collaborative Beamforming (CB)
of virtual sensor antenna arrays with maximum mainlobe and minimum sidelobe levels (SLL) as well
as null control using Canonical Swarm Optimization (CPSO) algorithm. The optimal beampattern is
achieved by optimizing the current excitation weights for uniform and non-uniform interelement
spacings based on the network connectivity of the virtual antenna arrays using a node selection
scheme. As compared to conventional beamforming, convex optimization, Genetic Algorithm (GA),
and Particle Swarm Optimization (PSO), the proposed CPSO achieves significant reduction in SLL,
control of nulls, and increased gain in mainlobe directed towards the desired base station when
the node selection technique is implemented with CB.

Keywords: robust optimization; internet of things; collaborative sensor; beamforming; antenna array

1. Introduction

Beamforming techniques are gaining an increasing research interest in recent years due to
the growth of Internet of Things (IoT) applications that require establishing connections for long
distances among sensors and a remote base station [1]. The popularity of these applications stems
from the demand of increasing throughput accompanied by decreasing size of electronic devices [2].
This requires that all objects or devices in the IoT to be equipped with directional antennas which form
a virtual antenna array.

Due to a variety of reasons including their small size, low cost, ease of deployment (deterministic
or random) and simplified transmission-related protocols in terms of medium access channels and
routing [3], it has been found that the antenna array is a key technology for a broad spectrum of future
IoT applications ranging from weather forecasting or complex industrial plant monitoring to military
surveillance [4].

The next generation of Wireless Sensor Networks (WSNs) target the design of sensors systems
that satisfy the requirements of IoT applications taking into consideration recent advancement of
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beamforming technology in 5G wireless systems, whereby the omnidirectional antenna may either be
replaced by directional ones or can work in tandem with the same motes [5].

Although omnidirectional antennas lead to poor network performance due to interference and
short transmission range, previous studies investigated network connectivity using omnidirectional
antennas [6]. However, directional antennas have become mandatory in future generations of WSNs
requiring high network connectivity [7]. Employing a directional antenna model may be very
complicated when optimal bounds of network connectivity are sought for specific applications.
Such applications may require low-power sensors with simple hardware which are randomly deployed
over an area of interest. Furthermore, several IoT applications are required to transmit the acquired
data over long distance using multihop transmission resources available only at sensors. Therefore,
this can be costly for battery-powered sensors. Hence, one major problem is to obtain optimal bounds
of network connectivity between battery-powered sensors and the intended base station which might
be allocated far away from the transmission range of sensors. In other words, directional antennas
are sensitive in terms of directional alignment and thus every sensor must steer its mainbeam to each
other for a successful connectivity [8].

There are several challenges that must be considered when a model is developed in the realm
of virtual beamforming in IoT environments. For example, each sensor must connect with others as
well as with the wireless devices involved in the IoT environment that may use different technologies
for communicating with sensors. Generally, coexistence is a severe challenge in the IoT model,
since the devices that are trying to communicate may interfere with each other resulting in data loss,
rendering the sensors useless. Meanwhile, there is a substantial work on coexistence for collaborative
beamforming; the forecast includes thousands of devices in a narrow range. These applications in IoT
also impose challenging requirements on manufacturing as far as creating large-scale deployments
is concerned.

To overcome this problem, Collaborative Beamforming (CB) can be used for reliable
communication over long multihop distance. CB is considered to be a branch of cooperative
communication where randomly located sensors cooperate with each other to form a virtual antenna
array. This collaboration is presented as a set of sensors operating in half-duplex mode forming
an antenna array where their input signals are multiplied with properly selected complex beamforming
weights. CB extends the transmission range of collaborative sensors by using sensors which jointly
transmit to generate a coherent directive beam for transmission to a given base station.

In the context of our paper, sensors within IoT environment are considered to be an area of
interest that acts as a collaboratively distributed antenna array that forms a specific network topology
such as linear, mesh, ring, tree or even random according to the connectivity among the collaborative
sensors. These collaborative sensors adjust the initial phases of their carriers such that signals from
individual sensors add constructively and form a beam toward the direction of the intended base
station. Moreover, CB can increase the coverage area of WSN, and can be also viewed as an alternative
scheme to the multihop relay communications. Consequently, CB brings many advantages compared
to the multihop relay communications for several reasons. First, no dependency of communication
quality on individual sensors. Secondly, CB enables operating a single-hop directly to the base
station, thus, it reduces the data overhead and delay. Finally, CB in directional antenna transmission
achieves higher connectivity compared omnidirectional transmission with the same transmit power.
Beside these challenges and advantages, the one concern in CB design is the uncontrolled sidelobes of
the beamforming pattern due the following reasons:

1. Random deployment whereas the sensors are randomly distributed over a specific area which
collaboratively form an antenna array for beamforming purposes which is referred to as virtual
random antenna array [4]. The location of each sensor must be considered on its own. Moreover,
these randomly located sensors must be controlled by a cluster head. Hence, the locations,
phase offset and transmit capabilities of each sensor must be known quantities to be taken into
consideration during weight calculations,
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2. Synchronizing the distributed sensors to achieve the desired beamforming, and
3. Hardware limitations and processing of sensors which are restricted to simple circuitry.

For these reasons, it might be concluded that the method for determining the complex weights
should be carried out individually by each sensor without sharing information. Meanwhile, if the
sensors have abilities to share and exchange information, initial phases can be used to calculate
the weights based on global information in terms of the positions and disseminated through
the network by cluster heads. This method strategically controls the deployment of distributed
sensors according to pre-calculated and optimized global parameters of each sensor using various
metaheuristic optimization algorithms.

This paper proposes a local neighbor search method based on robust Canonical Swarm
Optimization (CPSO) algorithm to investigate the effects of random deployment of disjointed sensors to
achieve beamforming with sharp beamwidth while minimizing interference from undesired interferers.
The resultant beampattern is crucial to decide whether the attainment of a CB technique is considered
feasible with respect to the requirements of IoT applications. We claim that the random deployment
and sharing of information among the selected participating sensors motivate CB to determine
the characteristics of the beampattern based on the requirements of IoT applications. Furthermore,
various network topologies of participating sensors produce different effects on transmission gain.
The algorithm proposed in this paper creates a network topology of a virtual antenna array whereas
the weight coefficient of each sensor is adjusted to control the reduction of sidelobe levels (SLL) while
satisfying the connectivity among them that is constrained by the distance among the collaborating
sensors. We establish the CPSO algorithm using directional antenna model [6] to analyze local
connectivity i.e., the probability of isolation of the sensor, as well as the overall global connectivity by
evaluating the probability of connectivity of at least one connected path that identifies the network
topology in terms of ring, tree, mesh, and random from the entire network. The main contributions of
this paper are summarized as follows:

• A metaheuristics algorithm is developed in terms of canonical swarm to investigate the effects of
random deployment of disjointed sensors to solve the SLL reduction and maximum mainlobe
in CB.

• A node selection scheme is formulated based on CPSO to optimize beampattern of the array
formed by collaborative sensors by carrying out an exhaustive search over all possible network
connectivities of sensors in the network.

• Compare the beampattern characteristics in the case of uniform linear, mesh and non-uniform
array sensor distributions taking into consideration the network connectivity.

The rest of the paper is organized as follows. Section 2 provides a literature review of existing
techniques for CB in sensor networks. Section 3 presents the system model for the antenna array.
Sections 4 and 5 introduce the channel and connectively models of the proposed algorithm, respectively.
Meanwhile, Section 6 presents sidelobe reduction control through the node selection technique.
The simulation results are introduced in Section 7 and compared against existing techniques in terms
of conventional beamforming, including convex optimization, Genetic Algorithm (GA), and Particle
Swarm Optimization (PSO). Finally, Section 8 concludes the paper.

2. Related Works

Several algorithms were proposed to control the sidelobes of antenna arrays whereas
the information for each sensor is known. Initially, these works focused on different approaches
of sharing information of the same problem. In [9–11] the statistical analysis of the beamforming
characteristics is reported using various deployments of sensors. The authors in [9] derived
the average properties of beamforming for uniformly distributed arrays sharing phase information.
Meanwhile the authors in [11] showed that Gaussian distributed sensors provide better average of
beampattern properties compared to uniformly deployed sensors. Consequently, in [10] controlling
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and reducing the sidelobe level was proposed using random node selection algorithm with
low-rate feedback. The authors in [12] show that distributed CB can be used in WSN to perform
energy-efficient communications.

