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1 Abstract 1 

Consciousness has been proposed to be supported by electrophysiological patterns poised at 2 
criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex 3 
patterns and divergent sensitivity to perturbation. Here, we investigated dynamical properties of the 4 
resting-state electroencephalogram of healthy subjects undergoing general anesthesia with 5 
propofol, xenon or ketamine. We then studied the relation of these dynamic properties with the 6 
perturbational complexity index (PCI), which has shown remarkably high sensitivity in detecting 7 
consciousness independent of behavior. All participants were unresponsive under anesthesia, 8 
while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams)., 9 
enabling an experimental dissociation between unresponsiveness and unconsciousness. We 10 
estimated (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related measures, and found that 11 
states of unconsciousness were characterized by a distancing from both the edge of activity 12 
propagation and the edge of chaos. We were then able to predict individual subjects’ PCI (i.e., 13 
PCImax) with a mean absolute error below 7%. Our results establish a firm link between the PCI and 14 
criticality and provide further evidence for the role of criticality in the emergence of consciousness. 15 

2 Significance Statement 16 

Complexity has long been of interest in consciousness science and had a fundamental impact on 17 
many of today’s theories of consciousness. The perturbational complexity index (PCI) uses the 18 
complexity of the brain’s response to cortical perturbations to quantify the presence of 19 
consciousness. We propose criticality as a unifying framework underlying maximal complexity and 20 
sensitivity to perturbation in the conscious brain. We demonstrate that criticality measures derived 21 
from resting-state electroencephalography can distinguish conscious from unconscious states, 22 
using propofol, xenon and ketamine anesthesia, and from these measures we were able to predict 23 
the PCI with a mean error below 7%. Our results support the hypothesis that critical brain dynamics 24 
are implicated in the emergence of consciousness and may provide new directions for the 25 
assessment of consciousness.  26 
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Introduction 27 

Neuroscience is increasingly borrowing from complex systems theory in order to understand the 28 
link between neural dynamics, behavior and conscious states. In nature, complexity often emerges 29 
in systems poised between two dynamical regimes such as chaos and stability—a phenomenon 30 
known as criticality (1, 2). At this fine balance point, systems display optimal computational 31 
capacity, maximally complex patterns, and divergent sensitivity to external perturbation. In virtue of 32 
these features, criticality is increasingly explored as a requirement for healthy brain function (2–4) 33 
and the emergence of consciousness (5–8).  34 

Although the association of criticality with consciousness is rather recent, complexity has long been 35 
of interest in consciousness science. Early theoretical work suggested that consciousness is tightly 36 
linked to “neural complexity”, which measures the balance between functional differentiation and 37 
integration within a system (9), an idea that gave rise to the Integrated Information Theory (IIT) of 38 
consciousness (10, 11). A variety of other complexity measures, based in various theoretical 39 
paradigms, have been identified as markers of consciousness in physiological, pharmacological 40 
and pathological conditions (7, 12–17). 41 

Among these measures, the perturbational complexity index (PCI) (18) captures the complexity of 42 
the brain’s response to a direct and non-invasive cortical perturbation using transcranial magnetic 43 
stimulation (TMS) and electroencephalography (EEG). Due to its unique sensitivity in detecting 44 
consciousness in patients affected by disorders of consciousness, it stands today a promising index 45 
for the assessment of human consciousness (15, 19, 20). The question then arises as to which 46 
properties of the conscious brain underpin high PCI. Knowledge of these properties may not only 47 
inform theories of consciousness but may also point the way to new clinical measures of 48 
consciousness that do not require a TMS machine – a device with only scant accessibility in clinical. 49 
Originally, PCI was inspired by IIT and the concept of integration-differentiation balance. However, 50 
the link between PCI and IIT is not exclusive (21, 22), allowing for alternative or complementary 51 
explanatory theories. 52 

A natural explanation may be found in criticality. The complexity of evoked responses, as measured 53 
in PCI, is in fact predicted to be maximal in systems poised at criticality (23–25). As such, criticality 54 
has been proposed as a unifying framework underlying maximal complexity and sensitivity to 55 
perturbation in the conscious brain (2, 5, 7, 26). Still, while previous studies have suggested a 56 
conceptual link between criticality and maximally integrated information (6, 27), the relation 57 
between the PCI and criticality of the pre-TMS resting-state EEG remains unexplored. In this study, 58 
we investigate whether criticality measures derived from resting-state EEG (without TMS) can 59 
distinguish conscious from unconscious states in a pharmacological model of (un)consciousness 60 
using propofol, xenon and ketamine anesthesia. Moreover, we explored the potential of these 61 
measures to predict the PCI value (i.e., PCImax), aiming at shedding light on the physical bases of 62 
this index.  63 

Brain criticality has been approached through a diverse set of perspectives and methods (2 as a 64 
review, 6, 7, 28, 29). Here, we explore measures of two types of criticality: 1) avalanche criticality 65 
and 2) the edge of chaos (see Methods, see Fig.7). Both types of criticality describe the meeting 66 
point of two dynamical regimes, namely 1) activity amplification and dissipation and 2) chaos and 67 
stability, respectively. In addition, we analyzed a set of ‘criticality-related measures’ - a group of 68 
properties that are associated with criticality in general but that are not known to be a specific 69 
feature of any one criticality type (e.g., Lempel-Ziv complexity).  70 

In the first part of this study, we describe the effect on brain criticality of general anesthesia with 71 
propofol, xenon or ketamine. Each anesthetic procedure was tailored to reach a common 72 
behavioral state of unresponsiveness—in other words, a ‘surgical level’ of general anesthesia, 73 
delivered to healthy participants in the absence of any surgery. While all participants were 74 
behaviorally unresponsive during drug exposure, only anesthesia with ketamine led to a clear-cut 75 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564247doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564247
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

4 

 

dissociation between responsiveness and consciousness (30, 31), with subjects being 76 
unresponsive while also having intense conscious experience (also known as ketamine dreams) 77 
(see 15 for example reports). In the second part, we examine the relation between resting-state 78 
brain criticality just prior to TMS perturbation and the complexity of the response immediately 79 
following the TMS perturbation (i.e., PCI). 80 

We hypothesized that states of unconsciousness (i.e., during general anesthesia with propofol or 81 
xenon) diverge from criticality, either to the sub- or supercritical state, and that the brain exhibits 82 
close-to-critical dynamics only when consciousness is present (see Fig.1). Meanwhile, general 83 
anesthesia with ketamine was not expected to induce a deviation from criticality, but rather to 84 
maintain close-to-critical dynamics, similarly to normal wakefulness. We further hypothesized that 85 
the level of criticality of resting-state cortical activity can predict the complexity of the response to 86 
perturbation using TMS (i.e., PCI). Whereas brains poised at criticality were expected to show a 87 
highly complex reaction to the targeted perturbation (i.e., high PCI), sub- and supercritical dynamics 88 
were expected to display a local and quickly vanishing reaction (i.e., low PCI), or a wide-ranging 89 
but stereotypical reaction (also low PCI), respectively (see Fig.1). Our objective is to provide a 90 
mechanistic framework for one of today’s most reliable metrics of consciousness, PCI, from which 91 
we may derive a new and complementary approach for the assessment of consciousness. 92 

