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A B S T R A C T   

Background: The immune system can produce various inflammatory mediators to protect the body from stress 
and surgical trauma. However, this excessive inflammatory response will interfere with the body’s immune 
system, causing systemic inflammatory response syndrome and multi-organ failure if allowed to continue. 
Lidocaine as an anti-inflammatory is used to treat surgical pain and pain arising from the disease process and 
treat ventricular arrhythmias. This study aims to prove the efficacy of systemic lidocaine injection as an anti- 
inflammatory drug in BALB/c mice with sterile musculoskeletal injuries. 
Methods: This study used a prospective experimental laboratory study on experimental animals of BALB/c mice 
using a simple randomized design. Sixteen adult white BALB/c mice (male, healthy, 10–12 weeks old, 35–40 g 
body weight, and no disability) were selected and randomly divided into two groups: the group given lidocaine 
(2 mg/kg body weight) and a group that was given sterile distilled water. NF-kβ and TNF-α protein levels were 
detected by ELISA, while mRNA expression of NF-kβ was analyzed and determined by quantitative real-time 
PCR. 
Results: Musculoskeletal injury significantly increased the expression of both mRNA and protein levels of NF-kβ 
and TNF-α protein level. In addition, the NF-kβ (protein and mRNA) and TNF-α (protein) levels in rats experi-
encing inflammation due to musculoskeletal injury were significantly decreased in the lidocaine group (p <
0.001). 
Conclusions: The administration of systemic lidocaine injection was able to inhibit the expression of mRNA NF-kβ, 
the protein levels of NF-kβ, and protein levels of TNF-α in mice with musculoskeletal injuries.   

1. Introduction 

Fractures of the long bones associated with soft tissue injury 
contribute to the inflammatory response [1]. Excessive inflammatory 
response – if allowed to continue – will disrupt the body’s immune 
system causing systemic inflammatory response syndrome and 
multi-organ failure [2]. 

The activation of NF-kβ signaling leads to the production of various 
inflammatory cytokines, chemokines, and transcription factors, which 
initiate and modulate inflammatory reactions and regulate the host 
response to tissue damage. NF-kβ also plays an essential role in regu-
lating the survival and differentiation of immune cells and inflammatory 
T cells [3–6]. Nuclear factor-kappa β (NF-kβ) has long been considered a 
prototypical pro-inflammatory signaling pathway, mainly based on the 
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activation of NF-kβ by pro-inflammatory cytokines, such as interleukin 1 
(IL-1) and tumor necrosis factor-α (TNF-α) [7]. TNF-α, IL-1, and IL-6 are 
the main cytokines in acute inflammatory reactions, which take 4–6 h to 
induce a reaction after the initial trigger and can last up to 24 h [8]. 
Increased levels of inflammatory cytokines, such as interleukins (IL-1, 
IL-6) and TNF-α, will mediate systemic responses and exacerbate organ 
failure [9]. Nuclear factor-kappa β (NF-kβ) regulates the inflammatory 
response and bone remodeling processes in bone-forming cells and bone 
resorption. In vitro and in vivo evidence suggest that NF-kβ is a significant 
potential therapeutic target for inflammation-related bone disorders by 
simultaneously modulating the inflammatory process and bone remod-
eling [6]. 

Local anesthetics modulate various steps of the inflammatory 
cascade and protect the endothelial barrier by reducing neutrophil 
adhesion and endothelial hyperpermeability, which can lead to major 
organ dysfunction [10,11]. In addition, local anesthetics can inhibit 
axonal transport and release some pro-inflammatory cytokines, such as 
IL-1, IL- 6, and TNF-α [12]. Lidocaine is a traditional local anesthetic 
drug that can be safely administered intravenously [13,14]. Lidocaine is 
an amide local anesthetic that has long been used in clinical practice to 
treat surgical pain, pain arising from the disease process, and treat 
ventricular arrhythmias. Lidocaine is also known to have many other 
properties, including an anti-inflammatory property [15,16]. 

This study aims to prove the efficacy of systemic lidocaine injection 
as an anti-inflammatory drug in BALB/c mice with sterile musculo-
skeletal injuries related to the dynamics profile of the expression of 
mRNA NF-kβ, protein levels of NF-kβ, and protein levels of TNF-α. 

2. Methods 

This research is a prospective laboratory experimental study on 
experimental animals of BALB/c mice using a simple randomized design 
[17]. These experimental animals were fed standard chow. The cages 
were cleaned regularly, given lighting (12:12h light-dark cycle), and the 
temperature was kept at 24 ± 2 ◦C. The research was conducted in the 
Laboratory of Molecular Microbiology and Immunology, Faculty of 
Medicine, Hasanuddin University Makassar. The current study, 
including the protocol, was reviewed and approved by the animal ethics 
committee of the Hasanuddin University Faculty of Medicine with 
approval number: 329/UN4.6.4.5.31/PP36/2021. This research was 
conducted ethically according to the ARRIVE guidelines in reporting 
animal research [18]. 