There are several studies on Ad-hoc/sensor network connectivity [8,13,14], and cognitive radio
network [15–17] , using omnidirectional and directional antenna models. More specifically, the authors
in [18] reveal the importance of selecting the directional antenna model using a simple channel model
which is tractable in the performance analysis. The authors in [19] provided statistical analysis of
the beamforming characteristics through a node selection algorithm of group of sensors that forms
a ring network topology. It should be noted that when using the directional antenna model within WSN,
it becomes difficult for each sensor to share the global information with other neighbors. Therefore,
in [20] the authors developed a fully distributed directional antenna array discovery mechanism to
find collaborative sensors. A discrete-time Markov chain is used for analyzing the performance of
the antenna array to direct and indirect neighbor discovery as well as selection of feedback policies
jointly which helps to decrease collisions and reduce the latency in the network. On the other hand,
when a sensor has a fixed topology within a cluster, it may be reasonable to assume that these sensors
are connected. However, this is not a well-justified assumption to be used in optimizing the CB
performance since it entails frequent and dynamic changing topology of connectable and collaborative
sensors. For instance, it has been shown that if CB is considered without optimization, the sensor
network may be using more energy than strictly required. Hence, convex optimization has been used
to solve the beampattern optimization problem [21].

Research on beamforming employing optimization in connectable and collaborative sensors
predominantly undertook either weight coefficient perturbation or the deployment of node
perturbation with different objective functions in terms of nulling, minimizing SLLs and maximize
the directivity. The authors in [22] proposed the use of cross-entropy optimization for optimally
selecting the collaborative sensors to reduce the sidelobe level with minimal computational complexity.
An effective robust adaptive beamforming method is presented in [23]. The authors constructed
a tapered covariance matrix to broaden the width of nulls for interference signal sources. Moreover,
the multiple quadratics inequality constraints outside the search space of proposed solution of
beamforming are used to reduce the sidelobe level below a prescribed threshold value. Meanwhile,
the l0-norm constrained normalized least-mean-square (CNLMS) adaptive beamforming algorithm is
proposed in [24] to control the sparsity of the antenna array. The authors formulated the beamforming
optimization problem using the l0-norm penalty as constraint to force the quantities of multiple
antennas to a certain number in order to control the sparsity by selecting a suitable parameter
of the convergence speed of the algorithm. The authors in [25] improved the null broadening
adaptive beamforming algorithm by realization of the reconstruction of interference-pulse-noise
covariance matrix. The proposed algorithm is based on covariance matrix reconstruction method
(ABA-CMR) to insert some virtual interference around the incident angle of inference in order to get
better performance.

Several research work have been reported based on metaheuristic algorithms such as genetic
algorithm [26], particle swarm optimization (PSO) [27], and other metaheuristic algorithms [28]
adopting the node selection method on various space topologies of antennas array such as uniform
circular [29], linear or mesh array [30], and random array [31] for reducing the sidelobes, nulls control,
and minimizing beam width of the beampatten. Specifically, the PSO algorithm is inspired by
social behavior patterns of organisms that live and interact within large groups. It could be easily
implemented and applied to solve various optimization problems or problems that can be transformed
to function optimization. The main strength of PSO is fast convergence, which compares favorably with
many other global optimization algorithms such as CPSO, fully informed particle swarm optimization,
and multi-swarm optimization algorithms [32–36]. However, CPSO provides a formal proof that
each particle converges to a stable point using stochastic process theory. Hence, CPSO can analyze
the stochastic convergence of the particle swarm and corresponding parameter selection guidelines.
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It has been shown that the trajectories of the particles oscillate as different sinusoidal waves and
converge quickly [37,38].

The authors in [21] presented a solution for the single look direction of the antenna array problem
using an interior-point method to define the connections with specific a geometry. All large-scale
interior-point implementations use direct decomposition to solve the reduced Newton system. This can
be done by the symmetric factorization of a quasi-definite system. Once the problem is defined
as a convex optimization problem, it can be solved in a relatively short time and less space than most
randomized incremental algorithm using well-known efficient convex solvers. However, one drawback
of direct factorization solvers is that in some situations a sufficient/desired numerical accuracy cannot
be achieved. Because the convex optimization algorithm is a local minimizer solver of a convex objective
function over a convex set, it needs gradient information. Similar to most of traditional optimizers,
the algorithm is unfit for complex multimodal problems and non-differentiable optimization problems.
For example, in various IoT applications, it may be very difficult to control the parameters with
an arbitrary precision.

Generally, the complex multimodal problems can be modeled as a linear convex optimization
problem to obtain optimal and accurate solution. It is not easy to determine whether a function is
convex or not. Thus, the richness of convex functions for solving these problems is demonstrated
by the connection between the convexity set and the objective function from classical analysis.
This connection is given by several theorems to guarantee that the convexity is the main step
in the optimization method [39]. Moreover, the choice of optimization methodology depends on
several limitations imposed by the sensor network such as the number of sensors deployed in a specific
area and the application scenarios in IoT. Existing algorithms for node selection may cause some sensors
in the network to be used more often than others and hence exhaust their batteries. If all sensors
selected from an excessively large area in the network are used to generate a narrow mainlobe,
then the lifetime of network might exhaust as well as the lifetime of frequently used sensors. The main
costs for these algorithms are computing distances. To isolate the effect of randomization on time
efficiency, we propose changing the process of randomization of swarm performance beyond convex
optimization by selecting the further points i.e., solutions from an outside research space. Whether each
selected solution swapped with revocable solution, then it could create many other new solutions
for multimodal problems. Therefore, the algorithm proposed in this paper is based on minimization
of sidelobes and maximization of mainlobe via coefficient weight perturbation with the ability of
randomly selecting the sensors while providing improvement in connectivity for sensors deployed
over a specific cluster area.

3. System Model

In conventional beamforming, the elements of an antenna array are arranged in a predefined
regular configuration such as linear or circular. Meanwhile, in CB where each cluster contains
randomly distributed sensors acting as a virtual antenna array in an Ad-hoc manner with no common
controller, i.e., the weights are synchronized at each sensor. Then, the whole clusters over a distributed
area simultaneously transmit a weighted signal which constructively combines in the direction of
the intended base station.

We consider a system model where a group of randomly deployed sensors are co-located
in the (x, y) horizontal plane. Each sensor has a transmission radius ro as shown in Figure 1 which
illustrates the cluster head, collaborating sensors and intended base station. All sensors jointly form
a topology of such a network which is dynamically changing in an IoT environment due to the signal
variations. However, from the topology point of view, a WSN can be represented as a graph G(V, E),
where the sensors correspond to the vertices and the paths between theses sensors correspond to
the edges of the graph. Table 1 lists the symbols used throughout the paper along with their definitions.
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Table 1. Notation.

Symbol Definition

(x, y) coordinates of deployment sensor over plane
G(V,E) Graph representation of WSN
(ı, ) pair of connected sensors
(xıκ , yκ) connected path between any pair of sensors ı and 
ℵ subset of a group of deployed sensors
κ number of selected of deployed sensors
N Total number of deployed sensors
R Radius
λ wavelength
ϕκ initial phase of the κth sensor carrier frequency
(ro, ψκ), θo, φo corresponding coordinate of paired sensors, elevation, and azimuth angle respectively
dκ Euclidean distance between κth sensor and any point located in (x, y)
(A, φo) incident coordinate over (x,y) plane
AF Array Factor of sensors
ω weight of transmission signal
η the efficiency factor
ε define as a function of the phase distribution (the connectivity factor
ακ initial phase of κth collaborating sensors
ζκ complex amplitude of transmission signal
Pr receipting power
Pt transmit power
Gr, Gt Gain of transmitter and receiver
α path-loss 2 ≤ α ≤ 6
β Power attenuation
dmax maximum transmission range between two collaborative sensors
S Density of the deployment sensors
I the dependent area of interest
Z Objective function
particle Sensor
~x(rı,φı ) Reference of the active cluster
~x(rı,φı ) Reference of the active cluster
υı Velocity toward selecting optimal solution
Pı Personal-best position for sensorı
Gı Global-best position for sensorı
pbest Personal-best
gbest Global-best
φ1 Personal-best coefficient
φ2 Neighbor best coefficient
ξ Constriction coefficient
n The number of samples that must be taken out of area of interest I
Eelec The energy dissipation rate to run the radio
ε fs The one-path model for the transmitter amplifier
εmp The multipath model for the transmitter amplifier
ρ The density of distributed sensors over a given area in a 2D
℘ The node degree of connectivity
ı A certain amount of iterations
h(~x) The Latin hypercube sample
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Figure 1. Structure of the system model; (a) Uniform Linear Array (ULA), (b) Uniform Mesh Array
(UMA), (c) Random Antenna Array (RAA).