 93 
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Figure 1: Illustration of hypothesis: A system at criticality is poised between two dynamical 
regimes and exhibits adaptive computational properties, including maximally complex patterns 
and divergent sensitivity to perturbations. As such, criticality offers a suitable framework for 
explaining the perturbation-evoked complexity measured by PCI. The top row of the figure 
illustrates the concept of avalanche criticality. Arrows indicate activity propagation over time 
resulting from a single perturbation (e.g., a sensory event or a somatic signal). (Top Left) In a 
subcritical regime, a single unit activation or event triggers on average less than one additional 
event (branching ratio < 1). Thus, the effect of a single perturbation quickly dissipates and has 
no long-term (time) or long-range (space) effect on the system. In other words, the system is 
highly stable and quickly 'forgets’ information about its inputs. (Top Right) In a supercritical 
regime, a single event triggers on average more than one downstream event (branching ratio > 
1). The effect of a single perturbation exponentiates quickly over time leading to total activation 
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of the system. The system is thus highly unstable, and the over-amplification of signals results 
in rapid forgetting through information corruption. (Top Middle) At criticality, a single event 
triggers exactly one downstream event on average (branching ratio = 1). Variations around this 
average yield a diverse set of network responses of all sizes and durations, facilitating 
communication between the system’s microscopic and macroscropic scales. The system is 
poised between stability and instability (balancing reliability and flexibility), and information 
reverberates across the system and over prolonged timespans. (Bottom) We hypothesize that 
states of consciousness (i.e., normal wakefulness and ketamine anesthesia) are poised at 
criticality. States of unconsciousness (i.e., during general anesthesia with propofol or xenon) are 
hypothesized to diverge from criticality, either to a sub- or supercritical state. We further 
hypothesize that sensitivity to perturbations (i.e., complexity of the response to external 
stimulation), as quantified by the perturbational complexity index (PCI) is maximized at criticality 
and reduced in sub- and supercritical states. 

 94 

3 Results 95 

We analyzed data from a previously published study (15, 32), consisting of 15 healthy adults who 96 
were exposed to propofol (n=5), xenon (n=5) or ketamine (n=5) general anesthesia. Spontaneous 97 
electroencephalography (EEG) was recorded (~5 min) during resting wakefulness prior to drug 98 
administration and during drug-induced loss of responsiveness (see 15 for full protocol). The PCI 99 
values (PCImax) for every subject before and during drug administration were obtained by Sarasso 100 
et al. (15) using a TMS-EEG protocol (18). Although drug administration resulted in 101 
unresponsiveness in all three groups, only participants exposed to propofol or xenon were 102 
considered unconscious (e.g., did not report any subjective experience). In the ketamine condition, 103 
participants reported vivid, conscious dream-like experiences upon recovery of responsiveness 104 
(15).  105 

3.1 Propofol and xenon, but not ketamine, induce a shift away from avalanche criticality 106 

For a large class of dynamical systems, activity spreads through so-called avalanches — “chain 107 
reactions” or cascades of activity that propagate through time and space. In ordered, subcritical 108 
systems, avalanches tend to be short-lived with a characteristic small scale, whereas in disordered, 109 
supercritical systems, a large number of avalanches span the whole system, again imposing a 110 
characteristic (system-size) scale to the avalanche distribution. In contrast, at the avalanche-critical 111 
point, avalanches are scale-free — no scale dominates, such that the probability distribution of their 112 
features, such as size and duration, converge on a power law (the only scale-invariant 113 
mathematical function). Therefore, the presence of power law distributions of avalanche statistics 114 
constitutes a first indicator of avalanche-critical dynamics. 115 

Avalanche detection on EEG data requires binarization of the signal, using a threshold of n 116 
standard deviations (SD). Following other studies (33, 34), the optimal threshold for avalanche 117 
detection was identified by finding the point of divergence between the probability distribution of z-118 
scored EEG signal values and a best-fit Gaussian (Fig. 2B). For comparison, the corresponding 119 
probability distribution for absolute (non-z-scored) EEG signal values is shown in Fig. 2A. Note that 120 
although the amplitude excursions are wider for xenon and propofol conditions in terms of raw 121 
microvolt values (Fig. 2A), z-scoring reveals that the shape of the distribution is substantially more 122 
heavy-tailed for the wakefulness and ketamine conditions (Fig. 2B), consistent with previous results 123 
from invasive electrocorticography recordings in nonhuman primates (34). Such heavy-tailed 124 
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distributions are a hallmark of critical dynamics. The point of divergence between the Gaussian and 125 
the observed data was estimated at 2.0 SD (see Fig 2C) and was taken as a threshold for detecting 126 
non-stochastic neural events (i.e., for binarization). From the binarized signal, avalanches were 127 
detected using an inter-event interval of 8 ms. All results were replicated on a range of 128 
hyperparameters (1.5-3.0 SD, 4-12ms) and are provided in Supplementary Material 1.  129 

 130 

 

Figure 2: Probability distribution of signal values in terms of amplitude and standard deviation. 
Distributions were estimated over all channels and averaged across participants. The point of 
divergence between these distributions and their best-fit Gaussian marks a boundary beyond which 
observed fluctuations are unlikely to be the result of stochastic variability around the mean and can 
thus be considered as ‘neural events’. (A) Probability distribution of amplitudes by condition. Signal 
excursions are broadest in the propofol (blue) and xenon (black) conditions and narrower during 
pre-drug wakefulness (light green, eyes closed; dark green, eyes open), and during ketamine 
anesthesia (red) (B) Probability distribution of z-scores by condition. While propofol (blue) and 
xenon (black) distributions vanish faster, ketamine (red) and wakefulness (light green, eyes closed; 
dark green, eyes open) exhibit a heavy-tailed distribution, suggestive of avalanche dynamics. For 
visualization only, the wakefulness eyes-open condition was plotted as the average over all 10 
subjects. (C) Whereas propofol (blue) and xenon (black) more closely follow a Gaussian 
distribution, ketamine (red) and wakefulness (light green, eyes closed; dark green, eyes open) 
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deviate from the Gaussian (orange dashed curve) above the observed threshold of 2 SD (grey 
dashed line). Each line corresponds to the average over 5 subjects in the given condition.  

 131 

Despite larger absolute amplitudes during propofol (t(4) = -5.71, p<0.01) and xenon (t(4) = -5.04, 132 
p<0.01) anesthesia (see Fig. 2A), both conditions exhibited significantly fewer avalanches 133 
compared to wakefulness (propofol t(4) = -4.00, p<0.05, xenon: t(4) = -4.06, p<0.05). In contrast, 134 
the number of avalanches remained unchanged during ketamine anesthesia. The distribution of 135 
avalanche sizes followed a truncated power law with exponential drop-off in 25 out of 30 recordings 136 
(10/15 during wakefulness, 15/15 during anesthesia recordings) (see Supplementary Methods, 137 
Note 3), while the distribution of avalanche durations followed a truncated power law with 138 
exponential drop-off in all recordings across participants and conditions. An inspection of the 139 
avalanche distribution (i.e., visualized using the complementary cumulative distribution function) 140 
(Fig 3A) reveals that exposure to xenon and propofol yields an earlier exponential drop-off, 141 
suggestive of subcritical dynamics. Most interestingly, ketamine showed a distribution more similar 142 
to wakefulness, which suggests dynamics closer to criticality than xenon and propofol, but less 143 
critical than wakefulness. These differences are especially clear in the avalanche size distributions 144 
(Fig 3 A, left panel).  145 

These effects can be approximately quantified by comparing the slopes of the best-fit power laws,  146 
as the steepness of the best-fit line is expected to increase as a monotonic function of the degree 147 
of subcriticality (see Supplementary Note 2). We therefore used the best-fit power-law slope as an 148 
indirect metric of the distance from criticality. We further quantified the likelihood that the 149 
distributions followed a power law by comparing goodness of fit between power law, lognormal and 150 
exponential functions using loglikelihood estimation (36, 37). 151 

