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Chemoresistance of glioblastoma cancer stem
cells - much more complex than expected
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Abstract

Glioblastomas (GBM) are a paradigm for the investigation of cancer stem cells (CSC) in solid malignancies. The
susceptibility of GBM CSC to standard chemotherapeutic drugs is controversial as the existing literature presents
conflicting experimental data. Here, we summarize the experimental evidence on the resistance of GBM CSC to
alkylating chemotherapeutic agents, with a special focus on temozolomide (TMZ). The data suggests that CSC are
neither resistant nor susceptible to chemotherapy per se. Detoxifying proteins such as O6-methylguanine-DNA-
methyltransferase (MGMT) confer a strong intrinsic resistance to CSC in all studies. Extrinsic factors may also
contribute to the resistance of CSC to TMZ. These may include TMZ concentrations in the brain parenchyma, TMZ
dosing schemes, hypoxic microenvironments, niche factors, and the re-acquisition of stem cell properties by non-
stem cells. Thus, the interaction of CSC and chemotherapy is more complex than may be expected and it is
necessary to consider these factors in order to overcome chemoresistance in the patient.
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Introduction
The role of chemotherapy in the treatment of glioblas-
toma (GBM) has undergone considerable changes in the
last two decades. While alkylating substances such as
nimustine (ACNU), carmustine (BCNU), and lomustine
(CCNU) have been used since the late 1970s [1,2], the
introduction of temozolomide (TMZ) as standard treat-
ment paved the way for a broader use of chemotherapy
in the treatment of GBM [3,4]. TMZ, in addition to
radiotherapy and surgical resection, improved both the
overall survival and the progression-free survival in
patients with newly diagnosed GBM [3]. Additionally, its
low toxicity has led to TMZ being the first chemothera-
peutic agent to be suitable for long-term application
over several years, although debate continues on this
issue [5,6]. Despite these efforts, the prognosis of
patients suffering from GBM remains poor, with a med-
ian survival of only 14.6 months [3] and with few
patients surviving longer than 5 years [7].
Cancer stem cells (CSC) are postulated mediators of

chemoresistance. The CSC hypothesis proposes that
tumors are driven by subpopulations of tumor cells with

stem cell-like properties, referred to as CSC [8]. It
further postulates that CSC later differentiate into
rapidly proliferating progenitor-like and more differen-
tiated tumor cells that define the histological features of
the tumor entity [8]. An important prediction of the
CSC hypothesis is that CSC are more resistant towards
radio- and chemotherapy than are rapidly proliferating
progenitor cells and differentiated tumor cells. CSC sur-
vive intensive oncological therapies and then give rise to
tumor recurrences [8].
GBM are a paradigm for the investigation of CSC in

solid malignancies. The resistance of GBM CSC towards
radiotherapy and chemotherapy has been extensively
studied in the last 5 years. Here, we summarize the cur-
rent knowledge on the resistance of GBM CSC to che-
motherapy, with a special focus on TMZ as the current
standard of care.

Introduction - cancer stem cells
For several types of brain tumors, including a subgroup
of primary GBM, CSC were found to express CD133.
CD133+, but not CD133-, tumor cells were able to
reconstitute the initial tumor in vivo when injected into
immune-deficient nude mice [9,10]. However, recent
reports indicate that this initially proposed model may
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represent an oversimplification and stem cell-specificity
of the epitope detected by the antibody AC133 (i.e. gly-
cosylated prominin, CD133 [11]) has been questioned
[12]. GBM cells may acquire CD133 after xenotranspla-
nation [13], conversely CD133+ and CD133- cells within
CSC lines may have similar tumorigenic potential
[14,15]. In addition, CD133 does not appear to be essen-
tial for stem cell-like properties, as subgroups of GBM
driven by CD133- CSC have recently been identified
[16-18]. Thus, stem cell-specific markers other than
CD133 were sought for. In recent years new markers (e.
g. CD15/SSEA-1, integrin a6) have been described, but
there is no consensus on the optimal markers for CSC
in GBM [18-21]. The CSC hypothesis states that tumor
relapses are driven by CSC having escaped multimodal
therapy. Possible explanations for treatment failure
include insufficient drug delivery or the fact that the
treatment targets only more differentiated tumor cells
(the tumor bulk), while sparing the small subpopulation
of CSC (e.g. via CSC specific mechanisms to escape che-
motherapy-induced cell death) [8,22,23]. The CSC
hypothesis further predicts that only therapies that effi-
ciently eliminate the CSC fraction of a tumor are able to
induce long-term responses and thereby halt tumor
progression.
However, stem cell-specific therapies, although pre-