The number of direct neighbors of a given cluster head is defined as the degree of the connectivity.
The simplest case is taken into consideration as an initial step in which it is assumed that the graph
consists of a large number of scattered sensors in the coverage area and paired up whenever calculating
the probability that a pair of sensors (ı, ) ∈ κ separated by Euclidean distance dı is connected, where dı

is given by

dı =
√
(xı − x)2 + (y − y)2 (1)

where xı, y are the coordinates of k connecting sensors. The hop-distance between two connected
sensors can be calculated as [37]

ro =

√
dı

3ε fs

2Eelec
(2)

where Eelec is the energy dissipation rate to run the radio, ε fs is the one-path model for the transmitter
amplifier. Meanwhile εmp is the multipath model for the transmitter amplifier. In other words, any two
sensors can directly communicate with each other if and only if their Euclidean distance is smaller
than a given threshold ro. Suppose a graph G is said it to be connected if and only if at least a path
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exists (xıκ , yκ) between any pair of sensors ı and , where {ı, . . . , }ı 6=∈ℵ⊆N . When there is no path
between any pair of the sensors, the network is said to be disconnected.

We express the sensor coordinates as (xı, y), ı,  = 1, . . . , N, where ı 6=  and κ ∈ ℵ ⊆ N.
The sensors are chosen as linear, mesh, and randomly distributed in a circle with radius R and
the spacing between sensors is λ/2 [40]. Meanwhile, the random deployment is assumed to be
Gaussian distributed with zero mean and variance σ2

o . Initially, one of the collaborative sensors
is selected to act as a cluster head, which then serves as the geometrical reference point for all
collaborative sensors in the respective cluster. The cluster head broadcasts Hello messages to all its
neighbors. Each connected sensor receives the message, and align its signal phase with reference to
the cluster head by multiplying the message by a complex weight. This process is performed during
information sharing among the collaborative sensors to ensure that they have aligned the signal to be
added constructively at the direction of base station. At the end of this stage, the CB stage starts by
the source sensor and its connected collaborators which simultaneously transmit the data packets with
a field amplitude of ξκ . Due to the phase alignment among sensors during the sharing phase, the data
packets add constructively at the intended location.

The channel characteristics in various environments such as outdoor, or outdoor-to-indoor IoT
applications, i.e., scenarios such as open-loop or closed-loop in which CB is needed are exposed to
large-scale fading which is considered to be a dominant factor for the channel among these collaborative
sensors and base station. Therefore, the channel coefficient for each κth collaborative sensor which
servers as connectable source–destination pair is multiplied by the corresponding weight to align
the phase of the signal. This ensures that signals from all collaborative sensors are in phase toward
the direction of the intended base station. Moreover, a closed-loop scenario is considered where
the phase alignment is done by compensating the distance between the collaborative sensors and
the intended base station, with respect to the cluster head.

Assume the location of the intended location is expressed in spherical coordinate system
(ro, θo, φo), where the elevation and azimuth angles correspond to θ ∈ [0, π] and φ ∈ [−π, π],
respectively. The corresponding coordinates expressed as rκ =

√
x2

κ + y2
κ , and ψκ = tan−1( yκ

xκ
)

possess Rayleigh and uniform distributions, respectively. Without any loss of generality, we set
φ0 = 90, therefore the Euclidean distance between the κth sensor and a point located in (x, y)
plane at coordinates (A, φ0) is defined as dκ ,

√
A2 + r2

κ − 2rκ A cos(φ− ψκ) ∼ A− rκ cos(φ− ψκ),
where A� rκ in the far-field region. The array factor for N sensors is expressed as [18]

AFκ(φ/r, θ) ,
N

∑
κ=1

expϕκ exp− 2π
λ dκ(φ) (3)

whereas λ denotes the wavelength and ϕκ is the initial phase of the κth sensor carrier frequency.
The phase delay is defined as θr =

2π
λ dκ(φ) at point (A, φ0). The gain of an antenna can be expressed

in a spherical coordinate system as follows [15]

G(θ, φ) = η
uκ(φ/r, θ)

uκ
(o)

(4)

where u(θ, φ) is the radiation intensity in a given direction (θ, φ), and η is the efficiency factor, which is
set to be one since each antenna is assumed to be lossless and uκ

(o) is the radiation intensity of
an isotropic radiator. The isotropic antenna model has been frequently used in WSN to model several
IoT applications [18,37,41]. Figure 2 illustrated the deployment of the elements along a line, rectangle
(mesh), or random with the corresponding distance between two neighboring connecting elements
that achieves both connectivity and full coverage.

Applying isotropic antennas ensures the connectivity for example in Figure 3 if sensor (A)
connects to sensor (B), then sensor (B) must connect to sensor (A). Nevertheless, it is not guaranteed for
directional antennas. Sensor (A) might point to a sensor (B), but the (B) might connect elsewhere such
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as sensor (D). Sensor (C) has a packet for sensor (A), but the (C) can not transmit the data, since sensor
(A) is connected to sensor (B). Therefore, it seems that the connectivity of the network requires
global knowledge of all sensors’ directions for which several challenges arise. The first challenge is
interference caused by higher gain. Meanwhile, the second is the optimal deployment rules that apply
to every sensor to ensure the connectivity with as few other sensors as possible. We consider three
kinds of antenna arrays, Uniform Linear Array (ULA), Uniform Mesh Array (UMA), and Random
Antenna Array (RAA) to address this problem in terms of typical antenna models. Antenna gain can
be rewritten again in terms of array factor of N sensors as

G(θ, φ) =
AFκ(φ/r, θ)2

1
4Π

∫ 2Π
0

∫ Π
0 AFκ(φ/r, θ)2 sin(θ)dθdφ

(5)
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Figure 3. Sensor (A) and sensor (B) can communicate with each other, sensor (C) can communicate
with sensor (A). Sensor (B) might connect to sensor (D).

3.1. Uniform Linear and Mesh Arrays

Beamforming is achieved by applying phase shift to each element in the array such that its
mainbeam points towards the desired direction. Assume far-field conditions, where the information
regarding the locations of collaborative sensors are shared, then the resultant array factor when
the beams from collaborative sensors are directed towards a base station with azimuthal angle
φ ∈ [−π, π] away from the cluster head is given as follows:

AFκ(φ/r, ω) ,
N

∑
κ=1

ωκ exp− 2π
λ rκ [cos(θ−ψκ)] (6)
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where ω = [ω1, ω2, . . . , ωN ], and ωκ is κth sensor’s transmission weight, defined as

ωκ = ξκ expακ (7)

where ωκ is the amplitude and ακ is the initial phase of a κth collaborating sensor is ακ = 2π
λ rκ[cos(φ−ψκ)].

For ULA, each element in the array is placed along with distance d between adjacent elements. The array
factor can be expressed as:

AFκ(φ/r, θ) ,
sin(Nψ(φ)

2 )

sin(ψ(φ)
2 )

(8)

where ψ(φ) is the phase difference between adjacent elements in the direction φ, which is related
to d by ψ(φ) = 2Π

λ cos(φ) + δ, where δ is the progressive phase shift of adjacent elements, due to
the physical deployment of elements. Therefore, the angle of mainbeam is δ = − 2Πd

λ cos(φo).
Substituting Equation (8) into Equation (5), we can calculate the antenna gain for any azimuthal

angle for ULA. Meanwhile, for UMA the antenna gain can be calculated for any azimuthal angle φ,
by substituting Equation (6) into Equation (5).