Compared to wakefulness, the administration of propofol (t(4) = -2.88, p<0.05), xenon (t(4) = -3.04, 152 
p<0.05) and ketamine (t(4) = -4.23, p<0.05) significantly increased the slope of the best-fit power 153 
law of avalanche duration, indicating the occurrence of overall shorter-lived avalanches during drug 154 
exposure (see Fig 3A). The slope for avalanche size also increased during exposure to propofol 155 
(t(4) = -7.18, p<0.01) and xenon (t(4) = -4.93, p<0.05) but not ketamine, indicating a decrease of 156 
large-sized avalanches during unconsciousness (see Fig 3A). The slope of the distribution of 157 
average size by duration increased upon administration of propofol (t(4) = -4.59, p<0.05), xenon 158 
(t(4) = -6.68, p<0.01) and ketamine (t(4) = -4.44, p<0.05). For the distribution of avalanche sizes, 159 
the likelihood of a power law behavior significantly decreased during general anesthesia with 160 
propofol (t(4) = 4.91, p<0.05) and xenon (t(4) = 12.13, p<0.01) , but not ketamine. For the 161 
distribution of avalanche duration, only exposure to xenon (t(4) = 5.22, p<0.01) significantly 162 
decreased the likelihood of a power law behavior. The decrease in propofol did not reach 163 
significance. 164 

Taken together, exposure to propofol, xenon and ketamine yielded a decreased probability of large 165 
and long-lasting avalanches, and a deviation from power-law behavior, providing evidence for 166 
subcritical dynamics. While this effect is strongly expressed during propofol- and xenon-induced 167 
unconsciousness, exposure to ketamine yielded overall smaller deviations from wakefulness (see 168 
Fig. 2A). 169 

While the change in exponents provides preliminary evidence for alterations in the underlying 170 
system’s dynamics, a critical system should exhibit a specific relation between its power-law 171 
exponents (slopes), which are known as critical exponents (35)  (29). The observed error of this 172 
scaling relation is expressed in the deviation from criticality coefficient (DCC, see Methods) (38). 173 
Whereas the administration of propofol (t(4) = -7.45, p<0.01) and xenon (t(4) = -4.33, p<0.05) 174 
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resulted in a large DCC, ketamine did not significantly alter DCC with respect to wakefulness (see 175 
Fig 3 B). This supports our hypothesis that only exposure to propofol or xenon shifts neuronal 176 
dynamics away from criticality, while exposure to ketamine yields near-critical dynamics that are 177 
indistinguishable from wakefulness.  178 

A similar behavior was clearly observed in a variety of other measures of avalanche criticality, 179 
namely the branching ratio, the Fano factor and the size and average diversity of the avalanche 180 
pattern repertoire (see Fig 3 C). Briefly, the branching ratio estimates the number of events in the 181 
next time bin that are expected to arise from a single event in the present time bin, and should be 182 
near 1.0 at criticality and smaller for subcritical systems (28). The Fano factor is a measure of the 183 
magnitude of fluctuation of the activity signal and is expected to exceed 1.0 at criticality (39). The 184 
avalanche pattern repertoire is the set of unique spatial patterns spanned by the observed 185 
avalanches (40), and is expected to be maximal in size and diversity at criticality. Each of these 186 
measures showed signs of a shift towards subcriticality in the xenon and propofol conditions, but 187 
not under ketamine. Specifically, the branching ratio, Fano factor and average repertoire size and 188 
diversity all decreased under propofol (branching ratio: t(4) = 5.26, p<0.05; Fano factor: t(4) = 6.18, 189 
p<0.05; repertoire size:  t(4) = 3.17 , p<0.05; repertoire diversity:  t(4) = 5.22 , p<0.05) and xenon 190 
(branching ratio: t(4) = 10.73, p<0.01; Fano factor: t(4) = 20.50, p<0.001; repertoire size:  t(4) = 191 
6.35, p<0.01; repertoire diversity:  t(4) = 8.86, p<0.01).  192 

In summary, unconsciousness following exposure to propofol or xenon yielded network dynamics 193 
diverging from criticality into the subcritical phase. Specifically, drug-induced unconsciousness, 194 
despite overall larger amplitudes, was characterized by more dissipative activity propagation, 195 
smaller activity fluctuations (i.e., heavier-tailed signal distributions) and less diverse avalanches. In 196 
contrast, critical dynamics and related network properties (i.e., stable activity propagation, large 197 
fluctuations and diverse avalanches) that were observed during wakefulness were preserved 198 
during exposure to ketamine. Cumulatively, this evidence strongly suggests that propofol and 199 
xenon, but not ketamine, shift neuronal dynamics away from avalanche criticality. 200 
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Figure 3: A) Distribution of avalanche size (left), duration (middle) and average size for a given 
duration (right), visualized using the complementary cumulative distribution function for each 
subject and condition individually: xenon (black), propofol (blue), ketamine (red), wakefulness 
with eyes open (‘Wake-Eo’, dark green) and closed (‘Wake-Ec’, light green). In all three 
distributions, the propofol and xenon conditions exhibit an earlier drop-off, compared to 
wakefulness. The ketamine condition is intermediate between wakefulness and unresponsive 
anesthesia (xenon and propofol) conditions, indicating that large and sustained avalanches are 
more strongly maintained during exposure to ketamine than they are under xenon or propofol. 
B) The deviation from criticality coefficient (DCC) increases under the effect of xenon and 
propofol, but not ketamine. Light grey lines represent individual subjects, bold lines are the mean 
over subjects. C) Effect of xenon, propofol and ketamine on measures of criticality: xenon and 
propofol but not ketamine resulted in decreases in the size and diversity of the avalanche pattern 
repertoire, the branching ratio and the Fano factor, each of which is expected for more subcritical 
dynamics.     

  201 

3.2 Propofol and xenon, but not ketamine, increase brain chaoticity 202 

Chaos is broadly defined as the sensitivity of a system’s trajectories in phase space to the details 203 
of its initial conditions. The edge of chaos marks the turning point where a system switches from 204 
dynamics that converge onto fixed-point or periodic attractors to dynamics that wander off into 205 
chaos. The edge of chaos exists as its own critical phase transition -- dissociable from avalanche 206 
criticality (41, 42) though sharing many high-level properties with it, including maximal signal 207 
diversity and sensitivity to perturbation (2). The degree of chaos, or chaoticity, was estimated using 208 
three measures: 1) the modified 0-1 chaos test (7, 43) 2) the largest Lyapunov exponent (LLE) (44) 209 
and; 3) the standard deviation of the integrated time-lagged covariance matrix, as proposed by 210 
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Dahmen et al. (41) (see Methods). The 0-1 chaos test and the LLE each were estimated on non-211 
overlapping 10 s windows of signal on each channel individually and averaged over time. The 0-1 212 
chaos test was previously validated on electrophysiological signal that was low-pass filtered at the 213 
lowest oscillatory peak (up to 6 Hz), channel-wise (7). However, ketamine anesthesia shows an 214 
absence of low-frequency oscillations (15). Thus, we instead applied a fixed low-pass frequency 215 
filter across all recordings and repeated the analysis for a range of low-pass frequencies (1-12 Hz 216 
with a 1-Hz step; Fig 4 A, bottom).  217 

Chaoticity of low-frequency dynamics increased following exposure to propofol and xenon. 218 
Whereas the propofol-induced increase of chaoticity was most present when using low-pass filters 219 
of 1 to 4 Hz (all P < 0.05), the xenon-induced increase only occurred when including higher 220 
frequencies up to 7 Hz (i.e., using low-pass filters of 4 to 7 Hz) (all P < 0.05). Only at a low-pass 221 
frequency of 4 Hz was there an increase in chaoticity observed for both drugs. While a propofol-222 
induced increase in chaoticity was observed homogenously over all areas, xenon mostly increased 223 
frontal and occipital chaoticity (see Fig 4 A, top). Importantly, no difference in chaoticity was 224 
observed between wakefulness and exposure to ketamine. For direct comparison with previous 225 
work, we also applied 0-1 chaos using the above-described peak detection method (see 226 
Supplementary Material 2). 227 