venting further growth of the tumor, will not result in
an impressive shrinkage of the lesion in vivo but in a
persisting period of stable disease that may be followed
by a late reduction of tumor volume [8]. Because CSC
constitute only a rare subpopulation within a tumor, a
therapeutic agent selectively depleting CSC will not sub-
stantially reduce the overall viability of tumor cells, but
may efficiently inhibit their proliferation. In a clinical
context, the CSC hypothesis challenges the classical
oncological response criteria and questions the evalua-
tion of therapeutic approaches by their effects on the
tumor bulk [24].
In vitro, these implications raise questions about viabi-

lity assays used to determine the survival of all tumor
cells (e.g. metabolic assays like 3-(4,5-dimethylthiazole-
2-yl)-2,5-diphenyltetrazoliumbromide (MTT) or water
soluble tetrazolium (WST), apoptosis/necrosis assays
like terminal deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL) or propidium iodide). Such assays
may fail to detect the stem cell-specific effects of a drug.
Sequential in vivo transplantation experiments are the
gold-standard to detect the small population of CSC
within the whole of tumor cells [25]. Still, this experi-
mental approach is only feasible to answer specific
experimental questions but does not allow screening
experiments. Several additional techniques that may
help to better investigate the response of CSC to che-
motherapy are currently evaluated (e.g. immediate

testing of sorted tumor cells, treatment of tumor bearing
mice, monitoring of DNA in CSC, mixed culture of CSC
and cells without stem cell properties). At the moment,
the combination of experiments investigating clonogeni-
city, stem cell marker expression, and differentiation of
tumor cells may constitute a feasible set of screening
experiments for stem cell toxicity in vitro (summarized
in [12]). Recently described new cell culture methods
that might help to avoid the above mentioned time-con-
suming experimental approaches remain controversial
and require further scientific evaluation [26,27].

Introduction - alkylating agents and DNA repair
To date, two groups of alkylating agents are commonly
used in the clinic: TMZ (8-Carbamoyl-3-methylimidazo
(5, 1-d)-1, 2, 3, 5-tetrazin-4(3H)-one) and nitrosoureas
(BCNU - carmustine, ACNU - nimustine, CCNU -
lomustine; referred to as CNUs). In contrast to CNUs,
TMZ undergoes rapid non-enzymatic conversion at phy-
siologic pH to its reactive compound 5-3-(methyl)-1-
(triazen-1-yl) imidazole-4-carboxamide (MTIC). MTIC
is thought to cause DNA damage mainly by methylating
the O6-position of guanine (primary lesion) which then
mismatches with thymine in double-stranded DNA
(O6G-T) in the first cell cycle after treatment. This mis-
match induces futile cycles of mismatch repair triggered
by recurrent GT-mismatches resulting in either double
strand breaks or a critical recombinogenic secondary
lesion. This secondary lesion is assumed to be an apuri-
nic/athymidinic site formed during faulty mismatch
repair that blocks replication resulting in either DNA
double strand breaks (tertiary lesion), sister chromatid
exchange, or other aberrations [28-32]. Thus, not the
primary lesions caused by TMZ, but the tertiary lesions
formed during faulty mismatch repair, induce cell death
of the affected tumor cells. Other mechanisms of action
have also been described: TMZ can induce prolonged,
p53 and p21WAF1/Cip1 - mediated G2-M arrest beginning
2 days after treatment with a small number of cells
undergoing apoptosis but most undergoing senescence
over a 10-day period. In contrast, TMZ induces tempor-
ary G2-M arrest accompanied by only minor changes in
p53 or p21WAF1/Cip1 expression in p53 deficient cells
[33].
The most frequent sites of DNA base alkylation by