3.2. Random Antenna Array

To steer a beam in the desired direction, each sensor selects a boresight direction θ from
a uniform random distribution on [0, 2Π), completely independent of other sensors. We are interested
in improving the overall connectivity to enable sensors to transmit to a larger distance. However,
this increase in transmission range is bounded to a certain direction. Hence, the sensors disconnect
the connections to other sensors located nearby and might end up being isolated if the mainbeam is too
narrow. To overcome this problem, a CB that uses random beamforming by defining the probability of
two randomly selected sensors in random deployment are connected via a multihop path is adopted
in this paper. Since the deployment of sensors depends on a random distribution, the direction of any
other sensor from a chosen sensor has a uniform distribution as well. Therefore, the antenna gain for
any azimuthal angle φ being uniformly distributed over [0, 2Π) is given as [18]

AFκ(φT , φR/r, θ) ,
1

(2Π)3

∫ 2Π

0

∫ 2Π

0

∫ 2Π

0
(G(φ, φT , k)G(Π + φ, φR, k))

2
α dφRdφTdφ (9)

where G(φ, φT , k) and G(φ, φR, k) are the transmit and receive antenna gains, respectively.

4. Channel Model

We consider a radio channel that is affected by path-loss and shadowing effects. We intend to
calculate the received power Pr over the distance dα between the source–destination pair for a given
transmitted power, Pt using [6]

Pr =
PtGrGt

10
ω
10 dα

(10)

We denote the gains of transmitter and receiver as Gt, and Gr, respectively. The signal is attenuated
by the path-loss as d−α which is usually bounded as 2 ≤ α ≤ 6 multiplied by the shadowing factor ω

in dB, which is a Gaussian random variable with zero mean and standard deviation σ(dB).
To quantify these variations, we calculated the attenuation among collaborating and connectable

sensors denoted by β. The expected value of Pr increases as ε× N, where ε is defined as a function
of the phase distribution 0 ≤ ε ≤ 1 [41]. When there is no phase error meaning that beamforming
with ℵ sensors gives a power gain over transmission as with single element as E[Pr = ℵ] [42]. Thus,
any improvement or degradation is caused by the distribution of ε. As long as keeping the distribution
of connectivity of collaborative sensors is contained in such a way as to keep ε ≈ 1, large gains can be
realized using distributed beamforming. The power attenuation between two collaborating sensors
denoted by β is calculated as
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β =
Pt

Pr
=

10
ω
10 dα

GrGt
(11)

This means that two collaborating sensors are successfully connected if the power attenuation is
not greater than a threshold β(dmax) < β0. According to [6], if we replace β in Equation (10) with β0,

the maximum transmission range dmax is given as dmax = α

√
GrGt β0

10
ω
10

. From Equation (10), the probability

of having no direct connection between two sensors separated by dmax is given by

P(β ≥ βth) = P(
dα

GrGt
≥ β0) (12a)

= P((β0GtGr)
1
α ≤ d) (12b)

The sensor can communication with all its randomly distributed neighbors within a radius R
given by

R = (β0GtGr)
1
α (13)

Substituting Equation (13) into Equation (12), we get P(β ≥ β0) = P(R ≤ dmax). From this
analysis, we can derive the first constraint in Equation (14) of the optimization problem which
depends on the antenna gains of each connected source–destination pair. The constraint can vary with
the number of connectable and collaborative sensors with different directions since Gr and Gt are also
affected and vary in different directions [40].

0 � dmax � dκ (14)

5. Connectivity Model

Let the collaborative sensors be considered to be input variables χ = [x1, x1, x1, . . . , xκ ] assumed
to be Gaussian distributed with density ρ over a given area in a 2D plane. Each sensor first
calculates the approximate number neighbors after the deployment by exchanging the information
among the sensors in the network. The expected number of sensors in an area I can be calculated
as S = ρπdmax. However, the output function of the area as fN(ℵ) = ρ

κ , in the range κ ∈ 0 ≤ ℵ ≤ N
of each of the ℵ of N grouped by clusters of collaborative sensors of probability of size 1

ℵ . Therefore,
the expected number of collaborative sensors in each cluster is given by ℵ = S

N
Linear beamforming technique implies that every sensor directs its mainbeam towards

the geometric center of the network, where the connection can be easily established if any two
sensors are aligned within each other’s mainbeam. Hence, we can say that every two sensors are facing
each other if their main beams are pointing towards each other or, more precisely, if they are deployed
within the width of each other’s main beam.

We expect that the sensors near the base station have high probability of being connected together
via their mainbeams. The size of the connectivity area is proportional to the gains of the mainbeam.
Thus, the radiated power is fixed at each sensor, where is an ideal distributed beamforming with fixed
number of collaborative sensors results in maximum gain which is approximately equal to N2 fold
whereas the expected value of Pr at the base station increases as N increases [43].

On the other hand, the probability of two sensors facing each other in the random deployment is
independent of the distance from the base station. Therefore, the connectivity performance of random
beamforming is almost the same throughout the network. The gain of mainbeam is independent of
the boresight direction; it is always equal to the number of sensors N. As N increases, the mainbeam of
each sensor can reach a greater distance from the neighbor, while its width stays the same. Collaborative
beamforming concentrates the radiated power in a certain direction toward the base station. Moreover,
CB distributes power consumption overall sensors when the collaboration involves ℵκ sensors up to
an Nκ [41]. The gain Gr is defined as the maximum in mainlobe depending on the network topology
as well as the minimum value of an 1

Nκ fold with the reduction in the received power everywhere
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else [41]. An example of IoT application is monitoring rural areas by deploying sensors. The locations
are considered random due to wind, releasing mechanism, speed, and height of the local environment.
The array factor is written in terms of the weighted sum of the individual elements as follows

AFκ(φ/r, φ) ,
∫ ℵ−1

κ=0
ωκ(~χ) expϕκ exp− 2π

λ d(~χ)κ(φ) (15)

This describes the spatial response of ℵ element array factor. The positions are denoted as
~χ = {xκ , yκ}, κ ranges from 0 to ℵ − 1, and each element has a weight ωκ(~χ) defined as

ω =
∫ ℵ−1

κ=0
ωκ(~x) exp−ακ(~x) (16)

The randomness of positions and the number of sensors cause variations in the respective
beampatterns, whereas both the sidelobes’ positions and magnitude are affected by the network
topology. To ensure the connectivity among these collaborative sensors, the Cartesian product for each
cluster grouped as ℵκ of probability size ℵ−κ is used. Each cluster of connected collaborative sensors
can be labeled by a set of ℵ coordinates ~xı = {(xı1, yı1), (xı2, yı2), . . . , (xıκ , yıκ)}, whereas (xı, yı)

defines the components of one cluster denoted as ~xı of collaborative connected sensors. The Latin
hypercube sample that is denoted as h(~x) is used to obtain a random selection of ℵ of clusters
~x1,~x2, . . . ,~xℵ conditioned by the probability of sensor connection for each component of a cluster.
The set {~xı}ℵı=1 is defined as a permutation of the integers 1, . . . , N. Moreover, the density function of
N given as [44]

N 3 (xı, yı) =

{
1, if ℵκ f (~x)←→ (xı, yı) 3 ~xℵ
0, otherwise

(17)

The distribution of connected sensors is seen to be the measurement of the local network
connectivity (i.e., the connectivity of collaborative sensors).

Definition 1. The probability of connectivity P(conn) is the probability that for each node in a network, there is
connection to any other node.

