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Abstract
Objectives
To compares 3 different myelin oligodendrocyte glycoprotein–immunoglobulin G (IgG) cell-
based assays (CBAs) from 3 international centers.

Methods
Serum samples from 394 patients were as follows: acute disseminated encephalomyelitis (28),
seronegative neuromyelitis optica (27), optic neuritis (21 single, 2 relapsing), and longitudi-
nally extensive (10 single, 3 recurrent). The control samples were from patients with multiple
sclerosis (244), hypergammaglobulinemia (42), and other (17). Seropositivity was determined
by visual observation on a fluorescence microscope (Euroimmun fixed CBA, Oxford live cell
CBA) or flow cytometry (Mayo live cell fluorescence-activated cell sorting assay).

Results
Of 25 samples positive by any methodology, 21 were concordant on all 3 assays, 2 were positive
at Oxford and Euroimmun, and 2 were positive only at Oxford. Euroimmun, Mayo, and Oxford
results were as follows: clinical specificity 98.1%, 99.6%, and 100%; positive predictive values
(PPVs) 82.1%, 95.5%, and 100%; and negative predictive values 79.0%, 78.8%, and 79.8%. Of 5
false-positives, 1 was positive at both Euroimmun andMayo and 4 were positive at Euroimmun
alone.

Conclusions
Overall, a high degree of agreement was observed across 3 different MOG-IgG CBAs. Both live
cell-based methodologies had superior PPVs to the fixed cell assays, indicating that positive
results in these assays are more reliable indicators of MOG autoimmune spectrum disorders.
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There is accumulating evidence that CNS inflammatory de-
myelinating disorders (IDDs), including forms of neuro-
myelitis optica (NMO) spectrum disorders, acute disseminated
encephalomyelitis (ADEM), optic neuritis (recurrent more
than single episode), and transverse myelitis are commonly
associated with immunoglobulin G (IgG) targeting aquaporin-
4 (AQP4) or myelin oligodendrocyte glycoprotein (MOG).1–5

Until their relatively recent discovery, patients with these
disorders were commonly misdiagnosed as having multiple
sclerosis (MS), yet contemporary findings show that MS,
MOG-IgG, and AQP4-IgG–associated IDDs have clinical,
radiologic, pathologic, and prognostic differences.5,6

MOG-IgG–associated IDDs may have a higher prevalence in
children and are often relapsing, commonly manifesting as optic
neuritis. Attacks may be associated with accumulating neuronal
injury and functional impairment.MOG-IgGmay be transient or
persistent, and its role as a predictor of relapse remains a focus of
ongoing study. While MOG antibody has had a checkered past
as a biomarker because of a lack of any specific disease associa-
tion, contemporary methodologies using cell-based assays
(CBAs) now define an autoimmune oligodendroglyopathy with
a preferential response to immunosuppressants rather than
disease-modifying agents (DMA) commonly used in MS.4–8

Early initiation and prolonged administration of such drugs may
prevent relapses and reduce disability accrual, although ran-
domized clinical trials have not yet been undertaken. MOG-IgG
also provides important prognostic information. Hence, accurate
serologic diagnosis is imperative to optimize clinical care.

A recent review article published in 2017 by key opinion leaders
in the field stated that “methods for detectingMOG antibodies
have improved substantially, with cell based assays (CBAs)
being state of the art.”1 In this blinded study, 3 different MOG-
IgG CBAs from 3 international centers were compared.

Methods
Standard protocol approvals, registrations,
and patient consents
All patients in our study consented to the use of their medical
records for research purposes. The study was approved by the
Institutional Review Board of Mayo Clinic, Rochester, MN
(No. 08-007846).