CNUs are the N7-position of guanine and the N3-posi-
tion of adenine [34,35]. In addition, CNUs mediate their
cytotoxic effect by chloroethylation at the O6-position of
guanine which produces an N1-deoxyguanosinyl-N3-
deoxycytidyl crosslink that is poorly repaired and causes
DNA strand break during mitosis. The type of cell
death caused by CNU-induced DNA damage is depen-
dent on the p53 status of the tumour cells. In p53 wild-
type cells CNUs induce apoptotic cell death while they
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trigger necrotic cell death in p53 deficient cells [36].
Thus, CNUs are also active if a functional DNA repair
system is lacking, whereas TMZ requires a well-estab-
lished DNA repair system to be effective. The mechan-
isms of action of TMZ and CNUs suggest that
differences in the DNA repair system of CSC and tumor
cells without stem cell properties are important to
understand any differential sensitivities of CSC to alky-
lating agents, and how these may arise.
In addition, it may help to understand a putative dif-

ferential susceptibility of CSC to CNUs and TMZ. To
present, three studies have investigated the DNA repair
systems in GBM CSC. McCord et al. [37] compared the
radioresistance of CSC lines and classical serum cul-
tured cell lines. CSC lines showed a substantially
impaired DNA repair resulting in a reduced radioresis-
tance of CSC lines. Within a subset of CSC lines, the
CD133+ cells were more resistant to irradiation with 2.5
Gy as compared to CD133- non-stem cells. These data
indicate that the mechanisms mediating CSC radiore-
sponse differ from those in the traditional model. The
report by McCord et al. complements an earlier report
by Bao et al. [22] showing CSC resist radiotherapy due
to a more efficient DNA system than non-stem cells.
After irradiation, CSC activate the DNA damage check-
point more effectively than tumor cells without stem
cell properties due to the activation of Chk1 and Chk2
checkpoint kinases [22]. However, the differential activa-
tion of the DNA repair system in CSC has been ques-
tioned by a recent study [38] and it remains to be
clarified if the more efficient DNA repair system postu-
lated by Bao et al. [22] constitutes a common property
of CSC. Given that TMZ requires an efficient DNA
repair (namely the mismatch repair system) to exert its
cytotoxic actions, a detailed knowledge of the DNA
repair system in CSC as compared to non-CSC will be
crucial to help our understanding how TMZ affects the
survival of CSC. The functional role of the DNA repair
system in CSC and non-CSC may be further compli-
cated by recent data suggesting different molecular sub-
types within GBM [39]. Because the subgroups also
differ with respect to p53 mutations, the intertumoral
heterogeneity will further increase the complexity of
TMZ resistance and susceptibly.

CSC and alkylating agents - results from serum-cultured
GBM cell lines
Although results derived from serum-cultured glioma
cell lines may be biased by multiple new mutations
induced during long-term culture in serum-containing
medium [40,41], several authors have described stem
cell-like cells within these cell lines [42,43]. Therefore,
experimental data collected in the “pre-CSC era” may
provide some clues to the effects of TMZ on CSC and

the mechanisms of action. The induction of tumor cell
death has been considered as the most important contri-
bution of a therapeutic drug to the overall treatment
efficacy. Roos et al. [44] showed that TMZ-induced
receptor-mediated or mitochondrial apoptosis in glioma
cells was depending on their p53 status. Irrespective of
the p53 status, after long-term incubation with TMZ
(for up to 144 h), dose-dependent apoptosis occurred at
late time points starting after 72-96 h. However, even
after continuous exposure to TMZ doses of up to 500
μM, at least 30% viable cells remained. Similar results
were described by Hermisson et al. [45] investigating
the effects of TMZ on a panel of different glioma cell
lines. Even high concentrations of TMZ (up to 1290
μM) resulted in the survival of up to 40% of the cells,
indicating cytostatic rather than cytotoxic actions of
TMZ in these assays. Interestingly, colony-formation
seemed to be much more sensitive to treatment with
TMZ even after short-term incubation for only 24 h.
The EC50 values for the prevention of clonogenic
growth ranged between 7 μM and 511 μM and corre-
lated with the MGMT status of the cell lines. Hirose et
al. [33] treated p53 wild-type cells with 100 μM TMZ
for 3 h. The population of apoptotic cells did not exceed
10% but clonogenicity was dose-dependently decreased
or completely inhibited. The results of these three publi-
cations are representative of multiple reports from
glioma and other brain tumor cell lines, reporting
almost uniformly a much stronger effect of TMZ on
clonogenic growth than on the overall survival of glioma
cell lines in vitro [33,46-48].
CNUs are more toxic to p53 mutant cells as compared