The probability of a sensor connects with any of its neighbors is an important metric to evaluate
the local network connectivity. Moreover, the distribution of connected sensors P~x(conn) ≤ dmax

follows Gaussian process is given as

P~x(conn) ≤ dmax = ∑
∀{~xı}ℵı=1

P~x(conn|N 3 {~xı}ℵı=1)P(N 3 {~xı}ℵı=1) (18a)

= ∑
∫
{~xı |h(~x)≤exp−E[℘]}

f (~x)d~x(
1
ℵκ

) (18b)

=
∫

h(~x)≤exp−E[℘]
f (~x)d(~x) (18c)

Where ℘ denotes the node degree of connectivity, which is defined as the number of sensors
such that any given sensor can connect with directly, and E[·] denotes the expectation operator.
Thus, the average sensor degree can be expressed as E[℘] = ρπ[dmax]. To present the variance
of the Latin hypercube sampling, it is usually not possible to obtain closed-form expressions for
Equation (17), an approximation is thus required. We establish this by means of Latin hypercube
sampling in the coverage area where the collaborative sensors are deployed. We use an indictor
denoted as ε with

ε~xı =

{
1, if {(xı1, yı1), (xı2, yı2), . . . , (xıκ , yıκ)} ≤ dmax

0, otherwise
(19)
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It is shown that the probability of connectivity is influenced by shadow fading and antenna gain,
which depends on the position and distance among the selected sensors for each cluster with boundary
defined as I = [~x− fN ,~x + fN ], where I depends on the point ~x of interest and limits fN , which defines
the boundaries of the coverage area. Therefore, we considered the randomly directed antenna for
the cluster of sensors selection scheme. Each sensor can randomly select its main beamforming direction
and then progressively change its direction based on robustness of particle swarm optimization by
acquisition of the pre-knowledge of locations of all its neighbors. In other words, starting with initial
random weights, the selection of sensors can refine the weights based on sharing the information
among them. Figure 4 shows the relative positions of collaborative sensors, where d, and φ0, θ0 denote
the distance and angle between two connected sensors, respectively. All sensors with angles are
Gaussian distributed in (0, 2π].
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6. Sidelobe Reduction via Optimizing the Sensor Selection Algorithm

The consideration of taking random samples of sensor locations provides additional degree of
freedom for controlling the sidelobes. To achieve the desired mainlobe accompanied by reduction of
the sidelobes, it is required to select a subset of connected and collaborative sensors from candidate
sensors within the same coverage area of each κth source–destination pair.

This sampling is assumed to be as Latin distributed random variable which represents the whole
coverage area considering the fluctuations/shadowing effects in the channel. It depends on the distance
among the selected collaborative sensors, whereas the sensors are close to each other, while the base
station is located far from these selected collaborative sensors. Moreover, the network can be viewed as
homogeneous and the power attenuation due to different paths are unequal. Therefore, we can either
adjust the gains of the receivers or the power/the number of the collaborative sensors participating
in CB by adjusting the weights.

6.1. The Sensor Selection Algorithm

Node selection procedure works on the basis that the positions of the sensors forming an antenna
array are selected such that their mutual phase offset due to their locations creates a coherently
combined signal at the cluster head. Consequently, the node selection algorithm involves carefully
selecting the best position for each collaborative sensor and then positioning according to the logical
connectivity such that the beampattern is optimal. Assume ℵκ be a set of collaborative sensors to be
selected from Nκ , i.e., ℵκ ⊂ Nκ , to form beampattern towards the base station. The path connectivity
assigns a set of collaborative sensors to each source–destination pair that forms a specific topology.
Each cluster consists of many sensors, thus the mainlobe of the beampattern is unstable for different
number of ℵκ of different subsets Nκ . This occurs as long as the coverage area does dynamically change
according to IoT environment as well as the requirements of the applications in that environment. It is
necessary to take into consideration these two conditions to maximize mainlobe towards the intended
base station and minimize the sidelobes.

We have developed an algorithm for sensor selection based on robust optimization scheme
satisfying certain objective functions. First, to find an optimal solution for uncertain objective
function which guarantees that the sidelobe levels at the direction of intended base station are below
a certain prescribed value. Second, to find an optimal solution that is stable under fluctuations of
the channel environments.

However, it seems a challenge to find a robust optimal solution for the objective function
f (~x) → max(mainlobe)/ min(sidelobe) on a continuous optimization problem with uncertainty
fluctuations in the collaborative sensors. This is because of the difficulty of realizing the gain
achieved from the fluctuations in input variables to get an optimal solution. Hence, to assess
the robustness of a solution for the objective function, there are common measures to calculate
the expected fitness function taking into account the input variable fluctuations and their probability
of deployment via a probability distribution function pd f (~x) over the whole input variable space
[~xı = {(xı1, yı1), (xı2, yı2), . . . , (xıκ , yıκ)}]ℵ⊂N , where ℵ ⊂ N is the problem’s dimension.

As mentioned in the previous section, the spacing among the collaborative sensors affects
the beampattern shape of the antenna array. Thus, selecting random sensors positions i.e., uncertain
sensor positions may lead to positions errors. However, the minimum SLL of an antenna array
with fixed and selected sensors positions is higher than that of the antenna array with randomly
selected sensors if the number of antenna array is the same, since the distance among the randomly
selected sensors has maximum Euclidean distance corresponding to a certain hop-distance which
is considered to be a practical metric for modeling spatially random sensor network. Specifically,
the connectivity in terms of estimating the area of interest is defined by maximum distance that can
be covered in multihop paths. Furthermore, the maximum Euclidean distance is directly related
to the estimated hop-distance which is equal to the least number of hops overall multihop paths
between any two locations. Therefore, CPSO is used for the optimization of sensor selection whereas
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the topology of random selection becomes regular topology such as linear, mesh, tree, or ring and
the SLL deteriorates further. The objective function is given as

Z =
∫ h(~x)≤exp−E[℘]

κ=1
f (~x)pd f (ε~xı)d(ε~xı) (20)

The calculation of the objective function takes into consideration the number of distributed
collaborative sensors sampled and the possibility of connectivity via a probability distribution function
of deployment over the coverage area [~xı = {(xı1, yı1), (xı2, yı2), . . . , (xıκ , yıκ)}]ℵ⊂N , where ℵ ⊂ N is
the problem’s dimension. The required number and topology of distributed sensors N must first be
decided to construct the antenna elements ℵ in the network.

Consider N as the total number of sensors, the number of collaborative sensors to be selected
is ℵ ⊂ N, where ℵ ≤ N, and the number of distributed collaborative sensors sample of one active
cluster to be tested in each iteration be κ ≤ ℵ. The number of distributed collaborative sensors
samples for achieving an optimal solution is an important factor, since each selected sensor must share
the transmission range among others within the active cluster. This implies that the characteristic
parameters of a CB of the selected sensors must maintain their stable values as the number of samples
increases. Moreover, while testing one group or a group of sensors, we need to check if beamforming
of the corresponding distributed collaborative sensors sample increases the mainlobe and decreases
sidelobes in the intended and unintended direction(s), respectively. Thus, the minimum number of
these samples can be determined when the mainlobe and sidelobes reach their stable values. To avoid
occurrence of grating lobes, the interspace among sensors should satisfy ro ≤ λ

2 ≤ ρπdmax [20].
The selection process can be summarized as follows:

Step 1 Each sensor starts to explore the neighbors in all directions using randomly directed antenna
scheme. Assuming that sensors in the cluster know their distance relative to the cluster head
by directly communicating with the base station, then the weights of the signal transmitted
and received by the cluster head can be computed.

Step 2 Suppose that the cluster head and its neighbors are arranged in a specific network topology
such as linear, mesh, or random. Then, the cluster head is at approximately equal distances
from each other in linear and mesh topology, meanwhile it is not equal in random topology.
Hence, assume that ~x(rı,φı) acts as the reference of the active cluster to select the collaborative
sensors to perform the CB. We need to check the closest selected collaborative sensors~xC(rı,φı)

within transmission range of cluster head as

d~xCB
(rı,φı) = min ‖ d~x(rı,φı)− d~xC

(rı,φı) ‖ (21)

Step 3 Sensors are selected to form an antenna array that adjusts its own radiation pattern to
radiate the beampattern in certain direction and reject the signals from other directions.
This is controlled by the weighted signal of the collaborative sensors which are computed
and the signal is transmitted to the cluster head based on robust particle swarm
as discussed in Section 6.2 to satisfy the objective function defined in Equation (20).
The memetic objective function shows that these weights could be adapted to change based
on the signal environment in terms of fluctuations/shadowing in the channel. Therefore,
the optimal radiation pattern can be obtained through maximizing the mainlobe and
minimizing the sidelobes by perturbing the positions of selected collaborative sensors
in the antenna array.

6.2. The Robust Canonical Particle Swarm

PSO is an iterative, population-based intelligent computational algorithm which searches for
optimal solution for non-linear continuous problems. The performance of PSO depends on the power
of the solutions’ population that endorse it to find several optimal solutions, i.e., particles over multiple
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generations. Therefore, one improvement would be to generate randomizing potential particles and
continue using the dynamic distances among the particles to dictate communications with selected
particles. However, such as technique requires intensive computations to determine these distances,
and therefore, PSO is not viable for larger dimensions for the following reasons.

1. PSO can struggle as it can be difficult for the combination of the number of particles, i.e., swarm
to enlarge the search space size to converge on an optimal solution, often getting stuck
in local optimal.

