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ABSTRACT Many studies have reported genetic interventions that have an effect on mouse life span; however, it is crucial to
discriminate between manipulations of aging and aging-independent causes of life extension. Here, we used the Gompertz equation
to determine whether previously reported aging-related mouse genes statistically affect the demographic rate of aging. Of 30 genetic
manipulations previously reported to extend life span, for only two we found evidence of retarding demographic aging: Cisd2 and
hMTH1. Of 24 genetic manipulations reported to shorten life span and induce premature aging features, we found evidence of five
accelerating demographic aging: Casp2, Fn1, IKK-B, JunD, and Stub1. Overall, our reassessment found that only 15% of the genetic
manipulations analyzed significantly affected the demographic rate of aging as predicted, suggesting that a relatively small proportion
of interventions affecting longevity do so by regulating the rate of aging. By contrast, genetic manipulations affecting longevity tend to
impact on aging-independent mortality. Our meta-analysis of multiple mouse longevity studies also reveals substantial variation in the
controls used across experiments, suggesting that a short life span of controls is a potential source of bias. Overall, the present work
leads to a reassessment of genes affecting the aging process in mice, with broad implications for our understanding of the genetics of

mammalian aging and which genes may be more promising targets for drug discovery.
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HE discovery that single-gene manipulations can signifi-

cantly modulate longevity is arguably the major break-
through in biogerontology thus far (Kenyon 2010). Genetic
manipulations of aging in mice are crucial to gather insights
into the underlying mechanisms of aging (de Magalhées and
Faragher 2008), to discover pathways modulating longevity
(Fernandes et al. 2016), and to identify candidate genes for
drug discovery (de Magalhées et al. 2012; Barardo et al. 2017).
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Moreover, the manipulation of the aging process in mamma-
lian models (particularly mice) via genetic manipulation (gene
knockouts, over expression, etc.) is crucial to test mechanistic
hypotheses of aging (de Magalhdes 2005). However, determin-
ing if such genetic interventions actually affect the aging pro-
cess and not some other factor(s) of health is not always
straight forward. For example, should a genetic intervention
reduce an organism’s resistance to disease, this could conceiv-
ably reduce the life span of the organism, although the rate of
aging would not have been affected. Differentiating between
genetic interventions that affect the life span of an organism
through altered health as opposed to changes in the rate of
aging is therefore essential to gain insights on aging and de-
termine interventions with wide-ranging effects (Hayflick
2000; de Magalhaes et al. 2005).

There are two fundamental methods to determine if a life-
extending genetic intervention has altered the rate of aging
rather than general health. One can track the onset and pro-
gression of age-related ailments and physiological degeneration
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to determine if there is a shift in the onset and progression of
the ailments. In addition, efforts have been made to quantify
aging rates with mathematical models. The Gompertz law of
mortality:

Rn() = Roe™,

where R, is the hazard or mortality rate (likelihood of
death at any time), t is age, Ry is the age-independent mor-
tality component, and « is the age-specific exponential coeffi-
cient, describes how the hazard rate increases exponentially
with age (Finch and Pike 1996). From the Gompertz param-
eters, the mortality rate doubling time (MRDT) can be calcu-
lated. As defined by Finch (1990), the MRDT is the amount of
time it takes for the mortality rate to double for a given cohort.
A change in MRDT indicates a change in the demographic rate
of aging, which is not a perfect reflection of biological aging but
a metric that correlates with physiological deterioration and
health (Finch 1990; de Magalhées et al. 2005). Although some
mouse studies have investigated MRDT (Hinkal et al. 2009;
Lapointe et al. 2009), many authors still often assume that
changes in the life span of mice following a genetic interven-
tion directly equate to changes in the rate of aging, leading to
the misrepresentation of certain genes as having a causal role
in aging, when in reality they do not.

Many studies have reported altered median and/or max-
imum life span as a result of an intervention, but life span
alterations may have a number of causes, including altered
age at onset of senescence and age-independent mortality
(Pletcher et al. 2000). To address this lack of distinction, we
previously used linear regression to fit the Gompertz model
to longevity data from published mouse studies, and statisti-
cally compared the rates of aging in these cohorts (de Magalhies
et al. 2005). For example, we showed that caloric restric-
tion increases the MRDT and thus retards the demographic
rate of aging (de Magalhaes et al. 2005). Here, the same
methodology was employed to reassess mouse longevity
data published since 2005 and to identify which genes are
more important in determining the demographic rate of
aging. Lastly, we perform a meta-analysis combining the
data from the present study and from our 2005 analysis
to investigate patterns in how longevity changes correlate
with changes in demographic rates of aging.

Methods
Data selection and extraction

Studies published since 2005 were selected since studies pub-
lished up to 2005 were analyzed previously (de Magalhaes
et al. 2005). Genes were selected from the GenAge database,
build 17 (Tacutu et al. 2013). GenAge already excludes genes
extending life span in short-lived (or disease) mutants or con-
ditions. In addition, some genes were excluded as they could
not be studied for demographic parameters (some genes could
not be properly fitted to the Gompertz model and some studies
lacked full life span data, while other studies lacked sufficient
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cohort size). A total of 54 genetic manipulations could be
properly analyzed (primarily single-gene manipulations but
also some manipulations involving more than one gene):
30 genetic manipulations that extended mouse life span (Ta-
ble 1) and 24 genetic manipulations that reduced life span
(Table 2).