to TMZ. As reported by Roos et al. [36], ACNU-induced
cross-links or double strand breaks are repaired in p53
wild-type cells but accumulate in p53 mutant cells. In
addition, the repair genes xpc and ddb2 were not up-
regulated in p53 mutant cells in response to ACNU indi-
cating a DNA repair defect in the cells causing hypersen-
sitivity to CNUs. On a functional level, colony-formation
was much more sensitive to treatment with CNUs than
cell viability which did not fall below 30%. In addition,
cell death was a late occurring event [36]. Similar findings
were reported by Bobola et al. [47], Ashley et al. [49], and
Iwado et al. [48]. Together, the majority of reports sug-
gest that CNUs preferentially eliminate clonogenic cells
but hardly affect the overall viability. Still, this effect was
less pronounced than with TMZ.
In summary, there is a consensus in the literature that

the clonogenic growth monitored by colony-forming
assays is much more sensitive to treatment with either
TMZ or CNUs in vitro as compared to the overall cell
death in vitro. These findings do not suggest an
increased resistance of clonogenic cells (including CSC)
towards TMZ or other alkylating agents.

Beier et al. Molecular Cancer 2011, 10:128
http://www.molecular-cancer.com/content/10/1/128

Page 3 of 11



However, none of the papers investigated CSC in
detail or used assays specific for CSC. As non-stem cells
may also show clonogenic growth without being able to
proliferate infinitely, the results have to be interpreted
with caution [50]. In addition, clonogenic growth is the
sum of all events occurring after treatment (including a.
o. cell cycle arrest, cell death) and therefore does not
allow definite conclusions on the cause of clonogenic
cell inactivation.

CSC and alkylating agents - results from GBM CSC lines
Several recent studies have focused on the effects of
chemotherapy on CSC. The CSC hypothesis led to the
development of a new cell culture model for GBM.
GBM cell lines derived from freshly resected tumor spe-
cimens and cultured in serum-free medium supplemen-
ted with EGF and bFGF - conditions optimized for the
growth of neural stem cells - mirror the phenotype and
genotype of primary tumors more closely than serum-
cultured cell lines do [40,41]. Thus, experiments with
this new cell culture model may yield more valid results
on the efficacy of therapeutic agents. The relevance of
conventional cell lines (cultured under mainly serum-
based media conditions) as means to investigate CSC is
disputed. Although the results may be biased by multi-
ple new mutations induced during long-term culture in
serum-containing media, these studies are also discussed
here. Table 1 gives an overview of studies discussed and
indicates the possible technical limitations and key find-
ings of each study.
Eramo et al. were the first to investigate the chemore-

sistance of GBM CSC. A marked resistance was
observed of GBM CSC lines to different chemothera-
peutic agents, amongst them TMZ. GBM CSC lines
were treated with 250 μM TMZ for 48 h and minor cell
death was determined as a measure of treatment efficacy
[51]. Using the same culture model, Clement et al.
observed a dose-dependent decrease of proliferation
when CD133+ CSC lines were treated with up to 100
μM TMZ, whereas only a minor increase of cell death
was observed at similar concentrations [52]. The authors
compared the effects of TMZ with the inhibition of the
hedgehoc-GLI1 (shh) signaling pathway and found
synergistic activity of shh signaling and TMZ. Notably,
administration of each of these substances inhibited cell
proliferation, although to a different degree. The effects
of TMZ treatment on the tumorigenicity of GBM CSC
were not investigated. Beier et al. described that TMZ
may selectively deplete clonogenic and tumorigenic cells
in a dose-dependent manner whereas it hardly affected
overall viability. When CD133+ CSC lines derived from
primary astrocytic GBM were treated with up to 500
μM TMZ over different periods of time (2 d and 42 d),
there was a dose-dependent reduction of CD133+ cells

(by 80%), cell proliferation (by up to 100%), as well as
clonogenicity and tumorigenicity (by up to 100%),
whereas cell death did not exceed 6%. Cells with stem
cell-like properties were selectively depleted irrespective
of the CD133 or MGMT status. However, MGMT
expressing CSC lines required up to 100 fold higher
TMZ concentrations. In summary, the authors inter-
preted their results as selective depletion of CSC from
CSC lines by TMZ [53]. Additional confirmatory experi-
ments (e.g. treatment of tumor bearing mice or charac-
terization of tumor material direct after resection) have
not been performed. In addition, the authors only inves-
tigated three different TMZ concentrations.
In contrast to these reports, Liu et al. used CSC lines

that have been established using serum and switched to
serum-free culture conditions before the experiments.
The authors found that sorted CD133+ CSC showed sig-
nificant resistance to chemotherapeutic agents (includ-
ing, amongst others, TMZ). The viability of CD133+