Serum samples from 394 patients and controls were tested:
91 patients were classified as having a MOG-IgG–like clinical
phenotype and included ADEM (28), AQP4-IgG seronega-
tive NMO (27, fulfilling Wingerchuk diagnostic criteria for

NMO, either 1999 or 2006 [excluding antibody status]), optic
neuritis (21 single, 2 relapsing), or longitudinally extensive
transverse myelitis (10 single, 3 recurrent). The control
samples were collected from patients with MS (244, selected
from the Olmsted County MS population-based cohort),
hypergammaglobulinemia (42), and other (17, encephalitis,
glioma, Creutzfeldt-Jakob disease, glaucoma). Sensitivity was
calculated as the percentage of positives cases within theMOG-
IgG–like clinical phenotype cohort. Specificity was calculated
as the percentage of positive cases in the MS cohort and
those with other neurologic presentations inconsistent with
an MOG-related clinical phenotype. Positive predictive value
(PPV) was calculated as the percentage of positive test results
in patients with MOG-IgG–like clinical phenotypes of all
positive test results and estimates the reliability of a positive
test result. In contrast, the negative predictive value is the
percentage of negative test results in patients without an
MOG-IgG–like clinical phenotype of all negative test results
and is an estimate of how reliably a negative test result rules
out the disease. This study was approved by the Mayo Clinic
Institutional Review Board.

All samples were stored at −80°C at the Mayo Clinic central
laboratory. They were divided into aliquots and provided
frozen as coded samples to the 3 neuroimmunology labora-
tories: Mayo Clinic; Oxford, UK; and Euroimmun, Germany.
All samples were tested by investigators blinded to the clin-
ical information. Methodologies of the 3 assays are shown in
table 1, and staining of cells considered positive and negative
by all 3 assays is illustrated in the figure

Data availability statement
The dataset used and analyzed during the current study is
available from the corresponding author on reasonable request.

Results
Of the 25 case samples positive by any methodology, 21 were
concordant on all 3 assays, 2 were positive by the Oxford
assay and Euroimmun assays, and 2 were positive only by the
Oxford assay.

Clinical specificity, as measured using a cohort of 244 patients
with MS and 17 patients with disorders clearly outside of the
autoimmune MOG spectrum, was 98.1% for Euroimmun,
99.6% for Mayo, and 100% for Oxford. The corresponding
PPVs were 82.1%, 95.5%, and 100%, respectively. Negative
predictive values were 79.0%, 78.8%, and 79.8%. Of the 5
false-positive findings in this cohort, 1 was positive by both

Glossary
ADEM = acute disseminated encephalomyelitis; AQP4 = aquaporin-4; CBA = cell-based assay; DMA = disease-modifying
agent; IDD = inflammatory demyelinating disorder; IgG = immunoglobulin G; IIF = indirect immunofluorescence; MOG =
myelin oligodendrocyte glycoprotein;MS = multiple sclerosis; NMO = neuromyelitis optica; PPV = positive predictive value.
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the Euroimmun and Mayo assays (table 2). The additional
4 false-positive results were limited to the Euroimmun CBA.
Analytical specificity was high for all 3 assays; no false-positives
were identified in a cohort of 42 patients with hyper-
gammaglobulinemia. The results of this multicenter method
comparison study of MOG-IgG testing are summarized in
table 2. All pairwise comparisons revealed good interassay re-
liability with κ values >0.8 indicating a high degree of agree-
ment across methods (Cohen κ statistic). Therefore, despite
different methodologies and testing locations, the majority of
samples achieved the same results across platforms. This is
critical for the initial deployment of MOG-IgG–based assays
because it provides confidence in the reliability of a positive
result but also indicates that detection of MOG-IgG antibodies
is robust and that these assays are inherently well standardized.

Discussion
Both live cell–based methodologies, distinct assays performed at
different centers, had superior PPVs to the fixed assays, indicating
that positive results in these assays are more reliable indicators of
MOG spectrum disorders. ELISA is not a reliable methodology
for MOG-IgG detection. MOG-IgG–related diseases may ben-
efit from early and ongoing immunotherapies. Often,

inflammatory idiopathic CNS disease such as ADEM, optic
neuritis, and transversemyelitis are treated similarly to those with
glial antibodies in the acute setting (steroids or plasmapheresis).
However, for maintenance immunotherapy, patients without
a glial antibody may be less likely to be treated with longer-term
immunosuppressants, and longer treatment regimens are asso-
ciated with fewer relapses inMOG-IgG–related diseases. A false-
negative result would often result in a misdiagnosis of MS and
consequent treatment with DMAs, which have been reported to
worsen AQP4-IgG–positive IDDs, although some are effective
for both disorders (anti-CD20 treatments). Data on DMAs ex-
acerbating MOG-IgG disease are currently lacking.