2.1. Animals 

This research used experimental animals with the following inclu-
sion criteria: 1) white, male, adult, and healthy BALB/c mice; 2) 10–12 
weeks of age; 3) weight, 35–40 g; and 4) no defects. The exclusion 
criteria in this study were allergic to injection of ketamine, lidocaine, 
and animals that died before all blood samples were taken. Mice were 
obtained from the Maintenance and Development Unit of the Laboratory 
of Molecular Microbiology and Immunology Experimental Animals, 
Faculty of Medicine, Hasanuddin University, Makassar, Indonesia. 

The number of mice was determined following the ethics of using 
experimental animals in health research, using the principles of 
replacement, reduction, and refinement [19,20]. Federer’s formula was 
used to determine the number of mice required, i.e., (t-1) (n-1) ≥ 15, 
where t is the number of treatment groups and n is the number of mice 
required in this study, there were two treatment groups, and according 
to the above formula, at least eight mice were needed per group. Hence, 
the total number of mice required for the two groups was 16 mice. Mice 
were randomly assigned into two groups, the treatment and control 
groups. 

2.2. Sample examination 

All blood samples were examined at the Molecular Microbiology and 
Immunology Laboratory of the Faculty of Medicine, Hasanuddin Uni-
versity, Makassar. Protein levels of NF-kβ and TNF-α were detected by 
MPO Sandwich ELISA with Catalog No. Ls-F12149 and LSF12798 were 
purchased from Life Span Bio Sciences, Inc. (Seattle, USA) according to 
the manufacturer’s instructions [21–24]. 

NF-kβ gene expression was measured with GAPDH as the house- 
keeping gene (Oligo, Macrogen, catalog number: OG280920). Forward 
primer: CAG CTC TTC TCA AAG GAGCA; reverse primer: TCC AGG TCA 
TAG AGA GGC TCA; GAPDH forward primer: GGT GCA TGG CCG TTC 
TTA; GAPDH reverse primer: TCG TTC GTT ATC GGA ATT AACC. RT- 
PCR was performed using PCR-Bio-Rad BR004129USA machine. A 
mixture of 22.5 μl PCR Mastermix and SYBR green QRT (Applied Bio-
systems, Warrington, UK) was prepared. DNA extract of 2.5 μl was added 
to the 22.5 μl mixture of PCR mix. First stage amplification was per-
formed at 94 ◦C for 3 min and continued up to 40 cycles 60s at 54 ◦C, and 
45s at 57 ◦C. Expression of mRNA were calculated using the 2− ΔΔCT 

method [14,25–27]. 

2.3. Research procedure 

BALB/c mice were considered healthy if they were actively moving, 
had bright eyes, did not have dull hair, and had no defects. The dose of 
mg/kg weight of lidocaine was converted to volume in units of ml. The 
sterile distilled water solution was given in ml according to the volume 
of lidocaine. The expression of mRNA NF-kβ was assessed in units of fold 
change [28]. The protein levels of NF-kβ are expressed in picograms 
(pg/ml). The protein levels of TNF-α are expressed in nanograms 
(ng/ml). 

The treatment group. After 4h of experiencing a musculoskeletal 
injury, they were given an intravenous injection of lidocaine (Kimia 
Farma Ltd, Jakarta, Indonesia) 2 mg/kg body weight through the tail 
vein, once every 2h, continuously for 24h. The milligram dose of lido-
caine was converted to volume in milliliters (ml). 

The control group. After 4h of suffering from sterile musculoskel-
etal injuries, they were given an intravenous injection of sterile distilled 
water through the tail vein instead of lidocaine injection. 

Before inducing sterile musculoskeletal injuries, 0.3 ml of mice blood 
was taken from the tail vein and mixed with L6 buffer solution (first 
blood test). The mice were then anesthetized by injecting ketamine 
(Combiphar Ltd, Jakarta, Indonesia) 50 mg/kg intraperitoneally. After 
the mice were sedated, the left thigh was shaved clean. The musculo-
skeletal injury was performed in a sterile manner. The groin of the mice 
was clamped firmly with one needle holder for fixation, and the middle 
of the femur was also clamped with the other needle holders. The left 
thighbone of the mouse was broken by moving the needle holders 
located in the middle of the thigh up and down against the needle 
holders in the groin until a cracking sound was heard and the fracture of 
the bone in the thigh when moved by hand was felt [29]. It was stabi-
lized with external fixation and the mice were then returned to their 
cages. Metamizole 50 mg/kg orally was given as an analgesic for two 
consecutive days. After 4h of suffering from sterile musculoskeletal in-
juries, 0.3 ml of blood was taken again through the tail vein (second 
blood test). 