cells was significantly less decreased than the viability of
CD133- tumor cells when treated with up to 2000 μM
TMZ for 48 h. Notably, even this concentration did not
induce cell death in more than 50% of the cells [54].
Ghods et al. investigated chemoresistant and aggressive
CSC-like cells within the serum cultured 9L gliosarcoma
rat cell line. Viability of 9L cells grown in serum-con-
taining medium as a monolayer and 9L cells grown after
serum-deprivation as spheres were compared. The 9L
cells grown as spheres were more chemoresistant than
cells grown as monolayers. Thus, the authors concluded
that CSC were more chemoresistant [55]. Bleau et al.
investigated the side population phenotype cells within
murine glioma CSC lines derived from PDGF-induced
gliomas after TMZ treatment. In line with a report by
Chua et al. [56], the number of side population pheno-
type cells increased, especially in cells lacking PTEN
expression, when CSC lines were treated with up to 100
μM TMZ for up to 2 weeks [57]. This translated into an
increased tumorigenicity of the long-term TMZ treated
cell lines. Unfortunately, neither the MGMT status of
the CSC nor the effects of TMZ on stem cell properties
were determined. However, the different tumorigenicity
of treated and untreated CSC indicated that TMZ
increased the number of CSC. Blough et al. investigated
the sensitivity of 20 GBM-derived CSC lines cultured
under standard conditions [58]. They found that 9 out
of 20 CSC lines were susceptible to TMZ, while 11 were
resistant. The expression of MGMT, but not methyla-
tion of the MGMT promoter, indicated TMZ response
in vitro. A correlation of CD133 expression and resis-
tance towards TMZ was not reported [59]. TMZ sub-
stantially eliminated the proportion of CD133+ stem
cell-like cells in a study by Lamoral-Theys et al. using
oligodendroglioma HS683 cells. HS683 cells were
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cultured using serum, but not using medium conditions
optimized for CSC. The authors found that long-term
treatment of HS683 cells with increasing concentrations
of TMZ (from 0.1 μM to 1000 μM) resulted in a sub-
stantially decreased tumorigenicity of long-term treated
cells, despite a wash-out phase of 8 weeks after TMZ
treatment. Notably, the long-term treatment reduced
the tumorigenicity and CD133 expression much more
effectively than short-term treatment, indicating that the
dosing schema influences the depletion of CSC in vitro.
The MGMT expression remained unchanged in both
groups [60]. Villalva et al. investigated effects of STAT3
inhibition and TMZ using CSC lines. They found that
both, inhibition of STAT3 and TMZ, substantially inhib-
ited the clonogenic growth of CSC lines and both

substances showed a strong synergy [61]. Similar results
were reported by Hsieh et al. who investigated the
effects of IGF-1 and shh signaling in CSC lines [62].
Based on the high toxicity of TMZ to neurosphere-

forming cells within CSC lines, Mihaliak et al. [63]
developed a neurosphere recovery assay that was used
to investigate the resistance of GBM in the patients.
Interestingly and in line with data by Blough et al. [59]
and Beier al. [53], they found that the clinically relevant
concentrations were able to inhibit the growth of neuro-
spheres in a subgroup of CSC lines and reduced their
tumorigenicity. In contrast to the data published by
Beier et al., TMZ completely depleted clonogenic cells
in only 1 out of 5 CSC lines investigated. NOTCH inhi-
bition successfully inhibited the recovery of

Table 1 Summary of studies investigating CSC and TMZ

Author serum free medium
used?

Key findings (on TMZ and CSC) Problems

Eramo et al. (2006) Yes High resistance of neurosphere cultures to different
drugs

No detailed investigation of stem cell
properties.

Liu et al. (2006) Initial culture with
serum

Differential susceptibility of CD133+ as compared to
CD133- cells

No confirmation in vivo, non-
physiological TMZ concentrations

Clement et al. (2007) Yes Reduced clonogenicity by TMZ. Study did not investigate TMZ effects in
detail.

Ghods et al. (2007) No Gliosarcoma cells grown as neurospheres were more
resistant to TMZ than the same cells grown as
monolayer.

Study did not control for different
growth conditions (spheres vs.
monolayer).

Chua et al. (2008) No Increase of SP cell population after TMZ treatment. No in vivo study on tumorigenicity,
serum cultured cell lines (U87).

Beier et al. (2008) Yes Depletion of clonogenic and tumorigenic cells by
TMZ.

Only a few concentrations investigated.