Mortality data were extracted from published studies.
WebPlotDigitizer, an online graph digitizer application
(https://automeris.io/WebPlotDigitizer/), was used to ex-
tract raw data from survival graphs in some cases. The
digital imaging software package PaintShop Pro X3 (Corel
Corporation, Ottawa, Canada) was used to extract age-
specific survival data from published survivorship graphs
(usually in the form of Kaplan-Meier survivorship curves).
Percent survival was extracted at regular time intervals
over the linear phase of these plots. Interval length was
selected for each study individually to maximize the number
of consecutive time points analyzed within this exponential
phase.

Demographic analysis

The same methods and computer programs for the data
gathering and analysis of de Magalhées et al. (2005) were
used. Once the mortality data were collected, the age-specific
mortality (q,) was calculated as the number of mice alive (T,)
at the beginning of a given time interval minus the number of
mice alive (T,) at the end of that same time interval divided
by Ty (ie., (T1 — T2)/T1 = qx). The hazard rate (hz) for each
individual time interval was calculated as hz =
(T1—T2)/((T1 + T2)/2) or the number of animals dying in
the interval divided by the average number of individuals
alive in the interval. The aging rate was then calculated
through use of the Gompertz equation: R,y = Rpe®*; where
Ry is the chance of dying (the hazard rate) at age t, Ry is the
nonexponential factor in mortality, and « is the exponential
parameter (Finch et al. 1990). The Gompertz model was
used because, as de Magalhées et al. (2005) asserted, the
sample size (number of mice) in the majority of these ex-
periments was small, meaning that other logarithmic meth-
ods of fitting models to mortality data may not provide the
accuracy that the Gompertz model gives while retaining its
simplicity. This point held true for the majority of genetic
interventions tested herein and so it was decided that use of
the Gompertz model remained a viable option for this anal-
ysis. From the Gompertz model, the weighted regression
line (weighted by the number of animals dying at each in-
terval) was calculated by In(R¢) = In(Rp) + at, which will
also give the MRDT as 0.693/«. To compare « between a
given genetic intervention cohort and wild-type (WT) mice
from the same lineage, a “dummy variables” test was
employed as described (de Magalhées et al. 2005). As in de
Magalhées et al. (2005), the aim of this research was not to
find the best fit model to describe the whole of the mortality
curves, but rather to find if any previously published genetic
interventions have a statistically significant effect on the expo-
nential increase in mortality (o) and hence on the demographic
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Table 1 Mortality and life span statistics of genetically altered mouse strains with extended life span

Gene or protein Type Strain Gender n t50 (yr) tmax (yr) Reference
Adcy5 WT 129/Sv)-C57BL/6 M &F 25 2.08 2.75 Yan et al. 2007)
—/= M & F 13 2.75 3.08
Agrt1a WT C57BL/6 X 129/SvEv M 10 2.08 2.41 Benigni et al. (2009)
—/= M 20 2.63 3.00
Arf/p53 WT C57BL/6) 11 2.31 3.30 Matheu et al. (2007)
s-Arf/p53 25 2.63 3.03
Atg5 WT C57BL/6 65 1.93 2.14 Pyo et al. (2013)
Atg5-Tg 70 2.26 2.52
BubR1 WT C57BL/6-SV129 M:30 60 1.72 2.9 Baker et al. (2013)
F: 30
mBubR1-Tg M:29 57 2.02 3.42
F:28
Cat WT 4033 M & F 44 2.16 2.83 Schriner et al. (2005)
MCAT 4033 M&F 20 2.58 3.10
WT 4403 M & F 58 2.18 3.06
MCAT 4403 M & F 42 2.60 3.33
Cisd2 WT (M) C57BL/6 M 40 2.25 2.90 Wu et al. (2012)
Cisd2-Tg (M) M 34 2.69 3.07
WT (F) F 25 2.27 2.50
Cisd2-Tg (F) F 21 2.74 3.25
Clk-1 WT 129Sv/) F 12 2.01 2.30 Liu et al. (2005)
+/— F 10 2.34 2.54
Dgat1 WT C57BL/6) F 30 2.04 2.81 Streeper et al. (2012)
—/= F 30 2.58 3.05
Esp8 WT C57BL/6 M:13 29 1.74 2.72 Tocchetti et al. (2010)
F:16
—/— M:20 39 2.16 3.00
F:19
FGF21 WT C578Bl/6) M:32 67 2.34 3.56 Zhang et al. (2012)
F:35
FGF21-Tg M:37 77 3.18 NR (> 3.65)
F:40
Ghrh WT C57BL/6 M:56 108 1.75 3.20 Sun et al. (2013)
X 129SV F:52
KO M:39 97 2.55 3.58
F:58
Gpx4 WT C57Bl/6 50 2.63 3.34 Ran et al. (2007)
+/— 50 2.83 3.17
hMTH1 WT C57BL/6 M 42 2.17 2.64 De Luca et al. (2013)
hMTH1-Tg M 34 2.51 3.21
Htt WT 129/Sv- M:1 15 2.34 2.93 Zheng et al. (2010)
F14
AQ/AQ M:2 15 2.76 3.43
F:13
Igf1 WT FVB M 39 1.97 3.17 Li and Ren (2007)
Igf1-Tg M 38 2.43 3.42
IkB-a MBH-GFP C57Bl/6 23 2.41 2.91 Zhang et al. (2013)
MBH-IkB-a 31 2.64 3.09
Irs1 WT (F) C57BL/6 F 21 2.02 2.86 Selman et al. (2009)
—/—(F) F 14 2.66 3.61
Irs2 WT C57BL/6) M:21 93 2.36 2.86 Taguchi et al. (2007)
F:30
Brain-specific +/— M:27 65 2.81 3.34
F:60
Mif WT C57BL/6) X 129/Sv) F 24 2.01 2.70 Harper et al. (2010)
-/— F 39 2.45 3.51
mTOR WT 129 X C57BL/6 M & F 34 2.13 3.14 Wu et al. (2013)
KO M &F 43 2.51 3.14
Myc WT (F) C57BL/6 F 37 2.23 2.86 Hofmann et al. (2015)
+/— (F) F 39 2.68 3.58
WT (M) M 42 2.41 3.00
+/— (M) M 42 2.66 3.26