The lidocaine group mice were then given an injection of lidocaine at 
a dose of 2 mg/kg BW through the tail vein, once every 2h for 24h, while 
the control group was given an injection of sterile distilled water as a 
substitute for lidocaine. Two hours after the injection of lidocaine and 
sterile distilled water was completed, 0.3 ml of mice blood was taken 
again through the tail vein (third blood test). A fourth and final blood 
sample was drawn at 24h (fourth blood test). Mice were euthanized by 
cervical dislocation under anesthesia 2 days after musculoskeletal 
injuries. 
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2.4. Data analysis 

Statistical analyses were done using IBM SPSS 22 with the following 
test methods:  

1. The normality of the mRNA expression of NF-kβ, protein levels of NF- 
kβ, and protein levels of TNF-α in experimental animals were tested 
using the Saphiro-Wilks test.  

2. Changes in the dynamics of expression mRNA NF-kβ, protein levels 
of NF-kβ, and protein levels of TNF-α among the experimental animal 
treatment groups were tested by repeated ANOVA. 

3. Results 

Based on Fig. 1, differences in mean mRNA expression of NF-kβ, 
protein levels of NF-kβ, and protein levels of TNF-α were seen 2h after 
treatment relative to before treatment in the lidocaine or placebo 
groups. 

In the lidocaine group, the mean NF-kβ mRNA level was 4.69 fold 
changes before the injury, then increased to 11.267 fold changes at 4h 
after injury, and subsequently decreased to 9.171 fold changes at 2h 
after treatment, and 5.427 fold changes at 24h after treatment, respec-
tively. In the placebo group, the NF-kβ level (mRNA) was 4.881 fold 
changes before the injury, then increased to 11.56 fold changes at 4h 
after injury, and continuously increased to 13.575 fold changes at 2h 
after treatment, and 15.12 fold changes at 24h after treatment, respec-
tively (Fig. 2). 

In the lidocaine group, the mean protein level of NF-kβ was 1.888 
pg/ml before the injury, then increased to 8.024 pg/ml at 4h after 
injury, and decreased to 6.085 pg/ml following 2h after treatment, and 
continuously decreased to 2.668 pg/ml at 24h after treatment, respec-
tively. In the placebo group, the protein levels of NF-kβ was 2.078 pg/ml 
before the injury, then increased to 8.267 pg/ml at 4h after injury, and 
remained to increase to 10.387 pg/ml at 2h after treatment, and 11.997 
pg/ml at 24h after treatment, respectively (Fig. 3). 

In the lidocaine group, the mean protein level of TNF-α was 171.838 
ng/ml before the injury, then increased to 536.978 ng/ml at 4h after 
injury, and subsequently went down to 415.0473 ng/ml at 2h after 
treatment, and continuously declined to 215.909 ng/ml at 24h after 
treatment, respectively. In the placebo group, the protein levels of NF-kβ 
was 167.545 ng/ml before the injury, then rose to 506.136 ng/ml at 4h 
after injury, and kept increasing to 626.629 ng/ml at 2h after treatment, 
and 716.762 ng/ml at 24h after treatment, respectively (Fig. 4). 4. Discussion 

Compared with after injury, in the lidocaine or placebo groups, dif-
ferences in the mean NF-kβ mRNA expression began to be seen at 2h 

Fig. 1. The mean of (a) NF-kβ mRNA expression (fold change), (b) NF-kβ protein levels (pg/ml), and (c) TNF-α protein levels (ng/ml) in the lidocaine and placebo 
groups (n = 8 per group) before the injury (1), 4h after the injury (2), 2h after treatment (3), and 24h after treatment (4). Data are presented as mean ± standard 
deviation. Mean difference between lidocaine and placebo groups at 2h and 24h after treatment are statistically significant (p < 0.05). 

Fig. 2. The difference in mean NF-kβ mRNA expression before and after the 
treatment in the lidocaine and placebo groups (n = 8 per group). Data are 
presented as mean ± standard deviation. Mean difference between the lido-
caine and placebo groups at 2h and 24h after treatment are statistically sig-
nificant (*p < 0.05). 

Fig. 3. The difference in mean protein levels of NF-kβ before and after the 
treatment in the lidocaine and placebo groups (n = 8 per group). Data are 
presented as mean ± standard deviation. Mean difference between the lido-
caine and placebo groups at 2h and 24h after treatment are statistically sig-
nificant (*p < 0.05). 
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after treatment. There was a decrease in the average mRNA expression 
of NF-kβ at 2h and 24h after lidocaine treatment. There was an increase 
in the average mRNA expression of NF-kβ 4h after injury compared to 
before injury in the placebo group. The mRNA expression of NF-kβ 
continued to increase at 2h and 24h after treatment. 