Bleau et al. (2009) No (serum-free
medium only for
neurosphere
experiments)

Increased tumorigenicity of glioma cell derived from
murine glioma model after long term TMZ treatment
(14d). First study that proved that TMZ may increase
the tumorigenicity of gliomas.

Murine cells, no information on MGMT
methylation status.

Blough et al. (2010) Yes Susceptiblity of CSC lines dependent on MGMT
expression and promoter status.

No detailed assessement of stem cell
properties.

Larmoral-Theys et al. (2010) No Decreased tumorigenicity of an oligodendroglial cell
line after long-term TMZ treatment.

Serum cultured cell lines; no detailed
assessment of stem cell properties.

Glas et al. (2010) Yes Differential susceptibility of peripheral and central
CSC lines to TMZ. No constant difference between
central and peripheral samples.

No systematic assessment of stem cell
properties and MGMT status. Conflicting
data to Pistolatto et al.

Pistolatto et al. (2010) Yes Higher resistance of central, hypoxic CD133 CSC as
compared to cells derived from the periphery due to
increased MGMT expression.

No validation in a larger set of samples.
Conflicting data to Glas et al.

Mihaliak et al. (2010) Yes Initial reduction of neurosphere-like growth after
TMZ challenge; recovery in 4/5 CSC lines.

No assessment of the MGMT status; only
a few concentrations investigated.

Gilbert et al. (2010) Yes Initial reduction of neurosphere-like growth after
TMZ challenge; inhibition of neurosphere recovery
using by NOTCH inhibition.

See comment on Milhaliak et al.

Villalva et al. (2011) Yes Decreased clonogenicity after treatment with TMZ. Study did not investigate TMZ effects in
detail.

Hsieh et al. (2010) Yes Activation of IGF or shh increases the resistance of
CSC to TMZ. Differentiated CSC (with 10% serum)
were more susceptible to acute TMZ toxicity than
CSC lines.

No controls for different growth
conditions (spheres vs. monolayer and
serum vs. stem cell medium) mentioned.
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neurospheres after successful depletion of clonogenic
cells in vitro [64].
Two recent studies investigated the susceptibility of

CSC derived from the core and the periphery of GBM
in vivo: Pistollato et al. [65] focused on the effects of the
intratumoral hypoxic gradient on the distribution, phe-
notype and TMZ resistance of CSC. They established
and compared CSC lines from the core, the intermediate
area, and the periphery of GBM. CSC lines from the
periphery showed a higher susceptibility to TMZ
induced cell death as compared to CSC from the core.
Conversely, cells in the core frequently overexpressed
CD133 and MGMT. In summary, the authors postulated
that the hypoxic gradient drives the distribution of stem
cells. A complementary report by Glas et al. [66] con-
firmed the differential responses of CSC lines derived
from the core and the periphery in a subgroup of GBM,
however in most of the samples, there was no uniform
difference in the response of the corresponding CSC
lines towards TMZ, CNUs, or radiation (alone or in
combination).
To present, only one paper has thoroughly investi-

gated the effects of CNUs on CSC lines [67]. Based on
an increased expression of the stem cell marker CD133
and a neurosphere-like growth pattern of resistant cells,
the authors concluded that BCNU increased the propor-
tion of CSC in the cell lines investigated.
Due to differences in experimental approaches, these

studies are difficult to compare. Given that serum-cul-
tured cell lines rapidly acquire multiple mutations and
substantially differ from the original tumor, they may
provide conflicting results as compared to studies using
medium conditions favoring the growth of CSC. How-
ever, most recent studies used CSC lines continuously
cultured under serum-free conditions. In summary,
Eramo et al., Bleau et al., and Pistollato et al. reported an
increased resistance of CSC while Beier et al., Bleau et al.,
Mihaliak et al., Gilbert et al., and Clement et al. described
experimental data relating to CSC and TMZ which is
consistent with an increased susceptibility of CSC
towards TMZ. The data presented by Glas et al., do not
allow unambiguous conclusions on the susceptibility of
CSC towards chemotherapy (overview in Table 1).
The data presented in the above-mentioned papers

allows several conclusions and points towards open
questions: (I) All papers uniformly reported that
MGMT protein expression is associated with a high
resistance of CSC to TMZ. However the role of other
factors known to modulate chemoresistance has not
been investigated in detail. (II) Whenever investigated in
detail, neurosphere-forming cells without MGMT
expression were susceptible to TMZ. (III) Different
TMZ schedules and concentrations may result in con-
flicting experimental results. (IV) Environmental factors,

like hypoxia in the core of GBM, may contribute to the
resistance of CSC towards TMZ. (V) Several signaling
pathways, e.g. Shh, IGF-1/PI-3 kinase, NOTCH, or
STAT3 interfere with TMZ resistance. (VI) There is no
consensus on adequate methodologies to investigate
CSC in vitro.

