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1  | INTRODUCTION

Natural ecosystems throughout the world are being subjected to high 
pressure by human activities. The resulting habitat loss and degradation 

represent critical threats to biodiversity (e.g., Jones, Jacobs, Kunz, 
Willig, & Racey, 2009) and potentially affect ecosystem functions 
and services (Boyles, Cryan, McCracken, & Kunz, 2011). One group 
that provides essential ecosystem services considered of economic 
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Abstract
Structural complexity is known to determine habitat quality for insectivorous bats, but 
how bats respond to habitat complexity in highly modified areas such as urban green 
spaces has been little explored. Furthermore, it is uncertain whether a recently devel-
oped measure of structural complexity is as effective as field- based surveys when 
applied to urban environments. We assessed whether image- derived structural com-
plexity (MIG) was as/more effective than field- based descriptors in this environment 
and evaluated the response of insectivorous bats to structural complexity in urban 
green spaces. Bat activity and species richness were assessed with ultrasonic devices 
at 180 locations within green spaces in Vienna, Austria. Vegetation complexity was 
assessed using 17 field- based descriptors and by calculating the mean information 
gain (MIG) using digital images. Total bat activity and species richness decreased with 
increasing structural complexity of canopy cover, suggesting maneuverability and 
echolocation (sensorial) challenges for bat species using the canopy for flight and for-
aging. The negative response of functional groups to increased complexity was 
stronger for open- space foragers than for edge- space foragers. Nyctalus noctula, a 
species foraging in open space, showed a negative response to structural complexity, 
whereas Pipistrellus pygmaeus, an edge- space forager, was positively influenced by the 
number of trees. Our results show that MIG is a useful, time-  and cost- effective tool 
to measure habitat complexity that complemented field- based descriptors. Response 
of insectivorous bats to structural complexity was group-  and species- specific, which 
highlights the need for manifold management strategies (e.g., increasing or reinstating 
the extent of ground vegetation cover) to fulfill different species’ requirements and to 
conserve insectivorous bats in urban green spaces.
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value—such as pollination, seed dispersal, and top- down control of 
insects— are bats, the second largest mammalian order (Kunz, Braun 
de Torrez, Bauer, Lobova, & Fleming, 2011). Bat population declines 
are mainly ascribed to collisions with wind turbines, the fungal disease 
white- nose syndrome, and the reduction, fragmentation, and transfor-
mation of natural habitats (Fenton, 1997; Guest, Jones, & John, 2002; 
Lane, Kingston, & Lee, 2006; O’Shea, Cryan, Hayman, Plowright, & 
Streicker, 2016). Urbanization, as an example of a severe habitat mod-
ification, has strong effects on bats by reducing species richness, alter-
ing species composition, and modifying habitat use (e.g., Avila- Flores 
& Fenton, 2005; Jung & Kalko, 2011; Kurta & Teramino, 1992; Russo 
& Ancillotto, 2015).

In natural environments, habitat quality is related to habitat com-
plexity, which in turn is determined by structural complexity of veg-
etation layers (McElhinny, Gibbons, Brack, & Bauhus, 2005; Tews 
et al., 2004). In forests, rising habitat complexity results in increased 
bat species richness (Milne, Fisher, & Pavey, 2006) and higher activity 
levels (e.g., Frey- Ehrenbold, Bontadina, Arlettaz, & Obrist, 2013; Jung, 
Kaiser, Böhm, Nieschulze, & Kalko, 2012) due to its association with 
available and accessible insect prey (e.g., Grüebler, Morand, & Naef- 
Daenzer, 2008; Jung et al., 2012), roosts, and shelter against wind and 
from predators (Verboom & Spoelstra, 1999). However, some bat spe-
cies (e.g., open- space foragers) may avoid forest habitats with dense 
vegetation when foraging because of morphological and echolocation 
constraints (Berger & Ehrendorfer, 2011; Brigham, Grindal, Firman, 
& Morissette, 1997; Müller et al., 2012). In contrast, structurally rich 
forest habitats are attractive for edge and narrow space foraging bats 
(e.g., Boughey, Lake, Haysom, & Dolman, 2011; Lesiński, Fuszara, & 
Kowalski, 2000).