The LLE was estimated on the broadband signal (1-40 Hz). For comparison between conditions, 228 
LLE values were averaged across channels to yield one average LLE per participant and condition. 229 
In accordance with the 0-1 chaos findings, the LLE increased during exposure to propofol (t(4) 230 
= -7.56, p<0.01) and xenon (t(4) = -6.65, p<0.01), but not ketamine. Furthermore, observed 231 
increases in chaoticity occurred homogenously over all channels (see Fig 4 B). Similarly, propofol 232 
(t(4) = -2.96, p<0.05) and xenon (t(4) = -2.81, p<0.05), but not ketamine, significantly increased the 233 
width of the covariance matrix (see Fig 4 B), which is indicative of increased chaoticity according 234 
to statistical physical models  (41).  235 

Altogether, the three measures of brain chaoticity provided evidence of increased brain chaoticity 236 
following propofol or xenon anesthesia, but not following ketamine anesthesia.  237 
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Figure 4. Effects of propofol, xenon and ketamine on brain chaoticity. A) Bottom: Chaoticity 
estimated over a range of low-pass filters, using the 0-1 chaos test. Stars indicate significant 
differences with the corresponding wakefulness data. Bold lines represent the chaoticity values 
over all channels, averaged over 5 participants in one condition. The shaded area below the line 
represents the lower standard deviation. Propofol (blue) significantly increased chaoticity for 
frequencies up to 4 Hz. Xenon (black) showed a significant increase at low-pass frequencies 
between 4 and 7 Hz. Top: Topographic distribution visualized for channel-wise chaoticity values 
(0-1 chaos) with a low-pass filter of 4 Hz. Channels with a significant increase in chaoticity 
compared to the corresponding wakefulness data are marked with a red star. B) Bottom: The 
largest Lyapunov exponent (LLE) increased during exposure to propofol (blue) and xenon (black), 
but not ketamine (red). Light grey lines represent individual subjects and bold lines are the mean 
over subjects. Top: Topographic maps represent the time-averaged LLE for every channel. 
Channels with a significant increase in chaoticity compared to the corresponding wakefulness data 
(green) are marked with a red star. C) Distribution of integrated time-lagged covariances during 
propofol (blue), xenon (black) and ketamine (red) anesthetic conditions, compared to the 
corresponding wakefulness data (green). 

 238 
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3.3 Changes in brain complexity, entropy, fractality and steepening of the spectral slope 239 
during unconsciousness are related to measures of criticality. 240 

Although the measures of criticality introduced in the previous sections are relatively new to the 241 
field of cortical electrophysiology, a wide variety of ‘classical’ EEG measures are in fact strongly 242 
related to criticality. As an example, loss of signal complexity is a widely known marker of loss of 243 
consciousness (45) but it is also characteristic of a system moving away from criticality. Thus, we 244 
sought to replicate our results on a range of criticality-related measures, which are commonly used 245 
in the field of neuroscience in a model-free manner, but whose effect may in fact be rooted in critical 246 
brain dynamics. Specifically, we applied: 1) Lempel-Ziv complexity (LZC); 2) fractal dimension; 3) 247 
multiscale entropy; 4) the Hurst exponent and; 5) the spectral slope. Analysis of the spectral slope 248 
has previously been reported for these data (32), but we included it here again to demonstrate its 249 
link to measures of criticality. All measures were estimated on 10-s windows and the full frequency 250 
range (1 – 40 Hz) and were calculated for each channel individually (see Methods). In addition, we 251 
calculated the pair correlation function (PCF) in the alpha (8-13 Hz) frequency range, which has 252 
been previously associated with ‘edge of synchrony’ criticality (6, 46) (see Discussion).  253 

In line with previously reported results on the spectral slope (32), LZC and fractal dimension 254 
significantly decreased during propofol (LZC: t(4) = 6.75, p<0.01; fractal dimension: t(4) = 10.88, 255 
p<0.01) and xenon (LZC:  t(4) = 7.08, p<0.01; fractal dimension: t(4) = 9.70, p<0.01) anesthesia, 256 
but not during ketamine anesthesia (see Fig 5A). Conversely, multiscale entropy significantly 257 
increased during propofol (t(4) = -9.46, p<0.01) and xenon (t(4) = -5.19, p<0.05) anesthesia, but 258 
not during ketamine anesthesia (see Fig 5A). The Hurst exponent captures the long-range temporal 259 
correlation of the signal and is strongly linked to both the fractal dimension and the slope of the 260 
power spectral density. Only exposure to propofol (t(4) = -4.76, p<0.05) yielded a significantly 261 
increased low-frequency (delta bandwidth 1-4Hz) Hurst exponent, indicating increased long-range 262 
temporal correlation during unconsciousness in the delta frequency bandwidth. In higher frequency 263 
bands, drug exposure yielded an overall decrease in Hurst exponent with alpha Hurst exponent 264 
significantly decreasing in response to xenon (t(4) = 5.55, p<0.05) (see Supplementary Material 3 265 
for all bandwidths). In contrast to previous studies (6) the PCF did not show significant changes 266 
during general anesthesia with propofol, xenon or ketamine (see Discussion).  267 

Nearly all of these criticality-related measures are highly correlated to the above-reported measures 268 
of avalanche criticality and edge of chaos (see Fig 5B), yet no strong correlation was found with 269 
our measure of the edge of synchrony (see Discussion). This suggests that changes in brain 270 
complexity, entropy, fractality and steepening of the spectral slope observed in previous studies 271 
during unconsciousness were indicative of the brain dynamics moving away from the edge of 272 
activity propagation or the edge of chaos. 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 
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Figure 5 Effect of propofol, xenon and ketamine on criticality-related measures, and the mutual 
relation between all the applied measures.  

A) Complexity, fractal dimension and the Hurst exponent decrease during exposure to propofol 
(blue) and xenon (black), but not ketamine (red). Signal entropy increases during exposure to 
propofol and xenon, but not ketamine. Light grey lines represent individual subjects, bold lines 
are the mean over subjects. B) Correlation matrix between all criticality-related measures and 
measures of avalanche criticality, edge of chaos and edge of synchrony. Criticality-related 
measures are highly correlated with measures of avalanche criticality and edge of chaos. P-
values were corrected using Bonferroni correction. Cov. width, width of the covariance 
distribution; DFA, detrended fluctuation analysis; DCC, deviation from criticality coefficient; LLE, 
largest Lyapunov exponent; LZC, Lempel-Ziv complexity; PCF, pair correlation function; PSD, 
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power spectral density; rep., avalanche repertoire; wake - EC, wakefulness with eyes closed; 
wake - EO, wakefulness with eyes open. 