(continued)
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Table 1, continued

Gene or protein Type Strain Gender n t50 (yr) tmax (yr) Reference
PAPP-A WT C57BL6 X 129SV/E M & F 21 1.84 2.44 Conover and Bale (2007)
—/= M &F 20 2.64 3.1
Pten WT C57BL/6 M:49 112 2.17 2.92 Ortega-Molina et al. (2012)
X CBA F.63
Pten-Tg M:32 64 2.44 3.21
F:32
RpS6K1 WT C57BL/6 M:26 49 2.23 3.00 Selman et al. (2009)
F:23
—/— M:19 48 2.64 3.40
F:29
RIIB WT C57BL/6 (males) M 20 2.42 2.79 Enns et al. (2009)
RIB —/— M 20 2.75 3.07
Sirt1 WT C57Bl/6 M & F 31 2.30 3.01 Satoh et al. (2013)
Brain-specific Tg M & F 34 2.56 3.1
Slc13a1 WT (M) C57BL/6) X 129/SV M 21 1.93 2.60 Markovich et al. (2011)
Nas1 —/— (M) M 25 2.54 3.30
WT (F) F 34 1.68 2.50
Nas1 —/= (F) F 38 2.06 2.90
Surf1 WT BDF1 X cre M:23 48 1.78 NR Dell’agnello et al. (2007)
F:25
—/= M:21 43 2.17 2.48
F:22
Tert Sp53 C57BL/6 X DBA/2 M & F 68 2.13 3.09 Tomés-Loba et al. (2008)
Sp53/TgTert M &F 56 2.36 3.22
Sp53/Sp16/SArf M &F 39 2.38 3.18
Sp53/Sp16/SArf/TgTert M & F 27 2.38 3.26

t50, median life span; tmax, maximum life span; yr, year; WT, wild-type; M, male; F, female; Tg, transgenic; NR, not reported; KO, knockout.

rate of aging. Consequently, the simpler, nested Gompertz
model was preferred (de Magalhées et al. 2005). Besides,
data were only analyzed from the onset of the exponential
increase in mortality, though typically < 10% of animals
were left out.

Statistical analysis

A “dummy variables” method was used to compare the
slopes of the hazard functions obtained through linear
regression for the WT and test cohorts and a two-tailed
Student’s t-test was applied to evaluate whether they
were significantly different (P < 0.05). Analysis was per-
formed in SPSS version 22 (IBM) using our previous
scripts (de Magalhaes et al. 2005) (code available in the
supplemental material and at http://genomics.senescence.info/
software/demographic.html).

Data availability

The survival data used in this study is provided in the Sup-
plemental Material, Tables S1 and S2 in File S1. The SPSS
code used is provided in File S2.

Results

The Gompertz law of mortality describes the exponential in-
crease in mortality rate with age. Modified versions of this
function exist to model mortality deceleration observed at very
young and very old ages; however, the simplest form was chosen
to fit the mouse survivorship data in this study because the mouse
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cohorts are often small (n < 50). The basic Gompertz model is
described by only two parameters, so is more suitable for fitting
data from smaller sample sizes (Pletcher 2002) and increases
the ease of comparing aging rates between cohorts. Since mouse
longevity data are largely presented in publications as Kaplan—
Meier survival curves, the life spans were divided into discrete
time intervals and then linear regression was used to calculate
age-specific mortality rates for each interval (see Methods). This
allowed an estimation of Gompertz parameters for each cohort
that could be directly compared.

In this study, 54 previously published genetic manipula-
tions that have been associated with alterations in mouse life
span were analyzed; 30 manipulations previously reported as
having a life span-extending effect (Table 1) and 24 that were
previously reported as having a life span-reducing effect
(Table 2). The aim of this study was to reassess genes that
have been reported to regulate longevity in mice to ascer-
tain which of them might exert this effect through regulat-
ing the rate of aging.

Analysis of life-extending gene manipulations

Of the 30 genetic manipulations previously reported as
having life span-increasing effects, we found 13 genes to
have a statistically significant effect on the demographic rate
of aging (Table 3): BubR1, Cisd2, Dgat1, Fgf21, Ghrh, Gpx4,
hMTH]1, Irs2, mTOR, Sirtl, Slc13al, Surfl, and Tert. How-
ever, surprisingly only two of these genes (Cisd2 and hMTH1)
retarded the demographic rate of aging. Full survival data are
provided in the supplemental material (Table S1 in File S1).
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Table 2 Mortality and life span statistics of genetically altered mouse strains with shortened life span

Gene or protein Type Strain Gender n t50 (yr) tmax (yr) Reference

Aag, Atm, Mgmt WT C57Bl/6 M & F 37 2.03 2.87 Meira et al. (2014)
Aag —/— M & F 29 1.80 2.50
Mgmt —/- M & F 50 1.92 2.77
Atm —/— M & F 19 0.56 1.37