2. The particles are connected as a topology which enables several communication paths among its
members and the way the swarm is searching the landscape. Since the neighborhood topology
changes the pattern of the swarm, convergence and diversity differ from one topology to
another. In ring topology known as local PSO pbest the information is slowly distributed among
the particles. Therefore, using the ring topology slows the convergence rate because the optimal
solution must propagate through a few neighborhoods before affecting all particles in the swarm.
Meanwhile, mesh topology uses a kind of fully connected topology that is known as global PSO
gbest. The communication among the particles is expedition, and swarm quickly moves towards
the best solution. Because of the cost of neglecting part of the search space, the population may
fail to explore outside of local regions causing the swarm to be trapped in local optimal solution.

3. PSO suffers from the dual problems of outdated memory due to the environment dynamism and
diversity loss, due to convergence.

4. PSO does not always work perfect and may need tuning of its behavioral control parameters such
as weight inertia and constriction factor.

The following points clarify the differences between PSO and CPSO:

1. Particles in CPSO possess memory of the best location visited in pbest and its fitness value.
2. Every particle shares information with every other particle in the swarm and there is a single gbest

attractor representing the best location of the entire swarm.
3. CPSO provide more control to parameters of the swarm behavior by mathematical operators such

as ⊗, ⊕, and � for increasing and decreasing the inertial weight and velocity clamping.

The PSO algorithm starts as follows: an initial swarm of particles as one-dimensional
vector −→x = [x1, x2, x3, . . . , xn] are generated at random. These particles communicate and move
in the research space to allocate optimal solution and reach at optimal area. The position of particles
is changed by adding a velocity to the current position: −→x (t + 1) = −→x (t) +−→υ (t + 1). In comparing
PSO with CPSO, the proposed optimization algorithm exists as a swarm of particles, i.e., sensors and
each particle ı resides at position ~xı. These particles move with a certain velocity ~υı over the search
space. Each position is associated with a fitness value given by the objective function during several
iterations of evaluations ι. For N-dimensional problem, the position and velocity can be specified by
ℵ × N matrices as follows

~x =

 x11 x12 . . . x1|N|

x|ℵ||N|

(22)

~υ =

 υ11 υ12 . . . υ1|N|

υ|ℵ||ℵ|

(23)

As mentioned, ℵ defines the number of particles/sensors in the swarm. Each row of the position
matrix represents a possible solution to the optimization problem after evaluating the objective function
f (~x) multiplied by connectivity indicator factor ε~x defined as follow
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ε~x =

 ε ~x11
ε ~x12

. . . ε~x1|N|

~x|ℵ|ℵ|

(24)

Hence, the best position is defined as the local or personal-best ~xι
pbest

achieved by the evaluation
of the objective function for collaborative sensors during the first iteration of selection as follows.

p =

 p11 p12 . . . p1|N|

p|ℵ|ℵ|

(25)

Moreover, each particle knows its ~xι
pbest

best value so far, which corresponds to experience of
each particle. Among all iteration of all collaborative clusters, a new position is considered to be
a global-best position ~xι

gbest
and is defined by

G = [g1, g1, . . . , g|ℵ|] (26)

Moreover, each particle may either achieves a better position or does not by adjusting its velocity
based on the evaluation of the objective function defined in Equation (20) in the previous position as
well as the best previous positions of all particles. Specifically, each particle tries to adjust the velocity
based on the following information to modify its position and refine its own weight:

1. The distance between the current position and the ~xι
pbest

2. The distance between the current position and the ~xι
gbest

After a certain number of iterations, ε all particles of the swarm converge towards positions that
are optimal either locally or globally. The degree of influence among the personal and global-best
solutions should be defined by coefficients. For instance, the personal position is defined by coefficient
φ1, meanwhile the influence of the best global or neighborhood exchange solution is defined by
a coefficient φ2. Accordingly, updating the velocity and position of an κth particle at εth iteration is
defined mathematically as

~υι+1
ı := [ω ∗ υι

κ ] (27a)

+ [φ1 ∗ rand()⊗ (~xι
pbest
−~xι

κ)] (27b)

+ [φ2 ∗ rand()⊗ (~xι
gbest
−~xι

κ)] (27c)

The position of the κth particle/sensor for the next iteration is updated such that ~xι+1
κ = ~xι

κ + υι+1
κ ,

where φ1 is the cognitive parameter, φ2 is the social parameter, ω is defined as the inertia weight index
that tries to explore a new cluster, and rand() is a random number within [0,1]. The ratio of φ1 : φ2

determines the importance of ~xι
pbest

and to ~xι
gbest

. There are many mays to implement the constriction
coefficient ξ. One of the simplest methods is shown in Equation (27), whereas the first term of expresses
the previous velocity of the information vector (in other word the personal-best vector before starting to
change particles/sensors information with their neighbors). Meanwhile, the second and third terms are
used to change or update the velocity of the information vector from personal-best vector to global-best.
Without the second and third terms, the vector will keep on moving in the same direction until it hits
the boundary. The inertia weight ω, regulates the influence of the previous velocity υι on the new
velocity υι+1, and it should not be confused with beamforming coefficient weights, whereas the inertia
weight is a constriction coefficient, which helps to balance global exploration and local exploitation,
and thus helps in preventing velocity explosions. It is defined as follows [41]:

ω =
2

φ +
√

φ2 − 4φ
, with φ = φ1 + φ2 > 4 (28)
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The Clerc’s constriction method is used [45], where φ is commonly set to 4.1 which helps
to control the convergence of particles, whereas φ1 = φ2 = 2.05, and ω is set as a constant
value. Therefore, the constricted particles converge without using any velocities values at all,
i.e., removal of velocity clamping facilitates larger exploration abilities of the swarm. This implies
a swarm behavior that is eventually limited to a small area of the feasible search space containing
the optimal solution. However, Equations (27) and (28) are formulated such that the CPSO has no
problem-specific parameters addressing all efficiency of exhaustive search over all possible solutions.
Indeed, a logical connectivity describes how directional beamforming affects a network topology
and how the information is shared and transmitted by one sensor to another. These topologies are
created by orientating the mainlobe direction of the selected collaborative sensors based on sharing
and exchange information of the locations from their neighborhood towards the geometric center
of the cluster. Hence, these topologies may have prefect and imperfect information of the position
of other sensors. According to Equation (21), the topology of the selected collaborative sensors as
shown in Figure 5 will enable the CPSO to have a higher diversity and then being able to find global
optimal solution better than all topologies as shown in Figure 6 which are well suited for finding
local optimal solution. After a certain number of iterations ι, a custom topology creates group of
collaborative sensors with a maximum mainlobe and minimum sidelobe by maximum of κ out of ℵ
sensors or particles in total. It should be noted that the purpose of using the present swarm topology
is to combine the benefits of all type of topologies in terms of linear, mesh, and tree. We rewrite
the objective function as

max Z =
∫ h(~x)≤exp−E[℘]

κ=1
f (~x)pd f (ε~xı)d(ε~xı) (29)

subject to

0 � dmax � dκ , (30a)

ε~xı =

{
1, if {(xı1, yı1), (xı2, yı2), . . . , (xıκ , yıκ)} ≤ dmax

0, otherwise
(30b)
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The objective function in Equation (29) can be applied to both isotropic and realistic antenna
patterns according to the type of IoT applications as well as their requirements. However, there is no
closed-form expression of Equation (29) for realistic antenna model or even for a simplified antenna
model. Furthermore, it is not possible to obtain closed-form expression for the optimization problem
hence an approximate solution is needed.