Administration of systemic lidocaine has an anti-inflammatory effect 
because it can inhibit the release of pro-inflammatory cytokines, the 
metabolic activity of leukocytes, and the release of histamine [16,30]. In 
addition, the anti-inflammatory effect of lidocaine may be mediated by 
inhibition of NF-kβ activation and cytokine release [31]. 

Another study found that lidocaine attenuates LPS-induced lung 
injury through mechanisms involving inhibition of NF-kβ activation and 
cytokine release, which implies that lidocaine may be a potential anti- 
inflammatory agent in endotoxemia [32]. 

In the lidocaine or placebo groups, compared with the mean NF-kβ 
protein levels after the injury, differences started to take place at 2h after 
treatment. After 2h of treatment, there was a decrease in the average 
protein levels of NF-kβ and remained to decrease at 24h after treatment. 
There was an increase in the average protein levels of NF-kβ 4h after 
injury compared to before injury in the placebo group. The average 
protein levels of NF-kβ continued to increase at 2h and 24h after 
treatment. 

Research conducted by Lahat et al. concluded that the anti- 
inflammatory effect of lidocaine might be mediated by a drug-induced 
abrogation of T cell proliferation and cytokine secretion independent 
of cell death. These effects are mediated at least partly by inhibition of 
NF-kβ signaling [33]. 

In another study, lidocaine treatment exerts its protective effect on 
cecal ligation and puncture (CLP)-induced septic rats. The mechanism 
was related to the inhibitory effect of lidocaine on the mRNA expression 
level of high mobility group box 1 (HMGB1) in multiple organs, the 
release of HMGB1 to plasma, and activation of NF-kβ [31]. In addition, 
Lang et al. reported that lidocaine could inhibit the secretion of IL-8 and 
IL-10 from intestinal cells through inhibition of NF-kβ activation and 
decreased Ikβ phosphorylation [34]. 

TNF-α protein levels increased at 4h after the injury both in the 
lidocaine or placebo groups, and difference of their levels in those 
groups began to appear at 2h after treatment. There was a decrease in 
protein levels of TNF-α at 2h after treatment and 24h after lidocaine 
treatment. In contrast, the mean protein levels of TNF-α continuously 
increased at 2h and 24h after treatment in the placebo group. 

This study’s findings are consistent with those reported by Garutti 
et al. (2014), who found that, compared to a control group, a pig that 
underwent lung resection surgery and received intravenous lidocaine 

produced a significant reduction in TNF-α levels in plasma and bron-
choalveolar lavage samples. Moreover, inflammatory and apoptotic 
changes were observed in the control group [14]. 

It has been reported that ropivacaine and lidocaine effectively block 
TNF-α signaling inflammation in endothelial cells by attenuating the 
recruitment of p85 to the TNF-α receptor. The resulting decrease in Akt, 
endothelial nitric oxide synthase, and Src phosphorylation reduced 
neutrophil adhesion and endothelial hyperpermeability. These new anti- 
inflammatory “side effects” of ropivacaine and lidocaine might provide 
therapeutic benefits in acute inflammatory disease [11]. 

The limitations of this study is that we need to inject the lidocaine 
every 2h for 24 h as it works only for 2h. We may need to see whether the 
anti-inflammatory effect of lidocaine last longer than 2h in a time course 
study. We did not examine vital signs of the mice for excluding allergic 
reaction to ketamine or lidocaine. But we did not observe any sign of 
severe allergic reaction like anaphylactic shock and all of the mice were 
in good condition until the end of the experiment. 

At this trial, confounding factors, such as infection, were excluded. 
Use of medication was in accordance with anti-inflammatory dose and 
treatment to experimental animals were equal. However, further pre-
clinical studies need to be carried out with longer durations and using 
other pro-inflammatory cytokine markers such as IL-1, IL-6, and IFN-γ to 
investigate further the anti-inflammatory benefits of systemic lidocaine 
in musculoskeletal injury. 

Our data indicate that lidocaine had an anti-inflammatory effect in 
rats after experiencing a musculoskeletal injury; this should be further 
tested in clinical trials to determine its protective effects in humans. 

5. Conclusion 

Administration of 2 mg/kg lidocaine effectively inhibited the in-
flammatory process in BALB/c mice with musculoskeletal injury by 
suppressing the mRNA expression of NF-kβ, protein levels of NF-kβ, and 
protein levels of TNF-α. 
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