Although urbanization likely represents a serious compromise 
for many bats (Hale, Fairbrass, Matthews, & Sadler, 2012; Luck, 
Smallbone, Threlfall, & Law, 2013; Russo & Ancillotto, 2015), urban 
green spaces (e.g., public parks, reserves, recreation fields and res-
idential gardens) may benefit bats, for example by supplying abun-
dant nocturnal invertebrates (Avila- Flores & Fenton, 2005) and tree 
hollows (Basham, Law, & Banks, 2011). However, bats’ response 
to vegetation complexity of urban green spaces has rarely been 
characterized (Gehrt & Chelsvig, 2003; Threlfall, Williams, Hahs, & 
Livesley, 2016), despite their importance for ameliorating the im-
pacts of urbanization and supporting other species (Ives et al., 2016; 
Park, Mochar, & Fuentes- Montemayor, 2012). Much of our under-
standing of the role of vegetation complexity in urban environments 
has come from studies on urban birds (e.g., Magle, Hunt, Vernon, & 
Crooks, 2012; Shwartz, Turbe, Julliard, Simon, & Prevot, 2014), but 
it is unclear whether this understanding is equally relevant to other 
taxonomic groups (Beninde, Veith, & Hochkirch, 2015). The three- 
dimensional arrangement of vegetation may present a range of mor-
phological and sensorial challenges for bats. Thus, understanding 
specific habitat requirements and bats’ response to vegetation com-
plexity will aid in identifying areas of high conservation priority, in 
proposing adequate conservation and management strategies, and 
in forecasting local extinction risks in cities (Threlfall, Law, & Banks, 
2012).

Measuring structural complexity from digital images has been re-
cently developed to assess habitat complexity (Proulx & Parrott, 2008, 
2009). Image complexity is described by the mean information gain 
(MIG), which contains spatial and structural information about the rep-
resented objects and is a reasonable estimate of habitat complexity in 
natural environments (Proulx & Parrott, 2008, 2009). Image complex-
ity was successfully used to describe biodiversity patterns of vascular 
plants in temperate forests (Proulx & Parrott, 2008) and fishes in coral 
reefs (Mellin et al., 2012). However, it is uncertain whether this method 
will be useful to assess habitat complexity in urban environments.

The aims of this study were twofold: (1) to assess whether image- 
derived structural complexity (MIG) is as/more effective than field- 
based descriptors as metric to characterize urban green spaces and 
(2) to determine whether structural complexity in urban green spaces 
influences bat activity and species richness. We tested the following 
hypotheses: (1) measuring structural complexity from digital images 
complements standard field- based descriptors. We expected that MIG 
calculated from images would reflect vegetation parameters recorded 
in the field and that its inclusion would improve model fit. (2) Bat activ-
ity and species richness correlate positively with structural complexity 
(MIG) because sites with higher vegetation complexity would provide 
access to resources such as prey and roosts. (3) Functional groups (i.e., 
edge- space foragers and open- space foragers) and representative spe-
cies (i.e., Nyctalus noctula, Pipistrellus pygmaeus) differ in their response 
to structural complexity. Species foraging at edges or inside vegetation 
(edge- space foragers) would show a positive response to structural 
complexity, whereas species hunting in open space would exhibit a 
negative response to structural complexity.

2  | MATERIALS AND METHODS

2.1 | Study area

The study area was the city of Vienna (48°12′N 16°22′E), Austria 
(Figure 1), which has a total area of 41,487 ha and elevation ranging 
between 151 m and 543 m. Being part of the transition zone from the 
alpine to the continental climate region, Vienna offers a great diversity 
of vegetation and habitat types (Berger & Ehrendorfer, 2011). In ad-
dition, the proportion of green spaces such as parks, residential gar-
dens, and recreation fields is high (~50%) compared to other European 
metropolises (Hoffert, Fitzka, Stangl, & Lumasegger, 2008). The pro-
portion of green spaces in Vienna ranges from 2%–15% in the inner 
districts up to 70% in the western part of the city.

2.2 | Selection of sampling points

A land use map (“Realnutzungskartierung” 2009) by the Vienna mu-
nicipal department of urban development and planning (MA18) was 
used as a baseline for selecting the sampling locations. We focused 
on nine classes referring to green spaces, including cemeteries, health 
purpose areas, housing units with gardens, parks, sports areas, tree- 
lined streets, forests, vineyards, and pastures. Only green spaces 
larger than 0.25 ha were included. To provide a gradient of size, these 
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areas were divided into quartiles and separated into four different size 
classes (0–25%, 25–50%, 50–75%, and 75–100%). Five points were 
randomly chosen for each size class, resulting in 20 data points for 
each green space type and a total of 180 sampling points (Figure 1). 
For those green spaces that also contained gray infrastructure (i.e., 
health purpose areas, housing units with gardens, and sports areas), 
sampling points were placed in vegetated areas representing the 
green space (Figure 1). Sampling points were at least 200 m apart (av-
erage: 9.6 km).