We adopt a popular approach for this approximation by means of Latin distribution of
collaborative sensors sampled for the fitness value of the objective function in an area of interest [44].
For the approximation of the maximum/minimum values of the objective function, this means that
n samples must be taken out of an area of interest I and the max / min of the sampled fitness value
would be returned as

f (~x) =

{
max{ f (~x + εκ)|κ ∈ {1, . . . ,ℵ}}
min{ f (~x + εκ)|κ ∈ {1, . . . ,ℵ}}

(31)

7. Performance Evaluation

IoT applications such as in military, industrial, or smart-city are considered to illustrate the benefits
of the proposed CPSO algorithm in determining the complex antenna array weights to best meet
a specified far-field beampattern requirements and to reveal the advantages of the sensor selection
algorithm for optimizing the beampattern. The proposed algorithm is implemented using MATLAB.
Throughout the experiments implemented, we consider initializing the position matrix at the beginning
of the experiment as linear, mesh or randomly distributed in a plane of area L× L m2. For example,
L = 1200 m is initiated and then we select the position matrix depending on the Sensor Array Analyzer
toolbox of MATLAB to construct and analyze common sensor array configurations in terms different
types of network topology. On the other hand, the overall network connectivity depends on various
factors such as the channel randomness and the antenna model. Higher shadow fading variance leads
to higher network connectivity, since it refers to the random variations of the received signal power
around a mean value that is noticed when collaborative sensors are located at a given distance from
a base station. Therefore, if we fix one of the other factors such as the directional antenna response
in the desired direction to the base station, then we are able to achieve higher network connectivity to
analyze the performance of CPSO against the conventional beampattern and the convex optimization
in three different network topologies.

The proposed CPSO algorithm tries to perturb (i.e., optimize) the complex weight coefficients and
position of each sensor in turn. Indeed, we can say that it is possible that sparse antenna array
elements with continuously spaced sensors could have a high degree of freedom in increasing
and decreasing the mainlobe and sidelobes, respectively. Thus, the mainlobe of beamforming is
included in the objective function Equation (29) with sidelobe constraints defined in Equation (30).
The beampattern of 36, 64, 100, and 256 sensors deployed as equally spaced (uniform distribution) or
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non-uniformly spaced is calculated for each candidate sensor (i.e., solution) at each cost evaluation.
The population is considered with the same number of deployed sensors, meanwhile the number
of sampling of distributed collaborative sensors is varied depending on the network topology
configuration. The values corresponding to the CPSO are initialized by performing parameters
sensitivity test to the best values for φ1, φ2, and ω, whereas the φ1 = φ2 ∈ [0, 4], and ω ∈ [0, 1.5].
The initialized of parameters are iterated until they finally combined for updating the velocity using
Equation (27) which is randomly initialized with values [−1, 1] and achieved the optimal solution.
Table 2 lists the parameters used in the experiments

Table 2. Definition of parameters.

Parameter Value

The number of sensors 36, 64, 100, 256
Attenuation threshold value β0 50 dB

Path-loss exponent α 2.5
iterations 200

7.1. Linear Antenna Array

In this scenario the element locations constitute a ULA of sensors. The first experiment
illustrates the beamforming pattern of the antenna array for a linear network topology of 36, 64,
100, and 256 sensors where our objective is to maximize the mainlobe and minimize the sidelobes
in the range (0◦, 360◦], the corresponding directions are for φ = 90◦ with prescribed nulls angles at
[30◦, 50◦, 100◦, 180◦, 220◦]. The beamforming patterns obtained from the CPSO algorithm are shown
in Figure 7a–c along with conventional beamforming pattern obtained using the sensor array analyzer
toolbox of MATLAB, and the convex optimization explained in [21]. Table 3 summarizes the optimal
values obtained using CPSO sensors where the performance is somehow superior than those of convex
optimization and conventional linear array.

The CPSO forms a network topology with its objective function given in Equation (29) constrained
by Equation (30) evaluated by investigating the relationship between distance (i.e., the transmission
range) and the connectivity obtained by sampling the selected collaborative sensors to achieve a beam
towards a specific direction.

It is important to note the effectiveness of the random positioning of selected sensors as
solutions in CB to refine their signal weights. Moreover, owing to the arbitrary ⊗ operand process
in Equation (27), the optimization of beampattern achieves better improvement by adjusting
the velocity towards the best solution so far found by the selected sensor samples. Therefore,
it can be seen from Figure 7a that the conventional beamforming compared to convex optimization
exhibits traditionally shaped pattern of sidelobe and mainlobe without minimizing and maximizing,
respectively. Meanwhile, the CPSO offers an improvement of 18 dB in terms of maximum of
the mainlobe and 3 dB to 15 dB in terms of sidelobe suppression. Furthermore, it can also be seen that
the beampattern from Figure 7a–c that sidelobes are almost the same for the CPSO, except in Figure 7c,d
whereas a little improvement achieved by the convex optimization than CPSO. The implementation
presented promising results whereas the efficiency is limited by the exhaustive search of linear network
topology with all possible connectivities. This limitation is mainly due to the memory of particles,
i.e., the pbest and bbest and changing the inertia is not being able to move the swarm out of the current
optimum when υı ≈ 0, ∀ı = 1, . . . , n. Despite the higher sensor density, the linear collaborative sensors
selection has a low probability of connectivity to perform CB and achieve lower sidelobe and higher
mainlobe at the angle of 90◦ compared with CPSO. This gives an explanation that there is a visible
difference between the directional and non-directional antenna types when using a simple random
sampling of antenna element selection in ULA. Furthermore, this behavior can be explained with
boarder effects, i.e., when the sensors are located at the boarder of the coverage area in which their
mainbeam(s) may be steered outside the area of interest. Therefore, some of these sensors become
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isolated from the network and contribute in a negative manner to the connectivity. In summary,
the beampattern with ULA yields an improvement of the mainlobe and sidelobes as compared to
conventional beamforming and convex optimization in terms of connectivity. This improvement is
achieved for several sensors sensor deployed as shown in Figure 7a,b compared to Figure 7c,d in which
the improvement decreases with increasing connectivity among a large number of sensors.

(a) (b)

(c) (d)

Figure 7. Linear. (a) Linear Sensors 36, (b) Linear Sensors 64, (c) Linear Sensors 100, (d) Linear Sensors 256.

Table 3. Geometry of the linear antenna array consisting of 36, 64, 100, and 256 elements using three
different algorithms.

Algorithm 36 Sensors 64 Sensors 100 Sensors 256 Sensors

min max min max min max min max
CPSO −38 dB 20 dB −38 dB 20 dB −20 dB 20 dB −53 dB 18 dB

Convex −35 dB 18 dB −33 dB 19 dB −39 dB 22 dB −150 dB 18 dB
Conventional −20 dB 20 dB −28 dB 20 dB −18 dB 21 dB −22 dB 18 dB
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7.2. Mesh Antenna Array

The second experiment involves a UMA of 36, 64, 100, and 256 elements designed for maximum
mainlobe toward φ = 90◦ as well as the sidelobe suppression in region (0◦, 360◦] and prescribed nulls
at [30◦, 50◦, 100◦, 180◦, 220◦]. Figure 8 shows that broad nulls as deep as −38 dB, −60 dB, and −65 dB
are achieved. Table 4 summarizes the optimal values obtained using CPSO where the performance is
somehow superior than those of convex optimization and conventional linear array.

(a) (b)

(c) (d)

Figure 8. Mesh. (a) Mesh Sensors 36, (b) Mesh Sensors 64, (c) Mesh Sensors 100, (d) Mesh Sensors 256.

Table 4. Geometry of the mesh antenna array consisting of 36, 64, 100, and 256 elements using three
different algorithms.

Algorithm 36 Sensors 64 Sensors 100 Sensors 256 Sensors

min max min max min max min max
CPSO −30 dB 13 dB −62 dB 18 dB −55 dB 15 dB −50 dB 18 dB

Convex −8 dB 11 dB −22 dB 15 dB −22 dB 15 dB −40 dB 18 dB
Conventional −47 dB 13 dB −20 dB 18 dB −22 dB 18 dB −15 dB 20 dB
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Results from the CPSO given in Figure 8a–d depict almost similar beamforming patterns
compared to the conventional beamforming patterns. Each sample of beamforming in UMA indicates
at first a deterministic and then closely approximates the mainlobe of conventional beamforming
pattern achieving the objective function better than convex optimization and below the conventional
beamforming pattern. However, this implies that beamforming pattern of each sample does not spread
away from the average of conventional beamforming pattern. This is because the proposed selection
algorithm based on CPSO acquires a new diversity of solution from outside the area of interest but
inside its population solutions by sampling the solution from the

∫ h(~x)
κ=1 instead of generating a new

one from individual or several solutions. Furthermore, the updating velocity in Equation (27) is
adjusted based on sampling of solution to guide the future search toward the global solution and then
to produce improved samples closer to the optimal solution. We have noticed that the differences
in the mainlobe and sidelobe performance among the three algorithms are obvious within increasing
the collaborative sensors in antenna array.