Intrinsic chemoresistance
A set of papers (listed in Table 1) on CSC and TMZ
focused on the factors modulating chemoresistance of
CSC to alkylating agents. In vitro, approximately half of all
GBM cell lines resisted to TMZ concentrations of 50 μM
[45,53,59]. They obviously activated mechanisms of intrin-
sic chemoresistance (Figure 1). To date, MGMT is the
best characterized and the most important modulator of
chemoresistance in GBM [68-71]. There is consensus in
the literature that MGMT expression substantially
increases the resistance of CSC [53,54,59,65]. However,
there is conflicting data regarding overexpression of
MGMT in the stem cell compartment [53,54]. The expres-
sion of MGMT in GBM CSC results in a 10-fold increase
of TMZ-resistance [45,53]. The resistance of MGMT
expressing CSC [59] fits well to the clinical observations
that patients without methylation of the MGMT promoter
rarely survive longer than 2 years [69]. In these tumors, all
cells may have an obvious intrinsic resistance to TMZ.
However, relapsing GBM maintained by CSC without
intrinsic resistance to TMZ are difficult to understand,
assuming an intrinsic susceptibility of CSC.
The role of multi-drug resistance proteins is controver-

sial. Although expressed in GBM cells, it remains
unknown whether TMZ is actually transported by these
proteins. Although TMZ incubation increased the propor-
tion of ABCG1 expressing cells (i.e. side population cells)
[56], TMZ was not a substrate for the ABCG1 transporter
in murine glioma cells [72]. Schaich et al. reported that
MDR1 (ABCB1) mediated TMZ resistance and was an
independent predictor for TMZ responsiveness [73].
TMZ requires an intact mismatch repair system to

cause toxic double stranded breaks. Thus, mutations in
the major crucial component of the mismatch repair
system mutS homolog 6 (MSH6) mediated TMZ resis-
tance especially in recurrent GBM after TMZ-based
radiochemotherapy [74,75]. A well-characterized
mechanism of resistance inhibits cell death induced by
double stranded breaks. Signalling cascades involved
include mutations of p53 and Poly(ADP-ribose)polymer-
ase (PARP) signalling and mutations modulating the
apoptotic cascade that executes double stranded break-
induced apoptosis [44,76]. Additional but less well-char-
acterized proteins contributing to chemoresistance
include protein glutathione-S-transferase. To date, none
of these mechanisms of chemoresistance in CSC lines
have been investigated in detail.
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In addition, the fate of CSC after TMZ treatment in
vitro and in vivo remains unknown, although a loss of
stem cell properties in GBM CSC lines and a pro-
nounced sensitivity of colony-formation to treatment
with TMZ has been observed in serum cultured cell
lines [33,45-48]. In susceptible GBM, TMZ can induce
only long lasting cell cycle arrest (G2/M arrest) [33,77],
senescence [78,79], or autophagy [80,81]. However,

despite the mismatch of minor cell death and massively
reduced colony-formation, apoptotic cell death
[33,44,48,82] always occurs.

Extrinsic mechanisms of chemoresistance
Under experimental conditions, TMZ may completely
eliminate CSC, suggesting that a selective depletion in
vitro is feasible [53]. In contrast, the survival of patients

Figure 1 In GBM with intrinsic resistance, both CSC in the tumor bulk and invading CSC give rise to tumor recurrences after
treatment. In GBM with extrinsic resistance, CSC in the tumor bulk were depleted and recurrences were formed by invading CSC that were
protected in the brain parenchyma.
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treated with TMZ did not stabilize [7] suggesting that
residual CSC survived in vivo (Figure 1).
The blood-brain-barrier constitutes a specific hurdle