Aag /- Mgmt —/— M & F 31 1.67 2.71

ATR WT M & F 20 NR NR Murga et al. (2009)
ATRSS M & F 27 0.42 0.65

Brcal WT 12901a X C57BL/6J F 32 2.15 2.56 Jeng et al. (2007)
+/— F 26 1.94 2.53

Bub3 + Rael WT 129Sv/E X C57BL/6 N/A 70 2.08 NR Baker et al. (2006)
+/—, +/— N/A 100 1.84 NR

Casp2 WT C57BL/6 N/A 64 2.62 3.51 Zhang et al. (2007)
—/— N/A 64 2.62 3.25

Cdc42 WT C57BL/6%~ 129/Sv M & F 16 2.28 2.49 Wang et al. (2007)
—/— M & F 21 1.09 2.50

Cisd2 WT C57BL/6 (B6) M & F 49 2.09 2.53 Chen et al. (2009)
Cisd2—/— M & F 16 1.28 2.15

Cisd2 WT C57BL/6 M 40 2.25 2.90 Wu et al. (2012)
+/— M 51 2.05 2.57
—/— M 27 1.76 2.32
WT F 25 2.27 2.50
+/— F 47 1.92 2.50
—/- F 49 1.83 2.94

DNA pol B WT C57BL/6 M 60 2.54 3.19 Cabelof et al. (2006)
+/— M 67 2.54 3.19

Fgf-23 —/— Sv129) M & F 15 0.12 0.26 Razzaque et al. (2006)

Fn1 WT C57BL/6 M 39 2.43 NR Muro et al. (2003)
Fn1EDA —/= M 53 1.93 NR

HtrA2/0mi mnd2/+;Tg C57BL/6) M & F 23 N/A N/A Kang et al. (2013)
mnd2/mnd2;Tg M & F 21 1.28 1.50

Htr1b WT N/A 21 2.58 3.14 Sibille et al. (2007)
—/— N/A 24 2.05 2.75

IKK-B MBH-GFP C57BL/6 M 23 2.41 2.91 Zhang et al. (2013)
N//kbkb"! M 24 2.23 2.56

junD WT N/A M & F 35 1.91 2.41 Laurent et al. (2008)
JunD~/~ N/A M & F 35 1.66 2.17

Msh2 WT 129S/SvEvTac M & F 51 NR NR Wei et al. (2003)
—/— M & F 32 0.58 0.92

Pasg —/— 129/Sv)/C57BL/6) N/A 63 0.01 0.07 Sun et al. (2004)

Pparg WT F 25 2.35 2.68 Argmann et al. (2009)
Pparg2—/~ F 26 2.14 2.62

Sirt7 WT C57BI/6 X 129Sv M 98 NR NR Vakhrusheva et al. (2008)
—/= M 32 0.74 1.60

Socs2 WT C57BL/6) X FVB M & F 123 2.10 3.00 Casellas and Medrano (2008)
hg/hg M &F 146 1.33 2.59

Stub1 WT C57BL/6 X 129SvEv M:82 82 2.08 NR Min et al. (2008)

F.84
—/— M:58 128 0.89 NR
F:45

Trp63 WT K5CrePR1 NR 74 2.23 3.00 Keyes et al. (2005)
+/— NR 104 1.74 2.25

Xrcch WT NR 47 2.04 2.40 Vogel et al. (1999)
Ku86 —/— NR 89 0.79 1.75

Xrcco WT M & F 27 2.17 2.80 Li et al. (2007)
Ku70 —/— M & F 43 0.69 1.45

t50, median life span; tmax, maximum life span; yr, year; WT, wild-type; M, male; F, female; Tg, transgenic; NR, not reported;

A few notable examples are worth emphasizing. Trans-
genic expression of Cisd2 in female mice produced persistent
expression of the Cisd2 protein in contrast to levels in WT
mice, which diminished with age (Wu et al. 2012). Our anal-

ysis showed that this resulted in a nearly twofold higher
MRDT compared to that of female WT controls, consistent
with a difference between the Gompertz curve gradients (Figure
1A). This suggests that Cisd2 regulates the demographic rate of

Genes Modulating Aging in Mice 1621



Table 3 Gompertz parameters for genetically altered mouse strains with extended life span from a regression line calculated by In(Rp,q) =
In(Ry) + ot (see Methods)