On the other hand, the gap of the mainlobe as seen in Figures 8a,b becomes smaller in the three
algorithms as illustrates in Figures 8c,d. CPSO shows a clear advantage of selecting collaborative
sensors in the reduction of the sidelobe below 0dB which is essential in reducing interference and
saving the lifetime of each sensor.

From the results, it is noted that the CPSO overcomes the undesired increment of the sidelobe
in conventional beamforming pattern and convex optimization. This arises some questions:
Is the increased connectivity among the collaborative sensors that is achieved or not due to these
sensors have more neighbors (i.e., have more degree of connectivity ℘)? Is the increased connectivity
path probability obtained from the directional antenna at the higher sensor degree connectivity and
causes a higher inference and overhearing among the collaborative sensors?

To address these questions, we concluded that with increasing number of sensors, ℘ increases
linearly with increasing κ. In other words, when the beamforming pattern is narrow, the probability of
connectivity increases and achieves the optimal results. This is because when directional antennas
are used, the probability of connections increases for various distances among the collaborative
sensors because of optimizing the mainlobe of the antenna. We believe that the connectivity solutions
in the realm of IoT aim not only at supporting the needs imposed by the several practical applications
(such as logistics, agriculture, and asset management), but also to support network self-management
for these applications. Thus, a part of the use of the performance of CB is to improve the connectivity
solutions for a certain application depends on how well its features solve the specific needs of the end
application. There are several studies that address the comparison of connectivity solutions for IoT
applications by covering many possible measurement domains with relevant parameters for topologies
in terms of power or signal strength-based, time-based, and space-based [45–48].

7.3. Random Antenna Array

The third experiment investigates RAA configurations of 36, 64, 100, and 256 elements designed
for mainlobe towards φ = 90◦ as well as the sidelobe suppression in the region (0◦, 360◦] and prescribed
nulls at [60◦, 120◦, 180◦, 220◦]. Broad nulls as deep as −5 dB, −8 dB,−18 dB, and −22 dB are observed
using the CPSO as seen in Figure 9a–d. Table 5 summarizes the optimal values obtained using
CPSO where the performance is somehow superior than those obtain form convex optimization and
conventional linear array.

Table 5. Geometry of the random antenna array 36, 64, 100, and 256-elements using three different algorithms.

Algorithm 36 Sensors 64 Sensors 100 Sensors 256 Sensors

min max min max min max min max
CPSO −22 dB 18 dB −15 dB 18 dB −11 dB 18 dB −12 dB 18 dB

Convex −15 dB 18 dB −18 dB 18 dB −25 dB 18 dB −12 dB 17 dB
Conventional −7 dB 18 dB −7 dB 18 dB −5 dB 18 dB −8 dB 18 dB
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(a) (b)

(c) (d)

Figure 9. Random. (a) Random Sensors 36, (b) Random Sensors 64, (c) Random Sensors 100,
(d) Random Sensors 256.

This experiment applies to military applications whereas collaborative sensors are distributed
randomly without supporting facilities (such as energy sources or wired) to specified position close
to enemy territories. Consequently, their positions may be or not close to the area of interest and
the transmission requires high directivity at the desired direction. Multiple sensors are deployed
form multihop topology which leads to difficulty in regulating these sensors as a specific topology
because of the environmental constraints such as the sensors’ position and connectivity with their
neighbors. Hence, the RAA population is formulated next along with its corresponding conventional
beamforming pattern and compared with convex optimization as shown in Figure 9a–d, respectively.
The probability distribution function for the connectivity factor is then formed amid RAA collaborative
sensors located with an area of interest. Given

∫ h(~x)
κ=1 of the collaborative sensors in random arrangement,

the properties of RRA are determined to include the expected beampattern, peak and null locations of
the mainlobe and sidelobes. As illustrated in Figure 9a, the proposed CPSO algorithm achieves the most
significant suppression of the sidelobes prominent in the regions of 55◦, 152◦, and 190◦, whereas
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the approximate solution decreases the corresponding level to −5.12 dB, −6 dB, and −23 dB compared
to conventional RAA. A higher gain is obtained in mainlobe whereas optimizing the maximum
mainlobe is distinguished in the region of 30◦, 50◦, 100◦, 180◦, 220◦, whereas the approximate solution
provides an increase of 18dB compared to conventional RAA. Figure 9b considers 64 sensors in which
the conventional RRA exhibits relatively minimum sidelobe as compared to convex optimization.
It can be observed from Figure 9b that the lowest sidelobes are −20 dB, and −88 dB at 55◦, and 220◦

for convex optimization and conventional RRA, respectively. However, CPSO significantly minimizes
the sidelobe to −60 dB, and −63 dB at 30◦ and 190◦, respectively. Different effects are revealed by
increasing the number of sensors as shown in Figure 9c,d. The radiation pattern of 100 sensors are
given for the conventional RRA showing minimum sidelobe of 3 dB compared to sidelobe of convex
optimization of 0 dB at 50◦, and 150◦. Meanwhile, the radiation pattern of 256 sensors is shown
using the conventional beamforming RRA which exhibits the minimum sidelobe at 65◦, and 150◦

compared to convex optimization. In contrast with ULA and UMA, the CPSO achieves an improvement
in the maximum of the mainlobe and minimum of the sidelobes for large-scale deployment of sensors
compared to conventional beamforming and convex optimization. As concluded in the previous
Sections 7.1 and 7.2, the collaborative sensors are formed based on the size of the transmitted data,
given the total number of deployed sensors. Figures 7a and 8a indicate how much sampling is required
to optimize the beamforming which is affected by minimum dmax satisfying the distance constraint
Equation (30a). It can be concluded that the capability of CPSO in improving the performance of CB
through satisfying the connectivity constraints is revealed when designing practical random antenna
arrays in various IoT applications.

The PSO [27], and GA are compared against CPSO and convex optimization [21]. Figure 10
presents the objective function performance comparisons for CPSO, convex optimization, PSO, and GA.
The PSO algorithm performs better than GA as shown in Figure 10a. However, in Figure 10b,c
GA outperforms the PSO for increased number of sensors and higher iterations. Meanwhile, CPSO
proves its superiority in yielding better sidelobe reduction and higher directivity as compared to
those obtained by convex optimization, PSO, and GA. This is because the CPSO efficiently selects,
samples and computes the κ number of global optimal current excitation weights as well as the number
optimal uniform interelement separation for each beampattern of the linear antenna array to arrive at
the maximum mainlobe and sidelobe reduction. Table 6 summarizes the optimal values obtained using
CPSO for all the antenna arrays considered where the performance is better than those of conventional
linear antenna array, convex optimization, PSO, and GA.

Table 6. Geometry of the linear antenna array consisting of 8, 16, and 36-elements using four
different algorithms.

Algorithm 8 Sensors 16 Sensors 36 Sensors

min max min max min max
CPSO −40 dB 18 dB −18 dB 18 dB −38 dB 18 dB
PSO −38 dB 20 dB 10 dB 22 dB 0 dB 18 dB
GA −20 dB 18 dB 10 dB 22 dB −24 dB 10 dB

Convex −65 dB 18 dB −10 dB 20 dB −10 dB 19 dB
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(a)

(b) (c)

Figure 10. Various Algorithms. (a) Mesh Sensors 8, (b) Mesh Sensors 16, (c) Mesh Sensors 36.

8. Conclusions

This paper introduces a CPSO optimization algorithm for the synthesis of virtual antenna arrays
selected from randomly deployed sensors in the realm of CB for the purpose of optimizing the mainlobe,
suppressed sidelobes, and controlled nulls in certain directions. The proposed CPSO algorithm employs
a node selection technique to optimize the beampattern of the CB of sensors. Results are compared with
corresponding characteristics in the case of uniform and non-uniform sensor distribution geometries
taking into consideration the network connectivity. The proposed CPSO can select the active CB
sensors and dynamically controlling the beampattern in order to enhance the desired signal while
minimizing the sidelobes.

More control of the beampattern is achieved using the proposed CPSO by optimizing not only
the positions of sensors deployed, but also the amplitude and phase of excitation applied to each
collaborative sensor in the array and exploring other array geometries. The overall conclusion is
that the CB using the proposed CPSO provides a better performance compared against conventional
beamforming, convex optimization, GA, and particle swarm optimization when the investigation of
network connectivity is affected by the number of sensors deployed in the area of interest.
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