Another concerning consequence of diagnostic inaccura-
cies is the detection of a false-positive result. Because
MOG-IgGs will likely be commonly ordered in the clinical
evaluation of a suspected demyelinating event, a false-positive
result in a patient with a clinical diagnosis of MS might
result in the selection of an immunosuppressant drug (e.g.,
mycophenolate mofetil, cellcept) rather than a Food and
Drug Administration–approved DMA. In this study, 5 of 27
(18.5%) positive results in the commercial test were in control
samples, giving a relatively poor PPV (82.1% vs 95.5%–100%).
The test is simpler to run in routine diagnostic laboratories, but

Table 1 CBA methodologies

Center Assay type Transfected cell type Methodology
Determination of serostatus (see
figure)

Mayo Clinic Live cell: binding
MOG-IgG1
determined by
flow cytometry
(FACS)

HEK-293 cells transiently
transfected with
a recombinant expression
vector (pIRES2-MOG-AcGFP).

Bound patient’s antibodies are detected
using an AlexaFluor-647 anti-human
IgG1-specific secondary antibody. The
median fluorescence intensity
associated with AlexaFluor-647
(indicating the presence of bound
human antibody) is determined for both
the nontransfected and transfected cell
populations.9

A ratio of these 2 values gives the MOG-
IgG binding index. A MOG-IgG binding
index ≥2.5 is considered positive for
MOG-IgG antibodies.9

Oxford Live cell: binding
of MOG-IgG1
determined by
visual
observation

HEK293T cells transiently
transfected with plasmid
DNA encoding full-length
human MOG with glucose
and PEI.

After 24-30 h, serum diluted 1:20 in 250
μL DMEM with 20 mmol/L HEPES buffer
and 1% BSA was incubated with the
MOG-expressing cells for 1 h at room
temperature. Cells were washed and
incubated with AlexaFluor-488 goat anti-
human IgG1 at 1:500 in the same buffer
for 45 mins at RT. After fixation and
washing, the cells were embedded in
mounting medium that contained DAPI
(1:1,000) to counterstain the nuclei.

A sample was considered positive if it
showed a typical surface stain on cells
transfected with MOG and no stain on
cells transfected with a control antigen

Euroimmun Fixed cell:
binding MOG-
IgG determined
by visual
observation

HEK-293 transiently
transfected with full-length
human MOG protein and
fixed with formaldehyde

In parallel, HEK cells were transfected
with an empty vector and processed
similarly. These 2 populations form the
test substrate, which is incubated with
sera (1:10 dilution) for 30 min at room
temperature. After washing, the
substrate is incubated for 30 min at RT
with goat anti-human IgG. After washing
and embedding, slides were evaluated
manually by 2 observers on
a fluorescence microscope with a ×200
magnification.

A sample was considered positive if it
showed a typical surface stain on cells
transfected with MOG and no stain on
cells transfected with a control antigen.

Abbreviations: AcGFP = acetylated green fluorescent protein; BSA = bovine serum albumin; CBA = cell-based assay; DMEM = Dulbecco modified Eagle
medium; FACS = fluorescence-activated cell sorting assay; IgG = immunoglobulin G; HEK = human embryonic kidney; HEPES = 4-[2-hydroxyethyl]-1-piper-
azineethanesulfonic acid; MOG = myelin oligodendrocyte glycoprotein; PEI = polyethylenimine; RT = room temperature.
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it has to be fixed to allow transport and storage. The fixation
may generate cryptic epitopes, which could explain the clearly
positive binding. These discrepancies have also been described
in AQP4 assay comparisons. Future studies should address
this issue in their design, which may help with a better un-
derstanding of this kind of discrepancy.