 281 

3.4 Criticality reliably predicts the perturbational complexity index 282 

We next investigated the relation between the criticality of resting-state dynamics and the response 283 
to external perturbations. More specifically, we first explored the correlation between the distance 284 
from criticality of resting-state dynamics and the PCI – a measure which combines EEG and TMS 285 
to reliably detect consciousness in unresponsive patients (18). We then tested the degree of 286 
resting-state criticality as a predictor for the PCI. 287 

Each participant’s PCI across all states (i.e., wakefulness, anesthetized) significantly correlated 288 
with all resting-state avalanche criticality measures, edge-of-chaos measures and criticality-related 289 
measures (all P < 0.01), except for the PCF (see Table 1). A direct comparison of all features 290 
between conditions is provided in Supplementary Material (see Supplementary Material 4).  291 

Combining all measures in a single ridge regression model to predict PCI yielded a mean error of 292 
0.02 (i.e., as PCI ranges from 0 to 1 this corresponds to an error of 0.2%), indicating an absolute 293 
average deviation of 0.038 ± 0.028 from the true PCI. To test the model for its predictive value on 294 
unseen data, we implemented a leave-one-subject-out (LOSO) cross-validation (n=15 splits). 295 
Model scores for each iteration were defined as the mean error of both the pre-drug and drug 296 
conditions. Using a LOSO cross-validation, the model yielded a mean error of 0.06 (i.e., 6% error), 297 
indicating an absolute average deviation of 0.067 ± 0.044 from the true PCI (see Fig. 6). Using a 298 
threshold of 0.35 yielded a perfect separation of conscious and unconscious states, for the true as 299 
well as the predicted PCI (see Fig. 6).  300 

 301 

Table 1: Correlation between measures of criticality and the perturbational complexity index 
(PCI). Cov. width, width of the covariance distribution; DFA, detrended fluctuation analysis; DCC, 
deviation from criticality coefficient; LLE, largest Lyapunov exponent; LZC, Lempel-Ziv 
complexity; PCF, pair correlation function. 

 

 302 
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Figure 6: Prediction of the PCI, based on resting-state EEG dynamics. Individual points 
represent individual subjects during pre-drug wakefulness (light green, eyes closed; dark green, 
eyes open), propofol (blue), xenon (black) and ketamine (red) condition. Grey dashed lines 
represent a possible threshold of 0.35 to separate conscious from unconscious states.   

 305 

4 Discussion 306 

We investigated the effects of three anesthetics -- propofol, xenon and ketamine -- to study how 307 
different measures of brain criticality relate to the presence of consciousness beyond sheer 308 
unresponsiveness, in healthy humans. Using a variety of metrics from the classes of avalanche 309 
criticality and the edge of chaos, we observed that propofol and xenon anesthesia, which induced 310 
unconsciousness, caused brain dynamics to deviate from criticality — while ketamine anesthesia, 311 
which did not abolish consciousness, kept brain dynamics in proximity to criticality, similarly to 312 
wakefulness. We further showed that these same criticality metrics of (pre-TMS) resting-state EEG 313 
accurately predicted the brain’s PCI, supporting the notion that brain criticality may provide an 314 
explanatory framework for this reliable measure of the presence of consciousness. Together, our 315 
results provide further evidence supporting the hypothesis that critical neuronal dynamics are a 316 
necessary condition for the emergence of consciousness in the brain (3, 5, 7, 32).  317 

In contrast to propofol and xenon, and like wakefulness, ketamine anesthesia did not abolish 318 
consciousness, nor did it result in a substantial movement away from criticality, in agreement with 319 
our hypothesis. Similar findings have been reported by Varley et al. (34) who investigated loss of 320 
complexity and critical dynamics after exposure to propofol and ketamine using invasive 321 
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electrocorticography in nonhuman primates. In line with our results, propofol showed stronger loss 322 
of criticality and complexity compared to ketamine, which maintained a strong resemblance to the 323 
state of wakefulness (34). In contrast, in a human study, a sub-anesthetic infusion of ketamine 324 
(about 10% of the infusion rate used in our study) resulted in increased signal complexity (52). 325 
Similar effects have been observed using the psychedelic compound lysergic acid diethylamide 326 
(LSD), which increased the complexity (7, 52), and reduced the chaoticity of the EEG signal, thus 327 
narrowing its distance from the edge of chaos (7). This highlights the importance of differentiating 328 
between sub-anesthetic and anesthetic doses of ketamine, which have distinct effects on brain 329 
complexity and criticality. 330 

Beyond providing an explanatory mechanism for the PCI, our results may also have major practical 331 
implications for the clinical assessment of human consciousness. PCI is a well-characterized metric 332 
that reliably distinguishes conscious from unconscious states (15, 18), yet the requirement of a 333 
TMS system and a long testing procedure has limited its wider application in clinical practice. In 334 
this study, we demonstrated the relationship between EEG criticality and the PCI by predicting 335 
individual subjects’ PCI using only short resting-state 60-channel EEG recordings obtained just 336 
prior to TMS intervention, with a mean average error below 7%. Although our results suggest that 337 
the assessment of consciousness could be accurately carried out without requiring TMS, we 338 
highlight the complementarity of these approaches. While the complexity of the brain’s response to 339 
TMS can be explained through network criticality, measuring the PCI yields more information than 340 
its single summary complexity value PCImax. Specifically, each TMS stimulation in the PCI 341 
procedure produces a detailed cortical map with spatial information about which regions were or 342 
were not affected by the perturbation (18, 53). Especially for brain-injured patients (53), this 343 
information contains meaningful clinical insights above and beyond the final index that cannot be 344 
predicted based on resting-state criticality alone. Whether or not one could in a clinical context rely 345 
on criticality measures to derive an estimate of PCI without the need to actually stimulate the brain, 346 
as was found here in healthy controls undergoing anesthesia, still remains to be seen. 347 

The association between criticality and the complexity of evoked responses has previously been 348 
demonstrated in cortical cultures (23, 24) and in silico modeling (50). Shew et al. (23, 24) measured 349 
stimulus-evoked pattern entropy during drug-induced over-excitation and -inhibition and 350 
demonstrated that the diversity of patterns was maximized at the critical balance between excitation 351 
and inhibition, where neuronal avalanches obeyed scale-free distributions. Aligning with the results 352 
of the present study, Shew et al. (23) concluded that ”spontaneous activity and input processing 353 
are unified in the context of critical phenomena”. In addition, Momi, Wang and Griffiths (51) used 354 
whole-brain connectome-based computational modelling to reconstruct individual responses to 355 
TMS in vitro and highlighted the role of GABAergic neural populations and cortical excitability. Our 356 
results align with this previous research (23, 24, 49–51) and support the hypothesis that the 357 
complexity of the response following perturbation can be inferred solely based on resting-state 358 
activity. 359 

In this study, we focused our analysis on measures of two types of criticality, namely, avalanche 360 
criticality and the edge of chaos (for detailed discussion on the types of criticality and their relation 361 
to consciousness see Supplementary Methods, Note1). While both types of critical phase 362 
transitions are theoretically distinct and dissociable (41, 42, 54), deviations from these respective 363 
critical points may nonetheless be correlated in specific classes of systems (Haldeman & Beggs, 364 
2005). More work will be needed to understand their interrelation in the brain. Other types of 365 
criticality have also been studied in brain networks, including the “edge of synchrony” (see 2 as a 366 
review). 367 

For avalanche criticality, propofol- and xenon-induced unconsciousness shifted the brain network 368 
away from criticality and yielded subcritical dynamics. While the shift away from criticality aligns 369 
with our hypothesis, we tentatively expected subcritical dynamics only during propofol anesthesia 370 
(over-inhibition yielding a reduced spread of perturbations), but supercritical dynamics during 371 
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xenon anesthesia (over-excitation yielding strong but uniform reactions to perturbation). Instead, 372 
we observed a shift towards subcritical dynamics for both anesthetic conditions. Similar results 373 
were observed by Colombo et al. (32), where exposure to both propofol and xenon anesthesia 374 
yielded the same electrophysiological effect, namely an overall slowing of the EEG and steepening 375 
of the spectral slope. Indeed, xenon functions as a N-methyl-D-aspartate (NMDA) antagonist, 376 
reducing NMDA-activated currents by about 60% (55, 56). However, xenon has also been 377 
proposed to yield unconsciousness due to over-excitation (57). The strong but stereotypical 378 
response to perturbation using TMS could result from a possible state of neural bistability induced 379 
by xenon (15, 32), in which the oscillation between strong depolarization and hyperpolarization 380 
could provoke high-amplitude EEG, despite overall subcritical dynamics. It is interesting to note 381 
here that despite larger-amplitude signal fluctuations under propofol and xenon, there were 382 
nevertheless fewer and smaller avalanches observed in these conditions. This highlights the 383 
dissociation between signal power and avalanche dynamics.  384 