2.3 | Structural complexity of digital images

To record the vegetation structure of each sampling point, we took 
photographs with a commercial digital camera (Nikon Coolpix S220). 
The images were taken simultaneously with descriptors of vegetation 
structure measured in the field to insure equal conditions, and always 
between 09:30 and 15:30 to insure similar illumination. The camera 
was installed at the center of the sampling point with a tripod placed 
at a fixed height of 1 m above the ground. Images were taken using 
automatic mode (focal length 35 mm) and the camera pointing in the 

four cardinal directions in turn, with the (imaginary) horizon parting 
the scene in half horizontally. Additionally, one image was taken fac-
ing upwards to account for canopy cover.

We converted the RGB color space of all images to hue, saturation, 
value (HSV) to separate the pure color component (hue) from chroma 
(saturation) and intensity (value) as suggested by Proulx and Parrott 
(2008). Conversion is necessary given the considerable overlap of 
transmittances among the three spectral bands (RGB), which is not 
present in the HSV space. Additionally, HSV reproduces more effec-
tively how the human brain represents color, without information loss 
of within-  and among- image variation in the RGB color space (Mellin 
et al., 2012). We used the V- layer of the images for analysis, which 
Proulx and Parrott (2008, 2009) have identified as a robust value for 
quantifying structural complexity in natural scenes.

We used mean information gain (MIG) to quantify structural 
complexity because it is a well- established measure of spatial com-
plexity patterns (e.g., Gell- Mann & Lloyd, 1996; Wackerbauer, Witt, 
Atmanspacher, Kurths, & Scheingraber, 1994). Mean information gain 
(MIG) was calculated based on Shannon′s equation for entropy using 
the amount of spatial heterogeneity in an image (i.e., joint entropy) and 

F I G U R E  1 Location of sampling points in Vienna, Austria. Examples of green spaces are depicted in the aerial photos (a) pasture and 
vineyard, (b) health and sport area, (c) woodland, (d) cemetery and park, (e) housing unit and tree line (Photos courtesy of Google Earth)
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the fraction of aspatial heterogeneity (i.e., marginal entropy) (Proulx & 
Parrott, 2008, 2009). Mean information gain (MIG) for the intensity 
band (V) in the HSV image was computed as:

where p (χi) is the probability of finding a specific spatial configura-
tion χi made of k neighboring pixels in the image (k = 4 representing a 
2 × 2- pixel neighborhood). p (γi) denotes the probability of observing 
a pixel′s intensity value γi independently of its location in the image. 
M is the number of frequency bins of pixel values, and Mk represents 
the maximum number of possible pixel configurations in a four- pixel 
neighborhood. To retain as much image information as possible, we 
chose the highest possible value of M.

Mean information gain (MIG) ranges from zero, for completely 
uniform spatial patterns across pixels (order), which would repre-
sent a single color, to one for completely random patterns (disorder) 
(Proulx & Parrott, 2008, 2009). Thus, images of undifferentiated, 
uniform habitats have low MIG, while images of random or highly 
differentiated habitats have high MIG. Intermediate values of MIG 
are associated with more spatially heterogeneous data, hence, 
higher habitat complexity (Parrott, 2010). Mean information gain 
(MIG) was processed for each of the five images per sampling point. 
We calculated the mean to combine the images per sampling lo-
cation into one index as suggested by Proulx and Parrott (2008) 
and Mellin et al. (2012). MIG of all five images (MIG all views) was 
used as an individual parameter, as was MIG of side views only (MIG 
sides) and MIG of the top view only (MIG top). All digital images 
were processed with R v. 3.2.3 (R Core Team, 2015) using the “im-
agemetrics” package v. 1.0 (Massicotte, 2014).