Study funding
Funding provided by the Center for MS and Autoimmune
Neurology and Department Laboratory Medicine and Pa-
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Figure Comparison of positive and negative controls for Oxford, Euroimmun, and Mayo Clinic MOG-IgG assays

Oxford cell-basedassay (CBA) (A.a) negativeand (A.b) positive result; EuroimmunCBA (B.a) negativeand (B.b) positive result; andMayo fluorescence-activated cell
sorting assay (FACS) (C.a) negative and (C.b) positive result. For the Mayo FACS assay, 2 cell populations are used to obtain a median fluorescent intensity. The
green fluorescent protein (GFP)–negative population represents nontransfected cells, and the GFP-positive population represents cells that express both
acetylated GFP andmyelin oligodendrocyte glycoprotein (MOG) protein. The AlexaFluor-647median intensity is an indicator of bound human serum antibodies.
As shown in panel (C.b), the positive control has amedian AlexaFluor-647 intensity of 40,593 for the GFP-positive population, and the GFP-negative population is
477. The negative control (C.a) has a median 647 intensity of 162 for the GFP-positive population, and the GFP-negative population is similar at 147. These
statistical values are used to calculate the immunoglobulin G (IgG) binding index, which is a ratio of the GFP-positive value over the GFP-negative value.
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Table 2 Distribution of MOG-IgG result by 3 assays in serum samples of cases and controls

Oxford Mayo Euroimmun

Sensitivity (95% CI) 27.5 (18.6–37.8) 23.1 (14.9–33.1) 25.3 (16.8–35.5)

Specificity (95% CI) 100 (98.6–100) 99.6 (97.9–100) 98.1 (95.6–99.4)

PPV (95% CI) 100 95.5 (74.1–99.4) 82.1 (64.2–92.2)

NPV (95% CI) 79.8 (77.7–81.8) 78.8 (76.8–80.6) 79.0 (76.9–80.9)

IDDs considered within the autoimmune MOG spectrum, n (%)

Total (91) 25 (27) 21 (23) 23 (25)

ADEM (28) 7 (25) 6 (21) 7 (25)

AQP4 seronegative NMO (27) 16 (59) 13 (48) 14 (52)

ON (23)

Single (21) 0 0 0

Relapsing (2) 1 (50) 1 (50) 1 (50)

LETM (13)

Single (10) 1 (10) 1 (10) 1 (10)

Relapsing (3) 0 0 0

IDDs not considered within the autoimmune MOG spectrum

MS (244) 0 1 (0.4%) 5 (2%)

RRMS (157) 0 1 (0.6%) 2 (1.2%)a

SPMS (54) 0 0 2 (3.7%)b

PPMS (15) 0 0 1 (6.7%)c

CIS/RIS (18) 0 0 0

Other disorders

Other (17) 0 0 0

Encephalopathy (14) 0 0 0

Glioma (2) 0 0 0

Glaucoma (1) 0 0 0

Nonneurologic controls

HGGN (42) 0 0 0

Abbreviations: ADEM = acute disseminated encephalomyelitis; AQP4 = aqaporin-4; CI = confidence interval; CIS = clinically isolated syndrome; HGGN =
hypergammaglobulinemia; IDD = inflammatory demyelinating disorder; IgG = immunoglobulin G; LETM = longitudinally extensive transverse myelitis;
MOG = myelin oligodendrocyte glycoprotein; MS = multiple sclerosis; NMO = neuromyelitis optica; NPV = negative predictive values; ON = optic neuritis;
PPMS = primary progressive multiple sclerosis; PPV = positive predictive values; RIS = radiologically isolated syndrome; RRMS = relapsing remitting multiple
sclerosis; SPMS = secondary progressive multiple sclerosis.
a These 2 patients fulfilled McDonald 2017 criteria for MS.
b These 2 patients fulfilled McDonald 2017 criteria for MS and Lorscheider et al.10 definition of SPMS.
c Patient had primary progressive course with progressive left hemiparesis with spasticity and neurogenic bladder. MRI of the cervical spine showed 2 short-
segment T2-hyperintense lesions (left C2-3 and right C6-7).2
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