Gene or
protein Type Strain a o SE In(Ro) r? MRDT (yr)
Adcy5 WT 129/Sv)-C57BL/6 3.87 0.94 -9.61 0.71 0.18
—/— 5.95 0.34 —17.20 0.97 0.12
Agrtla WT C57BL/6 X 129/SvEv 5.20 1.21 -11.15 0.86 0.13
—/— 3.95 1.30 -10.81 0.70 0.18
Arf/p53 WT C57BL/6) 2.88 0.32 -7.59 0.94 0.24
s-Arf/p53 2.80 0.44 —8.05 0.86 0.25
Atg5 WT C57BL/6 7.30 5.48 —14.40 0.47 0.10
Atg5-Tg 8.92 1.31 —21.54 0.82 0.08
BubR12 WT C57BL/6-SV129 1.62 0.16 —5.42 0.92 0.43
mBubR1-Tg 2.61 0.097 —7.48 0.93 0.27
Cat WT 4033 2.30 0.18 —6.40 0.81 0.30
MCAT C57BL/6) 3.00 0.59 -8.80 0.68 0.23
WT 4403 2.00 0.21 -5.93 0.62 0.35
MCAT 2.20 0.20 —7.41 0.78 0.32
Cisd22 WT male C57BL/6 7.67 2.86 -17.79 0.71 0.09
Cisd2-Tg male 6.96 1.84 -19.39 0.83 0.10
WT female 6.62 2.27 -14.43 0.90 0.10
Cisd2-Tg female 2.40 0.59 —=7.10 0.74 0.29
Clk-1 WT 129Sv/) 3.09 0.64 —6.05 0.89 0.22
+/— 2.49 0.92 —5.95 0.64 0.28
Dgat1® WT C57BL/6) 1.92 0.53 -5.12 0.66 0.36
—/- 3.56 0.20 -9.63 0.99 0.19
Esp8 WT C57BL/6 1.50 0.22 —3.70 0.73 0.46
—/= 1.98 0.18 -5.15 0.81 0.35
FGF212 WT C57BI/6) 1.82 0.35 —5.66 0.82 0.38
FGF21-Tg 2.04 0.40 -7.89 0.87 0.34
Ghrh? WT C57BL/6 X 1295V 1.31 0.18 —3.55 0.90 0.53
KO 1.53 0.17 -5.12 0.94 0.45
Gpx42 WT C57BL/6 3.11 1.08 —-9.18 0.73 0.22
+/- 5.43 0.72 -15.77 0.95 0.13
hMTH12 WT C57BL/6 3.50 0.65 —8.78 0.81 0.20
hMTH1-Tg 2.29 0.47 -6.91 0.72 0.30
Htt WT 129/Sv- 2.30 1.01 —6.03 0.56 0.30
AQ /AQ 1.80 0.51 -5.19 0.81 0.39
Igf1 WT FVB 1.06 0.26 —3.02 0.74 0.65
lgf1 1.35 0.25 —4.43 0.77 0.51
IkB-a MBH-GFP C57BL/6 4.15 0.74 —10.75 0.65 0.17
MBH-DN [B-a 4.43 0.76 -12.86 0.62 0.16
Irs1 WT (female) C57BL/6 2.18 0.26 -5.00 0.80 0.32
—/— (female) 1.94 0.31 —6.45 0.71 0.36
Irs22 WT C57BL/6) 2.99 0.13 —-7.29 0.87 0.23
Brain-specific +/— 6.37 0.33 -17.73 0.85 0.11
Mif WT C57BL/6J X 129/Sv) 2.45 0.40 —6.08 0.84 0.28
—/- 1.90 0.31 —6.02 0.82 0.37
mTOR? WT 129 X C57BL/6 1.47 0.45 —4.46 0.68 0.47
KO 2.41 0.15 —6.94 0.98 0.29
Myc WT female C57BL/6 2.19 0.55 —5.88 0.76 0.32
+/- female 3.19 1.05 -9.64 0.70 0.22
WT male 2.53 0.21 —7.06 0.96 0.27
+/- male 2.55 0.36 -7.75 0.90 0.27
PAPP-A WT C57BL6 X 129SV/E 2.33 0.35 —5.28 0.71 0.30
—/- 2.67 0.32 -7.39 0.80 0.26
Pten WT C57BL/6 X CBA 2.33 0.14 -5.83 0.97 0.30
Pten-Tg 2.52 0.24 —7.07 0.95 0.27
RpS6K1 WT C57BL6 1.81 0.069 —4.64 0.93 0.38
—/— 1.73 0.056 —5.30 0.91 0.40
RIB WT C57BU6 (males) 3.00 0.31 —7.68 0.85 0.23
RIB —/— 3.55 0.34 —10.09 0.88 0.20
Sirt12 WT C57Bl/6 2.45 0.49 —7.20 0.81 0.28
Brain-specific Tg 3.63 0.63 -10.71 0.83 0.19
(continued)
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Table 3, continued

Gene or

protein Type Strain « o SE In(Ro) r? MRDT (yr)

Slc13a12 WT (male) C57BL/6) X 129/SV 1.79 0.37 —4.34 0.83 0.39
Nas1 —/— (male) 1.70 0.47 —-5.02 0.72 0.41
WT (female) 0.87 0.13 —2.95 0.86 0.80
Nas1 —/— (female) 1.69 0.29 —4.31 0.85 0.41

Surf12@ WT BDF1 X cre 2.19 0.39 —4.81 0.86 0.32
—/— 3.41 0.47 —7.82 0.96 0.20

TgTert? Sp53 C57BL/6 X DBA/2 2.74 0.33 —6.51 0.95 0.25
Sp532 /TgTert 3.34 0.41 —-8.14 0.94 0.21
Sp53/Sp16/SArf 1.47 0.58 —4.86 0.52 0.47
Sp53/Sp16/SArf/TgTert 2.08 0.65 —7.24 0.77 0.33

a, age-specific exponential coefficient; In(R0), nonexponential factor in mortality; MRDT, mortality rate doubling time as in 0.693/«; yr, year; WT, wild-type; Tg, transgenic;

KO, knockout.

? Indicates genes for which the changes in MRDT were statistically significant (P < 0.05).

aging. However, the nature of the role of Cisd2 in aging is con-
fused by the fact that reduced expression of Cisd2 in heterozy-
gous and double-knockout female mice from the same study also
resulted in a significantly increased MRDT (see Table 4), sug-
gesting that reduced Cisd2 expression also slowed the demo-
graphic rate of aging.