2.4 | Field- based descriptors of vegetation structure

From June to September 2014, we recorded vegetation variables 
in a 20- m radius plot centered at each sampling point. Vegetation 
variables recorded were as follows: vegetation profile (vertical lay-
ering of vegetation), ground cover (vegetation cover on the ground), 
canopy cover, vegetation height, tree density, and number and di-
ameter at breast height of large trees (DBH > 0.30 m). To determine 
vegetation profile, ground cover, canopy cover, and vegetation 
height, we used the cover- board method (Nudds, 1977) as a base-
line. We positioned a 2- m vertical pole, marked every 0.5 m, at the 
center point and at four points at 5- m interval along the cardinal 
directions and recorded the presence or absence of foliage touch-
ing the following height classes: 0–0.5, 0.5–1, 1–1.5, 1.5–2, 2–3, 
3–5, 5–7, 7–10, 10–15, and >15 m above ground. For height inter-
vals above 2 m, we estimated the height and recorded presence/
absence of foliage. The average of vegetation touches per height 
class was used as a proxy of vegetation clutter for each height. 
Additionally, we combined all vegetation classes to calculate verti-
cal heterogeneity using the Shannon diversity index in which the 
number of vegetation touches of the 17 measurement positions 

using the measuring pole at each height interval is equivalent to 
individuals for this height class (Sekercioglu, 2002). The index was 
calculated with R using the “vegan” package v. 2.3- 0 (Oksanen et al., 
2015). In each of the measurement positions, we estimated the 
proportion of vegetation covering the ground, the percentage of 
canopy cover, and the vegetation height. We calculated tree density 
of trees with DBH > 0.16 m for the whole plot, counted large trees 
(DBH > 0.3 m), and measured their DBH. These variables were se-
lected to characterize vegetation- structural complexity and clutter 
at different vegetation heights and for comparison with the image- 
derived structural complexity measures.

2.5 | Acoustic bat sampling and call analysis

Bat surveys were conducted from the end of April to the end of 
September 2014. We repeated recordings three times at each sam-
pling point, resulting in 540 recording nights. Bat vocalizations were 
digitally recorded with ultrasound devices (Batcorder 1.0 and 2.0, 
ecoObs, Nuremberg, Germany) which were placed on an attachment 
rod of approximately 2- m height and at least 2 m away from any struc-
ture in each direction. The manufacturer’s default settings (quality 20, 
threshold—27 db, posttrigger 600 ms, critical frequency 16 kHz) were 
used, and a fully automatic recording was started 1 hr before sun-
set and ended 1 hr after sunrise. Surveys were only conducted dur-
ing suitable weather conditions (i.e., >10°C, no rain or strong winds). 
Although acoustic sampling may misrepresent bats that use echolo-
cation calls of lower intensity (e.g., Plecotus spec.) or be influenced 
by habitat features (Patriquin, Hogherg, Chruszcz, & Barclay, 2003; 
Schnitzler & Kalko, 2001), we are confident that, by sampling the en-
tire night and using a standardized and replicated sampling scheme 
(Froidevaux, Zellweger, Bollmann, & Obrist, 2014; Skalak, Sherwin, & 
Brigham, 2012), we registered the majority of species and most of the 
activity in the green spaces.

Species identification was performed using automated sys-
tems as they provide a standardized identification and is less 
time- consuming than manual identification especially when many 
recordings are available (Jennings, Parsons, & Pocock, 2008). We 
processed the recordings with the software bcAdmin v. 2.12, batI-
dent v. 1.03, and bcAnalyze v. 1.16 (ecoObs. Nuremberg, Germany). 
bcAdmin discriminates bat calls from the sound file and measures 
their acoustic properties (e.g., call length). batIdent uses the calls’ 
acoustic properties and a classification tree algorithm to identify 
species. bcAnalyze depicts sonograms and allows extended play-
backs of bat calls to manually inspect dubious call sequences (i.e., 
false positive IDs). Given the concerns raise about the reliability of 
various automated identification programs (Russo & Voigt, 2016; 
Rydell, Nyman, Eklöf, Jones, & Russo, 2017), manual validation of 
the output of the automated identification was performed by an ex-
pert (AB), as the degree of experience can bias the validation process 
(Fritsch & Bruckner, 2014). Dubious identifications were critically 
evaluated using call descriptors; geographic, altitudinal, and habitat 
preferences of the suggested species; and the guidelines by Hammer 
and Zahn (2009). The sounds of some species could not be reliably 
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discerned; thus, we combined the following species to so- called 
“acoustic groups”: Pipistrellus kuhlii and Pipistrellus nathusii; Myotis 
mystacinus and Myotis brandtii; Plecotus auritus and Plecotus austria-
cus. For simplicity, actual species and acoustic groups are referred to 
as “species” hereafter. Bat activity was defined as the median length 
of the call sequences for the three surveys and was highly correlated 
with the number of calls (r = .9). Species richness was defined as the 
total number of species recorded during all three surveys.