In terms of chaos, exposure to propofol or xenon, but not ketamine, yielded an increase in chaoticity 385 
with respect to normal wakefulness. What does this say about the relationship between 386 
consciousness and the edge of chaos? Canonically, a positive largest Lyapunov exponent (LLE) 387 
indicates the presence of chaos, with the edge of chaos situated at LLE = 0.  For the 0-1 chaos 388 
test, the K-median value corresponding to the edge of chaos is less clear, but previous work using 389 
similar methods and a ~4 Hz low-pass situated this value around K-median = 0.85 (7) The present 390 
results, with positive LLE and K-median ≅ 	0.85 would then indicate that the neural dynamics of 391 
waking consciousness operate near the edge of chaos, slightly in the chaotic phase, and that the 392 
unconsciousness induced by xenon and propofol exposure is accompanied by a shift of the 393 
dynamical operating point away from edge-of-chaos criticality and further into the chaotic phase. 394 
Meanwhile, neural dynamics under ketamine exposure remained indistinguishable from waking 395 
dynamics, remaining close to the edge of chaos. For a discussion of the significance of finding 396 
waking neurotypical dynamics slightly away from the critical point, see O’Byrne & Jerbi (2). 397 

In addition to metrics that were derived from criticality theory, our study also examined ‘criticality-398 
related’ metrics; in other words, metrics that are: (i) commonly used in electrophysiology and; (ii) 399 
expected to bear a strong relation with the distance from criticality. These predominantly showed 400 
strong correlations with the theoretically derived metrics and demonstrated the expected 401 
relationships with consciousness: LZC and fractal dimension each decreased with loss of 402 
consciousness. However, MSE unexpectedly increased with unconsciousness; furthermore, it was 403 
less strongly correlated with the theoretically derived metrics.  The relationship between multiscale 404 
entropy and criticality is still unclear, with some recent work indicating that such measures of 405 
randomness continue to increase past the critical point and into the supercritical or chaotic phase 406 
(58). Indeed, MSE in our data was strongly correlated with chaoticity.  407 

We were not able to replicate previous findings of reduced alpha-band PCF during anesthetic-408 
induced unconsciousness (6, 59). In addition, the PCF did not correlate with participants’ level of 409 
consciousness, as measured by the PCI. However, since we were particularly interested in 410 
computationally simple measures for clinical applicability, the PCF in this study was estimated on 411 
sensor-level and not source-localized EEG, in contrast to previous studies (6, 59). In addition, 412 
synchrony-based measures of criticality rely on the presence of narrowband oscillations, which can 413 
pose methodological or conceptual challenges given the strong spectral changes usually observed 414 
during pharmacologically-induced unconsciousness (32) or the total absence of oscillatory peaks 415 
in some forms of pathological unconsciousness (60, 61). 416 

The results of the present study need to be considered in the light of some limitations. First, this 417 
study was conducted on a dataset of only 15 healthy adults. It should be the subject of future 418 
research to replicate these results on a larger cohort and across a wider variety of pharmacological, 419 
pathological and physiological states of unconsciousness. 420 
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Second, this study explored a range of measures from the categories of avalanche criticality, edge 421 
of chaos and criticality-related measures; however, this battery of measures is by no means 422 
exhaustive and was selected based on translatability to scalp-level human EEG. This study does 423 
not aim to promote a specific set of measures, but rather to motivate further exploration of the 424 
framework of criticality as a requirement for human consciousness. 425 

Third, in our data, the distribution of avalanche sizes followed a truncated power law (i.e., a power 426 
law with an exponential tail at large scales) in 25 out of 30 recordings. The fact that most data 427 
exhibited truncated power laws - instead of fully scale-free power law behavior - can be attributed 428 
to the finite size of the system (so-called finite-size effects) and to the relatively small amount of 429 
data, which limits the possibility of observing large avalanches, yielding an exponential drop-off at 430 
larger scales. The result that lognormal distributions yielded better fits in 5 subjects can be 431 
attributed to more extreme cases of the same causes (37). 432 
 433 
Fourth, the distance to edge of chaos is difficult to quantify with certainty in our data. As noted 434 
above, the 0-1 chaos test used in this study does not directly provide an estimate of this distance. 435 
Likewise, while the width of the covariance matrix can theoretically be used to precisely measure 436 
the distance to criticality in multi-unit recordings (41), it is less clear how to do so in coarser-grained 437 
recordings like EEG. The LLE as measured here using Rosenstein’s method (44) is our most 438 
straightforward indicator of the distance to criticality, with LLE = 0 indexing the edge of chaos, but 439 
further validation of this measure in brain recordings will be needed.  440 
 441 
Fifth, previous studies have shown a direct link between the distance to criticality of a network’s 442 
spontaneous activity and the complexity of the network’s reaction to perturbations (23, 24). 443 
However, Shew et al. (23, 24) measured the response to perturbations immediately following the 444 
measurement of resting-state dynamics. In contrast, the PCI requires repeated stimulation over a 445 
period of several minutes and subsequent averaging of recorded effects. The time delay between 446 
the recorded resting-state EEG and the end of the TMS protocol required to obtain the PCI might 447 
be a source of variability, especially for patients with disorders of consciousness, where levels of 448 
consciousness and wakefulness quickly fluctuate over time.  449 

Lastly, the present study only draws a relation between resting-state network criticality and PCI for 450 
the assessment of pharmacologically induced unconsciousness, which does not allow 451 
generalization to pathological loss of consciousness. Patients with disorders of consciousness 452 
were previously found to exhibit cortical dynamics far from the edge of chaos, with dynamics 453 
approaching the edge of chaos upon recovery (7). However, Liu et al. (62) highlighted a stark 454 
difference in scale-free properties of functional network interactions between patients in a minimally 455 
conscious state and anesthetized healthy adults. It is therefore too early to conclude whether 456 
criticality can be used to reliably assess consciousness in clinical populations with damaged brain 457 
network integrity.  458 

In summary, this study demonstrates that propofol- and xenon-induced unconsciousness is 459 
accompanied by a distancing from criticality, as measured by avalanche criticality, chaoticity and 460 
criticality-related measures. In contrast, ketamine anesthesia did not significantly alter the distance 461 
from criticality, remaining indistinguishable from wakefulness in dynamical space. Furthermore, 462 
using the dynamical properties of resting-state EEG only, we were able to predict the PCI with a 463 
mean error below 7%, without the use of a TMS machine. Criticality can be seen as a unifying 464 
framework which binds concepts of complexity, integrated information and sensitivity to 465 
perturbation into a coherent narrative. This study supports the hypothesis that critical brain 466 
dynamics are implicated in the emergence of consciousness and may provide new directions for 467 
the clinical assessment of consciousness.  468 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.26.564247doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564247
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

20 

 

 469 

5 Materials and methods 470 

 
Figure 7: Summary of methods. We analyzed measures from two different types of criticality, 
avalanche criticality, edge of chaos, and a group of criticality-related measures. All measures 
were calculated on resting state EEG and combined to predict participants’ perturbational 
complexity index (PCI), as measured by EEG with transcranial magnetic stimulation (TMS).  