Most genes examined did not impact on MRDT, and a few
even reduced the MRDT. Of note, regarding Sirtl, a 33%
reduction in MRDT was observed for transgenic mice with
brain-specific overexpression of this gene. This is supported
by a visible change in the slope of the Gompertz curve (Fig-
ure 1B). It therefore appears that the increases in median
and maximum life span reported (Satoh et al. 2013) are not
mediated by a decrease in the rate of aging. Instead, it ap-
pears that the longevity extension in this cohort occurred
through delayed onset of the exponential increase in mor-
tality rate. Likewise, mice constitutively overexpressing
both the tumor suppressor p53 and telomerase reverse tran-
scriptase (Tert) exhibited enhanced 3-year survival rates
compared to super-p53 mice expressing only the additional
transgenic copy of p53 (Tomas-Loba et al. 2008). Interest-
ingly, our analysis indicates that the MRDT of the former
cohort was modestly reduced by 18% compared to that of
the control mice, which suggests that the life-extending ef-
fect of Tert overexpression is due to a reduced R, rather than
to a slower demographic rate of aging. By contrast, mice
overexpressing Tert in addition to p16, Arf, and p53 have
a higher MRDT, although this difference was not statisti-
cally significant (Table 3).

Analysis of genes reported to reduce life span and/or
accelerate aging

Interventions that reduce life span by increasing the rate of
aging would be expected to reduce the MRDT. Of the 24 genes
previously reported as having life span-reducing effects, we
found 15 to have a statistically significant effect on the de-
mographic rate of aging (Table 4): Aag/Atm/Mgmt, Casp2,
Cisd2 (2X studies), Cdc42GAP, Fnl, Htrlb, IKK-B, JunD,
Pparg, Socs2, Stubl, Trp63, Xrcc5, and Xrcc6. Five of these
(Casp2, Fn1,IKK-B, JunD, and Stub1) accelerated demographic

aging. Full survival data are provided in the supplemental ma-
terial (Table S2 in File S1).

As before, a few notable examples are worth highlighting.
Mice carrying a double knockout of Casp2 exhibited a 54%
lower MRDT than WT littermates (Figure 2A). Therefore, as
initially reported by Zhang et al. (2007), Casp2 accelerates
the rate of aging in mice. Zhang et al. (2007) used several
methods including a thorough detailing of the progression
of age-related ailments (such as gradual hair and increased
bone loss) to detail the rate of aging of the Casp2 knockout
and their WT littermates, and our new research (using
statistical demographic methods) has drawn the same
conclusions.

Another gene manipulation that significantly reduced
MRDT involved IkB kinase-B (IKK-B), which is involved in
the activation of NF-kB. NF-«B activity in the hypothalamus
of mice increases with age and mice expressing constitutively
active IKK-B in the mediobasal hypothalamus (MBH) ex-
hibited shortened life spans (Zhang et al. 2013). The MRDT
for MBH-IKK-3 mice was reduced by 21% compared to that
of control mice. The fitted Gompertz curves showed an in-
creased gradient (Figure 2B), providing evidence that activated
hypothalamic NF-kB promotes faster aging. As the authors
note, this is interesting because it suggests that a single
organ, the hypothalamus, is important in regulating aging
of the whole animal.

As in life-extending interventions, most genes did not
impact on MRDT and some even had an opposite effect than
expected. For example, Xrcc6 —/— (also known as Ku70 —/—)
mice had shortened life spans compared to WT controls (Li
et al. 2007). Fitting the survival data from this study produced
mortality curves with visibly different starting ages (Figure 2C)
and the MRDT of the Xrcc6 —/— mice was 38% larger than
that of the WT cohort. This points to a slower demographic rate
of aging in the Xrcc6 —/— mice. It should be noted that animals
that died in the first 3 weeks were censored in the original
study because Ku mutant mice frequently do not survive to
weaning age. Including these animals would have altered
the survival plots and might therefore have impacted on the
outcome of this analysis.
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Finally, reassessment of the survival data of Htrlb—/—
mice showed that they have a 22% increased MRDT com-
pared to WT controls. This can be seen as a slight difference
in the slopes of the Gompertz curves (Figure 2D). Reduced
longevity was reported in Htrlb—/— mice (Sibille et al
2007) and our results support the conclusion that Htr1b de-
ficiency produces a significantly decreased demographic rate
of aging; however, the cohorts used in this study were small (n =
21 for WT and n = 24 for Htr1b—/—). If we increase the period
from which data were extracted for the Htr1b—/— mice and
exclude outliers of the Gompertz curve, the difference in MRDT
is no longer significant. This result highlights the differences that
one can obtain in this type of analysis by changing subjective
parameters, in particular for smaller cohorts.

Longevity effects are driven by aging-independent
mortality

Looking at our data set as a whole (Table 1, Table 2, Table 3,
and Table 4), it is clear that studies are highly variable. Of
note, cohort size ranges from 10 to 146 animals. Moreover,
while the SD of median life span (t50) was only 13% for life
span-extending manipulations (range 1.68-3.18 years), for
life span-reducing manipulations it was 39% (0.01-2.62
years range). For maximum life span (tmax), SD was 11%
for life span-extending manipulations (range 2.14-3.61 years)
and 33% (0.07-3.51 years range) for life span-reducing ma-
nipulations. This is not surprising given that life-shortening
manipulations can have greater effect sizes than life-extending
manipulations, but it also introduces noise in demographic
aging estimates, in particular for life span-shortening
manipulations.

Even looking only at WT controls from the C57BL/6
strain (15 studies), the most common strain in our analysis,
the range of t50 was 1.74-2.63 years while tmax ranged
from 2.14 to 3.56. While tmax is influenced by cohort size,
t50 is not and, therefore, this substantial variation for WT
mice of the same genetic background suggests that consid-
erable variation is introduced by differences in animal hus-
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bandry and stochastic factors. Relative SD for a and In(R,)
in C57BL/6 cohorts were, respectively, 57 and 42%.