2.6 | Statistical analysis

We used Pearson′s correlation coefficient (|r| > .5) to assess the rela-
tionship between MIG and field- based descriptors (vegetation clutter 
at different heights, ground cover, canopy cover, vegetation height, 
vertical heterogeneity, tree density, and number and DBH of large 
trees), and between MIG and bat activity and species richness.

Analyses were performed for total bat activity, total species rich-
ness, and the following functional groups according to Schnitzler and 
Kalko (2001) and Denzinger and Schnitzler (2013): edge- space for-
agers (P. pipistrellus, P. pygmaeus, P. kuhlii/P. nathusii, Barbastella bar-
bastellus, Myotis alcathoe, M. brandtii/M. mystacinus) and open- space 
foragers (N. noctula, Eptesicus nilssonii, Hypsugo savii). To examine 
potential differences between individual species, activity of N. noct-
ula (the largest western and central European bat and an open- space 
forager) and P. pygmaeus (a small bat and an edge- space forager) was 
analyzed as representative species.

Exploratory analyses revealed that average night temperature and 
length of the night had no correlation with any of the response vari-
ables (Spearman’s Rho < 0.2 in all cases); hence, these variables were 
not considered further. Because bat activity (but not species richness) 
varied between different green space types, we included green space 
type when modeling bat activity. Bat activity was log- transformed, 
and continuous predictor variables were standardized to have a mean 
of zero and standard deviation of one. Variance inflation factor (VIF) 
was used to identify multicollinearity (VIF > 2) using the “usdm” pack-
age v. 1.1- 15 (Naimi, 2015). As predictor variables, in addition to size 
of green space, we included only MIG parameters, only field- based 
descriptors, and both combined. When MIG was included, we either 
used MIG all views or MIG sides and MIG top separately, as they po-
tentially contain information with different relevance for bats.

We conducted generalized linear mixed models with Gaussian 
error distribution to analyze which variables influenced bat activity 
using the function lmer from the “lme4” package v. 1.1- 12 (Bates, 
Maechler, Bolker, & Walker, 2015). Green space type was included as 
a random factor to account for multiple samples within each green 
space type. We used generalized linear Poisson models to determine 
the best predictors of bat species richness. Model selection was per-
formed using a stepwise procedure and Akaike’s information crite-
rion (AIC; package “MASS” v. 7.3- 45) (Venables & Ripley, 2002). A 
model with the smallest AIC value was considered the best- fitting 
model. Where Poisson GLM revealed overdispersion, correction of 
standard errors using a quasi- Poisson GLM model was conducted 
(function: glm, family: quassipoisson) (Zuur, Ieno, Walker, Saveliev, & 

Smith, 2009). We validated the model by assessing homoscedastic-
ity and independence. All statistical analyses were performed in R v. 
3.2.3 (R Core Team, 2015).

3  | RESULTS

3.1 | Structural complexity derived from digital 
images

Mean information gain (MIG) was correlated with several field- based 
descriptors (Figure S1). Mean information gain (MIG) all views were 
correlated with canopy cover (r = .68), tree density (r = .64), vertical 
heterogeneity (r = .58), vegetation height (r = .64), and number of 
trees (r = .54). MIG sides were correlated with vertical heterogeneity 
(r = .54), whereas MIG top was correlated with canopy cover (r = .62) 
and vegetation height (r = .54).

There was no correlation between MIG all views and bat activity 
(r = −.07) or species richness (r = −.18), nor was there a correlation be-
tween MIG sides and bat activity (r = .12) or species richness (r = .03). 
A slight negative correlation was found between MIG top and both bat 
activity (r = −.33) and species richness (r = −.39, Figure S2).

When only MIG parameters were considered in our generalized 
linear mixed models as potential predictors of bat activity and species 
richness (Table 1, Figure 2), MIG top had a significant negative effect 
on total bat activity, activity of edge- space foragers, open- space forag-
ers and N. noctula, whereas MIG sides had a significant positive effect 
on activity of P. pygmaeus (Figure S3). Similarly, MIG top had a signifi-
cant negative effect on total species richness and species richness of 
edge-  and open- space foragers (Table 1).