 

 471 

5.1 Participants and anesthetic protocol 472 

We analyzed 15 healthy subjects (5 males, 18–28 years old) from an existing dataset, previously 473 
published by Sarasso et al. (15). Each of the 15 subjects provided written informed consent and 474 
was randomly assigned to a group whereupon they were exposed to general anesthesia either with 475 
propofol (n=5), xenon (n=5) or ketamine (n=5), in absence of any surgical procedure. The study 476 
was approved by the ethical committee of the University of Liège (Liège, Belgium). EEG data were 477 
recorded using a TMS-compatible 60-channel EEG amplifier (Nexstim Plc., Finland). Before the 478 
start of the anesthetic protocol, 10 min of resting-state EEG were recorded, followed by a 6 to 8 479 
minute-long protocol of TMS-EEG (15). Whereas the stimulation of different cortical targets can 480 
yield different values of PCI (18), the present study only considers the maximum among these 481 
values (PCImax), which is the value typically used to evaluate the presence of consciousness. During 482 
the TMS-EEG protocol, up to 250 stimuli were conducted over a single stimulation site (Brodmann 483 
Area 6 or 7) (15). Each of the three anesthetic procedures (propofol, xenon, ketamine) aimed at 484 
reaching a common behavioral state of unresponsiveness, i.e., a Ramsey Scale score of 6, 485 
following systematic repeated assessments, corresponding to a ‘surgical level’ of anesthesia. 486 
Propofol was administered through a target-controlled infusion pump (Alaris TIVA; CareFusion), 487 
using a target-effect concentration of 3 μg/ml. Xenon was administered by inhalation (62.5 ± 2.5 % 488 
in oxygen). Ketamine was administered through a 2 mg/kg intravenous infusion (see 15 for full 489 
details). 490 
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 After the target concentration was reached, continuous EEG was acquired for a period of 3 to 5 491 
minutes before the TMS-EEG protocol. Upon awakening from behavioral unresponsiveness, 492 
retrospective reports were collected from each participant as a proxy for presence or absence of 493 
consciousness (see 15 for full details).   494 

5.2 Electroencephalography data 495 

The 60-channel resting-state EEG data were preprocessed for a previously published study (32). 496 
In brief, the signal was filtered between 0.5 and 50 Hz, bad channels were rejected by a trained 497 
experimenter, and rejected channels were interpolated by spherical splines. Data segments with 498 
excessive levels of noise were manually rejected. Independent component analysis was performed 499 
to reduce muscle and eye movement artifacts. A minimum of 1.5 minutes and a maximum of 5 500 
minutes of clean resting-state EEG data were selected for analysis (265 s ± 64s).  501 

5.3 Avalanche criticality analysis 502 

 503 

Many dynamical systems away from equilibrium exhibit a typical behavior of so-called “avalanches” 504 
– chains or cascades of activity that propagate across the network (space) and across time. At 505 
criticality, these avalanches become generically scale-invariant; that is, the probability distributions 506 
of various avalanche properties follow a power law. In the brain, ‘neuronal avalanches’ are 507 
measured by a thresholding and binning of the electrophysiological time series, a method first 508 
developed by Beggs and Plenz (28). This method depends on two hyperparameters: the signal 509 
binarization threshold (or event detection threshold) and the time bin. 510 

The binarization threshold was determined using a data-driven method (33, 34), whereby the EEG 511 
signal was first z-transformed channelwise (by subtracting each value by the signal mean and 512 
dividing by the SD) and plotted in a probability distribution ranging from –10 to 10 SD. These 513 
probability distributions were then averaged across all participants within a same condition (Fig. 514 
2B). A Gaussian was fit to each of these distributions, and the binarization threshold was taken as 515 
the point of divergence of the data distribution from the Gaussian, with the rationale that a 516 
divergence from the Gaussian reveals signal that is unlikely to arise from mere stochastic 517 
fluctuation.  518 

The signal was binarized by identifying signal excursions above (below) the positive (negative) 519 
bthreshold, and for each excursion, the maximum (minimum) value of the excursion was set to one, 520 
and all other values set to zero. Avalanches were then identified by scanning forward in time 521 
through the multichannel binarized data and finding a first neural event (a one among the zeros), 522 
then looking for additional events (on any channel) occurring within a delay less than or equal to 523 
the time bin. If an event is found, it is added to the avalanche and the process is iterated again. If 524 
no events are found within the time bin, the avalanche ends, and the process is begun again at the 525 
next occurrence of an event to find the next avalanche. These methods are standard practice for 526 
the detection of neuronal avalanches (28, 33). Fitting and maximum likelihood estimation for power 527 
laws and other functional forms was carried out using the powerlaw Python package (37). Other 528 
avalanche criticality analyses were carried out using the edgeofpy Python package, available at 529 
https://github.com/jnobyrne/edgeofpy. 530 

 531 

5.3.1 Deviation from criticality coefficient 532 
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Neuronal avalanches are described mainly by their size S (in EEG, the number of contributing 533 
electrodes), the avalanche duration T, and the average S for every T. The exponents of the power 534 
laws of these distributions are known as critical exponents and are referred to by 𝜏	, 𝛼	 and 1/𝜎𝜈𝑧	, 535 
respectively (28, 29)  536 

𝑃(𝑆) 	∝ 𝑆!" 537 

𝑃(𝑇) 	∝ 𝑇!# 538 

〈𝑆〉(𝑇) 	∝ 𝑇$/&'( 539 

Certain predictions exist for the values of these exponents in certain classes of systems (29, 35); 540 
however, it is still unclear what these values should be in the brain (63). Still, whatever the values, 541 
it is expected that the exponents of systems at criticality (for a broad range of universality 542 
classes) should obey the following scaling relation (29, 35): 543 

 #!$
"!$

=	 $
&'(

 544 

 545 

The degree to which the above relation is followed by the neuronal avalanche data is a good 546 
indicator of the brain’s proximity to avalanche criticality. We therefore define the deviation from 547 
criticality coefficient (DCC) as (38): 548 

𝐷𝐶𝐶 =	
𝛼 − 1
𝜏 − 1 −	

1
𝜎𝑣𝑧 549 

 550 

5.3.2 Branching parameter 551 

The branching parameter m (also called branching ratio) is a measure of activity propagation, 552 
describing the average number of events resulting as descendants from one single event. Critical 553 
systems are characterized by a branching parameter of m = 1 (i.e., one event is followed on 554 
average by exactly one event), enabling activity to be stably propagated through the system. 555 
Subcritical systems exhibit values m < 1 (i.e., one event is on average followed by less than one 556 
event), resulting in a typically fast vanishing of activity. In contrast, supercritical systems are 557 
characterized by m > 1 (i.e., one event is on average followed by more than one event), resulting 558 
in a fast amplification of activity. The branching parameter was defined as the number of events in 559 
time bin t divided by the number of events in the preceding time bin t-1, averaged over all time bins 560 
t (28). As the branching ratio is highly sensitive to the chosen length of the time bin, all results were 561 
replicated using a range of time bins from 1 ms to 12 ms.  562 

5.3.3 Avalanche repertoire size and similarity 563 

As neuronal avalanches spread throughout the cortex, they exhibit a variety of spatial patterns (i.e. 564 
the combination of electrodes activated during a given avalanche). The size of the avalanche 565 
repertoire was defined as the number of unique avalanche patterns (40) and was normalized by 566 
the length of the signal. Whereas large values indicate a wider range of different activation patterns, 567 
small values indicate that activity is driven by a smaller number of repeating patterns. Avalanche 568 
repertoire diversity was estimated using the median normalized Hamming distance between all 569 
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identified unique patterns (40). Low repertoire diversity values indicate high similarity between 570 
existing patterns, and large values indicate highly dissimilar patterns.  571 