We also investigated if, in life span-extending manipulations,
there is a negative correlation between the t50 of the controls
and the life extension effects (measured as the percentage t50
increase in the experimental cohort). Indeed, there is a moder-
ate (r? = 0.30) but statistically significant negative correlation
(P-value = 0.002; n = 33), suggesting that effect sizes in lon-
gevity experiments could be influenced by the short life span of
the controls.

There was a strong negative correlation between o and In(Ry):
r? = 0.93 for life span-extending manipulations and r? = 0.53
(after removing Pasg, which is an outlier; see Table 4) for life
span-reducing manipulations. As such, increases in aging-inde-
pendent mortality tend to be accompanied by a slower demo-
graphic aging rate, as observed before (de Magalhées et al. 2005).

Combining earlier results (de Magalhées et al. 2005) with
the current analysis allows greater power to evaluate the
usefulness of demographic analysis in aging. Therefore, we
employed a data set with 63 manipulations of longevity:
41 life span-extending plus 22 life span-reducing manipula-
tions (note that for this analysis we excluded manipulations
for which we lacked demographic aging parameters for con-
trols, which resulted in the exclusion of six life-reducing inter-
ventions from the previous analyses). Of note, we found that by
and large an impact on longevity is caused by a change in the
aging-independent mortality, which is observed both for life-
extending (Figure 3, A and B) and life-reducing manipulations
(Figure 3, C and D). And confirming the above-mentioned
results, we observed that decreases in In(R,) correlated with
increases in « for life span-extending (2 = 0.64) and life span-
reducing manipulations (2 = 0.64).

Discussion

The Gompertz function, used here to fit only the linear phase
of the mortality trajectories, allowed for simple comparison



Table 4 Gompertz parameters for genetically altered mouse strains with shortened life span from a regression line calculated by
In(Rpyety)) = In(Ro) + ot (see Methods)

Gene or protein Type Strain a a SE In(Ro) r? MRDT (yr)
Aag, Atm, Mgmt? WT C57BL/6 3.81 0.82 —8.83 0.78 0.18
Aag —/-? 2.20 1.04 —-5.38 0.53 0.31
Mgmt —/— 3.08 0.50 —7.65 0.86 0.23
Atm /-2 2.21 1.03 -2.39 0.48 0.31
Aag —/- Mgmt —/-@ 1.66 0.41 —4.38 0.65 0.42
ATR WT N/A N/A N/A N/A N/A N/A
ATRSS 6.46 1.33 —3.38 0.86 0.11
Brcal WT 12901a X C57BL/6J 4.59 0.36 —10.01 0.98 0.15
+/— (female) 3.96 0.48 —8.06 0.97 0.17
Bub3 + Rael WT 129Sv/E X C57BL/6 1.54 0.34 —4.86 0.91 0.45
+—, +/— 1.16 0.49 —3.72 0.61 0.60
Casp2? WT C57BL6 1.46 0.31 —5.39 0.79 0.47
—/— 3.20 0.44 —9.44 0.91 0.22
Cd42 GAP? WT C57BL/6*~ 129/Sv 3.39 1.1 -8.16 0.61 0.20
—/= 1.24 1.44 —2.89 0.87 0.56
Cisd22 WT C57BL/6 (B6) 3.42 0.81 -8.37 0.64 0.20
Cisd2—/— 1.02 0.36 -2.10 0.66 0.68
Cisd22 WT male C57BL6 7.67 2.86 -17.79 0.71 0.09
+/— male? 4.06 1.26 —9.68 0.68 0.17
—/— male 5.56 1.1 -11.06 0.86 0.12
WT female 6.62 2.27 —14.43 0.90 0.10
+/— female? 2.50 0.49 —5.69 0.81 0.28
—/— female? 2.44 0.40 -5.16 0.84 0.28
DNA pol B WT C57BL/6 3.06 0.59 —9.42 0.79 0.23
+/— 3.11 0.65 -9.11 0.82 0.22
Fgf-23 —/— Sv129) 6.48 N/A -1.76 0.41 0.11
Fn1e WT C57BL/6 1.49 0.48 —5.22 0.62 0.46
Fn1EDA —/— 2.73 0.56 —6.01 0.82 0.25
Htr1b? WT 4.95 0.83 -13.74 0.90 0.14
—/= 4.06 0.46 —9.56 0.94 0.17
HtrA2/0Omi mnd2/mnd2;Tg C57BL/6) N/A N/A N/A N/A N/A
mnd2/+;Tg 5.38 1.69 —-7.16 0.84 0.13
IKK-Ba MBH-GFP C57BL/6 4.78 1.09 -12.43 0.76 0.15
N//kbkb"! 6.03 0.84 —14.37 0.90 0.12
junb? WT N/A 2.67 0.77 -5.85 0.75 0.26
JunD~/~ N/A 3.89 0.57 —7.47 0.90 0.18
Msh2 WT 129S/SvEvTac N/A N/A N/A N/A N/A
—/= 1.69 N/A —2.69 0.26 0.41
Pasg —/- 129/Sv)/C57BL/6) 64.15 N/A —2.55 0.75 0.01
Pparg? WT 4.43 0.53 —11.02 0.93 0.16
Pparg2 =/~ 2.59 0.29 -6.93 0.92 0.27
Sirt7 WT C57BI/6 X 129Sv N/A N/A N/A N/A N/A
—/— 2.16 -2.01 0.71 0.32
Socs22 WT C57BL/6) X FVB 2.14 0.40 —-5.16 0.85 0.32
hg/hg 1.43 0.33 —2.69 0.73 0.48
Stub12 WT C57BL/6 X 129SvEv 0.80 0.40 —3.78 0.44 0.87
—/— 1.31 0.44 —2.46 0.59 0.53
Trp632 WT K5CrePR1 2.90 N/A —7.47 0.86 0.24
+/— 1.75 N/A -3.72 0.83 0.40
Xrcc5? WT 2.68 0.35 —5.84 0.94 0.26
Kug6 —/— 1.63 0.38 —2.34 0.70 0.43
Xrcce? WT 1.92 0.30 —4.98 0.89 0.36
Ku70 —/— 1.39 0.44 -1.49 0.83 0.50

a, age-specific exponential coefficient; In(R0), nonexponential factor in mortality; MRDT, mortality rate doubling time as in 0.693/«; yr, year; WT, wild-type; N/A, not

applicable; Tg, transgenic.