for drugs in the brain that reduces the activity of che-
motherapy due to decreased concentrations in the brain
parenchyma. In approximately 50% of all glioma cells
lines, clonogenic cells and/or GBM CSC were highly
susceptible to TMZ concentrations of 50 μM in vitro.
Still, TMZ concentrations of 5 μM did not deplete clo-
nogenic cells in vitro irrespective of cell culture model
or MGMT status [45,53,59]. The actual concentrations
achieved in the plasma and the brain parenchyma of the
patients are therefore important to understand if and
where within a GBM TMZ concentrations suffice to
eliminate tumor cells, irrespective of stem cell proper-
ties. The maximum TMZ concentrations in the plasma
of patients are well established and range between 27
μM and 50 μM [83]. In contrast, the maximum TMZ
concentration in the brain is still unknown. PET studies
suggested a concentration of 10-18 μM in the normal
parenchyma, however, this methodology does not differ-
entiate between intravasal and interstitial TMZ [84]. In
CSF, maximal TMZ concentrations ranged from 0.5-10
μM with most patients achieving concentrations around
5 μM (i.e. 1 μg/ml) [85]. These values were confirmed
by a study reporting on interstitial TMZ concentrations
of 3 μM [86]. Although detailed studies are lacking, it
appears plausible that tumour cells within the contrast-
enhancing lesions (i.e. regions of impaired blood-brain
barrier) are exposed to concentrations approximating
plasma concentrations. In contrast, invading tumours
cells are likely to be exposed to concentrations mea-
sured in the healthy brain parenchyma (approximately
3-5 μM). Unfortunately, similar studies for CNUs are
lacking. Knowing the susceptibility of CSC in vitro,
these studies strongly suggest that the incomplete pene-
tration of the blood-brain barrier by TMZ may consti-
tute a major factor for chemoresistance of invading
CSC. In line with this idea, a recent report analyzing the
recurrence patterns of GBM could show that MGMT
non-methylated GBM tend to relapse at the site of pri-
mary occurrence [87] whereas MGMT-methylated GBM
showed a significantly higher proportion of distant
metastases. However, this report remains controversial
[88] and the concept described does not explain why
susceptible GBM also develop recurrences develop from
contrast enhancing lesions under ongoing TMZ therapy.
Extrinsic factors of the microenvironment contribute

to the chemoresistance of haematological and solid
tumors (reviewed in [89]). In these tumors, three differ-
ent mechanisms of environmentally-mediated chemore-
sistance have been described: direct cell-cell
interactions, local secretion of cytokines like IL-6 or
SFD-1, or micro-environmental factors such as hypoxia

[89,90]. Although these mechanisms may substantially
contribute to chemoresistance of GBM there is only
indirect evidence to suggest that these mechanisms may
be relevant for GBM CSC. Villalva et al. showed that
the activation of STAT3 increases the resistance of CSC
to TMZ [61]. Given the expression of IL-6 protein
family members like LIF in GBM [91], it is likely that
they contribute to chemoresistance of GBM CSC.

Loss of cellular hierarchy as new mechanism for
chemoresistance to TMZ
The CSC hypothesis predicted that the selective elimina-
tion of CSC would halt the perpetual growth and
tumorigenicity of tumor cells. However, this hierarchy
was recently called into question [14,50]. It was sug-
gested that the “stemness” of tumor cells may be
induced by niche factors such as hypoxia [65,92-94].
Conversely, these data imply that tumor cells may
acquire CSC properties. Several lines of evidence sup-
port this concept: Wang et al. were the first to show
that CD133-negative tumors may acquire CD133 in a
xenotransplantation model [13]. More recently, Chen et
al. reported that different types of CSC within one cell
line. Within a given cell line, CSC may give rise to other
subtypes suggesting a less stringent cellular hierarchy
[14]. In melanoma, Morrison et al. showed that these
tumors may entirely lack a cellular hierarchy [95]. The
generation of new CSC from differentiated cells may
therefore represent a new mechanism for therapeutic
resistance after selective elimination of CSC [8]. How-
ever, additional experimental data is required to confirm
this concept.

Summary and Outlook
There is no consensus in the literature on the effects of
chemotherapeutic drugs on GBM CSC in vivo or in
vitro. Still, the available experimental data clearly indi-
cate that resistance of GBM and derived CSC against
TMZ is much more complex than expected. The initial
predictions of the CSC hypothesis remain true under
specific experimental conditions but multiple additional
aspects have to be considered to understand why GBM
almost invariably relapse. This review summarizes sev-
eral known aspects of chemoresistance; additional con-
tributors are likely to be discovered. A more
comprehensive view will help to better understand the
multifaceted factors that contribute to the survival or
reoccurrence of CSC causing fatal relapses in the
patient.
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