5.3.4 Fano factor 572 

The Fano factor (FF) is a measure of the variability of a signal, and is expected to peak for critical 573 
processes (65, 66) It is defined as: 574 

	𝐹𝐹 = 	 &!
"

)!
, 575 

where 𝜎*+ and 𝜇*	are the variance and mean of the signal over time t, respectively.  576 

5.4 Edge of chaos analysis 577 

5.4.1 Modified 0-1 chaos test 578 

Signal chaoticity (K) was estimated using the modified 0-1 chaos test (43, 67). The signal was 579 
epoched on non-overlapping 10-s windows. K was estimated using a Python translation of the code 580 
provided by Toker et al. (7) (available in edgeofpy). It was calculated on every channel and non-581 
overlapping 10 s epoch individually and averaged over time. Chaoticity of the whole brain network 582 
was defined as the median K over all electrodes. The use of K-median for cortical dynamics has 583 
only been validated on slow cortical dynamics (7). Therefore, the signal was low-pass filtered at a 584 
range from 1 to 12 Hz prior to the estimation of chaoticity. In a second approach, we used the 585 
FOOOF algorithm (68) to identify oscillatory peaks between 1 and 6 Hz for every channel and 586 
epoch individually. A low-pass filter set to the maximum frequency of the oscillatory peak was 587 
applied to the corresponding channel segment. Channels without an oscillatory peak were excluded 588 
from the FOOOF-based chaoticity analysis. These results are reported in Supplementary Material 589 
2.  590 

5.4.2 Largest Lyapunov exponent 591 

The Lyapunov exponent (λ) is a measure of sensitivity to initial conditions and estimates how much 592 
the trajectories of two initially neighbouring points converge or diverge over time. λ was calculated 593 
using the Neurokit2 implementation (69) of the Rosenstein method (44). Whereas values of λ < 0 594 
indicate stable dynamics (i.e. trajectories converge over time), values of λ > 0 indicate chaotic 595 
dynamics (i.e. initially close trajectories diverge over time). The estimation of λ requires 596 
reconstruction of the signal state space, which was created using delay-embedding (delay=1, 597 
dimension=2). Closest neighbours were detected based on Euclidean distance. A least-square fit 598 
was then used to estimate the slope (i.e. λ) of the distance line. λ was calculated on every channel 599 
and non-overlapping 10-s epoch individually and averaged subsequently over time.  600 

5.4.3 Width of covariance matrix 601 

In neural networks, the onset of chaos occurs when the spectral radius, i.e. the largest eigenvalue 602 
of the effective connectivity matrix, λECM, is larger than one, indicating the presence of an unstable 603 
(chaotic) eigenmode. In general, the brain’s effective connectivity matrix is difficult to estimate from 604 
brain recordings, especially under subsampling. However, according to analytical work by Dahmen 605 
et al. (41), the integrated time-lagged covariance matrix estimated from subsampled recordings 606 
can provide unbiased information about the largest eigenvalue of the underlying effective 607 
connectivity matrix λECM. Specifically, the normalized width of the distribution of covariances Δ is 608 
positively and monotonically related to λECM, and thus to the degree of instability or chaos in the 609 
network dynamics. Here, we first calculated the integrated time-lagged covariance matrix (also 610 
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known as noise covariance), then estimated Δ as the standard deviation of the off-diagonal 611 
elements of the covariance matrix divided by the mean of the diagonal elements. For details on 612 
these analyses, see Dahmen et al. (41)  and Morales et al. (70). This analysis was carried out using 613 
the edgeofpy Python package. 614 

5.5 Criticality-related measures 615 

5.5.1 Detrended fluctuation analysis 616 

The Hurst exponent was calculated using the Neurokit2 implementation (69) of DFA. Due to 617 
variable available signal lengths, we used a maximum of 200s of data for the DFA analysis. DFA 618 
was calculated on each channel individually (using all available data per channel) and on a range 619 
of scales from 1 to 20 s (as recommended for this method, the upper limit of the range being one 620 
tenth of the signal length). DFA was performed on the amplitude envelope of the delta, theta, alpha, 621 
beta and gamma bands individually, as described by (71). The amplitude envelope was extracted 622 
using the absolute value of the signal’s Hilbert transform. Hurst exponents were calculated on every 623 
epoch and channel individually and averaged over time. 624 

5.5.2 Spectral slope 625 

The spectral slope, or aperiodic slope, describes the decay of the power spectral density (PSD) 626 
(i.e., the exponential decay of power over frequency) (72). The PSD was estimated using the Welch 627 
method for every 10-s epoch and channel individually. The spectral slope was estimated epoch-628 
wise using the FOOOF package over a frequency range of 1 to 40 Hz (68) and averaged 629 
subsequently.  630 

5.5.3 Complexity 631 

Univariate Lempel-Ziv complexity (LZC) was estimated using Neurokit2 (69). LZC was calculated 632 
on every channel and non-overlapping epoch of 10s independently and averaged subsequently. 633 
The signal was binarized using the mean of each channel and epoch individually. LZC was 634 
normalized using the length of the sequence (73). 635 

5.5.4 Multiscale entropy 636 

Multiscale entropy was estimated using Neurokit2 (69). Multiscale entropy calculates sample 637 
entropy on several timescales using a coarse-graining approach (74, 75). The optimal embedding 638 
dimension for the entropy estimation was calculated using average false nearest-neighbors method 639 
implemented in Neurokit2 (69). Multiscale entropy was defined as the sum of sample entropy 640 
values over all scales (69).  641 

5.5.5 Fractal dimension 642 

Fractal dimension was estimated using the Neurokit2 implementation (69) of Katz’s fractal 643 
dimension. While other methods are available for the estimation of fractal dimension, this algorithm 644 
has been shown to be more robust against noise (75). The Katz algorithm for fractal dimension 645 
estimates the sum of Euclidean distances between all successive signal points and identifies the 646 
maximum distance between any starting point and any other point in the signal (69). 647 

5.5.6 Pair correlation function 648 

The pair correlation function (PCF) is a measure of the variance of phase-coupling in a system of 649 
oscillators, with higher values indicating a higher susceptibility and closeness to critical dynamics 650 
(46). PCF was estimated using a custom Python function (available in edgeofpy). Prior to 651 
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calculation, the signal was downsampled to 250 Hz and bandpass-filtered in the alpha frequency 652 
range (8-13 Hz). The PCF was estimated on every non-overlapping 10-s epoch individually and 653 
subsequently averaged over time.  654 

5.6 Statistical analysis 655 

The difference between metrics derived during wakefulness and metrics derived during xenon, 656 
propofol or ketamine anesthesia was assessed using a repeated-measures t-test for each group 657 
individually. P-values were corrected for multiple comparisons using the Holm correction. For 658 
statistical tests on topographically distributed channels and the visualization of significantly 659 
changing brain regions, p-values were corrected using permutation cluster tests. Correlation to the 660 
PCI was assessed using Pearson correlation. For the prediction of the PCI, a multivariate ridge 661 
regression (alpha = 1) was trained on 14 features (i.e., DCC, repertoire diversity, repertoire size, 662 
branching ratio, Fano factor, LLE, width of the covariance matrix, chaoticity estimate at 4 Hz low-663 
pass filter, alpha-band PCF, DFA, LZC, fractal dimension, spectral slope and multiscale entropy) 664 
to predict the PCImax value for each patient and condition. To test the model’s predictability, we 665 
implemented a leave-one-subject-out cross validation (i.e. 15 folds, one for each subject). The 666 
model was trained 15 times on 14 subjects and tested on both conditions of the corresponding 667 
hold-out subject. The mean error was defined as the average absolute difference between the 668 
predicted and the real PCImax values over all conditions and subjects.  669 
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