? Indicates genes for which the changes in MRDT were statistically significant (P < 0.05).

between studies as it is described by just two parameters.
Although it has been found that more complex adaptations
of the Gompertz function [e.g., the logistic model (Pletcher
et al. 2000)] provide a better fit for some whole-mortality

curves (de Magalhdes et al. 2005; Yen et al. 2008), the
sample sizes usually reported for mouse life span experi-
ments are insufficiently large to apply these models with
sufficient accuracy.
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Figure 2 Natural logarithm of mortality rates for wild-type (WT, blue diamonds) and experimental (red squares) cohorts. Lines represent estimated adult
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Longevity is influenced by a number of factors, including
age-independent mortality, age at the onset of senescence,
and demographic rate of aging. In this study, we employed the
Gompertz model to fit published mouse survival data and
generate parameters that could be used to identify genes that
influence the demographic rate of aging. Overall, only 7/54
genes were found to have a statistically significant effect on
the demographic rate of aging as expected from longevity
manipulations. These results suggest that only a relatively
small proportion of interventions reported to affect longevity
in mice do so through directly influencing the demographic
rate of aging, in line with other, albeit smaller, studies (de
Magalhaes et al. 2005; Yen et al. 2008; Garratt et al. 2016;
Hughes and Hekimi 2016). Surprisingly, 20/54 genes had a
statistically significant impact on the demographic rate of
aging in the opposite direction than would be expected for
the published longevity effects. One possible explanation is
that many mutations impacted on various parameters affect-
ing longevity in nonlinear ways, and indeed we observed that
increases in aging-independent mortality correlated with a
slower demographic aging rate. For instance, Sirt1 deficiency
extended life span but increased the demographic rate of
aging; its effect appeared to be exerted instead by delaying
the age of onset of mortality rate escalation. This highlights
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the complex relationship between life span and the demo-
graphic rate of aging. It is also possible that other confound-
ing factors, like censored data or noise, in particular for
smaller cohorts, influenced these results.

Another caveat of our approach concerns the number of
mice used in some of the original studies, which ranged from
10 to 146 animals per cohort. While research reported here
has attempted to compensate for this by using the Gompertz
equation, which allows for small sample sizes, one cannot
escape the low statistical power that accompanies such small
sample sizes. Interestingly, caloric restriction has been shown
to significantly retard the demographic rate of aging, but this
was a large study with > 200 animals in total (de Magalhdes
et al. 2005). Therefore, caution must be taken when interpret-
ing some of the results detailed here from studies with small
sample sizes. Indeed, we observed that, in smaller experimental
cohorts, subjective decisions in estimating Gompertz parame-
ters can significantly affect the results, e.g., for Htr1b—/—.

Potential caveats of our analysis include the subjectivity of
deciding the time at which analysis should begin and problems
in the reporting of mouse survival data. As reviewed in detail
by Ladiges et al. (2009), mouse longevity studies should
adhere to certain standards to provide useful data. These in-
clude a sufficiently large cohort, high standards of pathogen-
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free animal husbandry to eliminate deaths from infectious
disease, and separate reporting of male and female survival
data. Unfortunately, life span data are often incompletely
reported and, in many of the studies analyzed in this work,
male and female data were not presented separately. Censor-
ing of mice that died before a certain age in some studies may
also have introduced noise into our results.

Our results provide insights regarding the role in aging of
various genes. Of particular interest are the findings concerning
Casp2 and Cisd2. We found that Casp2 deficiency increased the
demographic rate of aging, which has not previously been pro-
posed. Casp2 —/— mice had a similar median life span to WT
and did not show elevated tumor incidence (Zhang et al. 2007).
Besides, our results indicate that persistent expression of Cisd2
significantly reduced the demographic rate of aging. Further
investigation has since strengthened the case for Cisd2’s
involvement in regulating the rate of aging by showing that
it is involved in autophagy, mitochondrial function, and
adipocyte differentiation (Wang et al. 2014), showing that
it may influence several pathways thought to be important
for aging.

Conclusions

Overall, we performed a demographic analysis of 54 mouse
studies in which genetic manipulations significantly extended

or reduced life span. We also combined our results with a
previous report to perform an analysis of factors associated
with longevity in mice. To our knowledge, this is the largest
such study to date. Our main conclusions are: (1) most genetic
manipulations of longevity in mice do so by modulating aging-
independent mortality; (2) there is substantial variation in the
life span of controls of the same strain across experiments; (3)
studies in which the life span of the controls is short have a
greater life span increase, emphasizing the importance of
having adequate control groups; (4) mouse life span studies
employing small cohorts can yield unreliable results; (5) life
span-reducing experiments tend to be noisier and more
difficult to analyze for demographic parameters than life-
extending experiments; and (6) a greater aging-independent
mortality is usually accompanied by a slower demographic
aging rate.
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