3.2 | Influence of MIG and field- based descriptors on 
bat activity

Canopy cover, vegetation height, tree density, and vegetation clut-
ter at 10–15 m were highly collinear with number of trees; as were 
vegetation clutter at 0–0.5, 1–1.5, and 1.5–2 m with vegetation clut-
ter at 0.5–1 m; vegetation clutter at 2–3 m with vegetation clutter 
at 3–5 m; and vegetation clutter at 3–5 and 7–10 m with vegetation 
clutter at 5–7 m. Thus, variables that were included in generalized lin-
ear mixed models were vegetation clutter at 0.5–1, 2–3, 5–7, >15 m, 
ground cover, vertical heterogeneity, number of trees, and DBH. 
When evaluating the influence of only the field descriptors, total bat 
activity decreased significantly with vegetation clutter at 0.5–1 m and 
5–7 m, while it increased with ground cover, vegetation clutter at 
2–3 m, and DBH (Table 2). When MIG was included, MIG top was also 
a significant negative predictor, and the explained variation increased 
slightly (Table 2, Figure 3).

Activity of edge- space foragers was only positively influenced by 
ground cover (Table 2). When MIG parameters were included, MIG 
top had an additional significant negative influence (Figure 4) and the 
explained variation increased slightly (R² only field parameters = .14, 
including MIG parameters = 0.17; Table 2). Besides the positive influ-
ence of ground cover, activity of open- space foragers decreased with 
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F IGURE  2 Regression- fitted lines with 
95% confidence intervals for (a) total bat 
activity, (b) species richness as a function of 
structural complexity parameters derived 
from digital images showing horizontal 
(MIG side views on left panels) or vertical 
view (MIG top view on right side panels). 
Explanatory variables (except the one 
varying on the x- axes) were set to their 
mean values

Estimate SE t- value p Pseudo- R2

Total bat activity

MIG sides 0.014 0.046 0.306 .760 .25

MIG top −0.182 0.045 −4.008 <.001

Activity edge- space foragers

MIG sides 0.049 0.055 0.897 .371 .18

MIG top −0.178 0.054 −3.269 <.001

Activity open- space foragers

MIG sides −0.039 0.057 −0.692 .490 .27

MIG top −0.295 0.056 −5.240 <.001

Activity N. noctula

MIG sides −0.071 0.053 −1.347 .180 .23

MIG top −0.249 0.053 −4.733 <.001

Activity P. pygmaeus

MIG sides 0.251 0.126 1.991 .048 .09

MIG top −0.054 0.125 −0.432 .667

Total species richness

MIG sides 0.015 0.023 0.625 .533 .14

MIG top −0.130 0.023 −5.551 <.001

Species richness edge- space foragers

MIG sides 0.029 0.026 1.109 .269 .03

MIG top −0.063 0.026 −2.374 .019

Species richness open- space foragers

MIG sides −0.014 0.029 −0.473 .637 .17

MIG top −0.209 0.030 −7.023 <.001

TABLE  1 Summary of results of 
generalized linear mixed models including 
green space type as a random factor and 
generalized linear Poisson models for bat 
activity, species richness, edge-  and 
open- space foragers, and representative 
species (Nyctalus noctula and Pipistrellus 
pygmaeus) as a function of only MIG 
parameters . Significant p-values are shown 
in bold
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vegetation clutter at 5–7 m and size of green space when evaluating 
only field variables (Table 2). When MIG was included, MIG top also 
had a negative effect (Figure 4).

Activity of N. noctula was negatively affected by vegetation clut-
ter at 0.5–1 and 5–7 m and positively influenced by ground cover 
(Table 2). Inclusion of MIG top had a significant negative impact 

TABLE  2 Summary of results of generalized linear mixed models including green space type as a random factor and generalized linear 
Poisson models for bat activity and species richness including edge-  and open- space foragers, and representative species (Nyctalus noctula and 
Pipistrellus pygmaeus) as a function of only field- based descriptors and including MIG

Only field- based descriptors Including MIG parameters

Estimate SE t- value p Pseudo- R2 Estimate SE t- value p Pseudo- R2

Total bat activity

Vegetation clutter 
at 0.5–1 m

−0.134 0.047 −2.870 .005 .30 −0.136 0.046 −2.946 .004 .33

Vegetation clutter 
at 2–3 m

0.109 0.049 2.240 .026 0.101 0.048 2.105 .037

Vegetation clutter 
at 5–7 m

−0.186 0.050 −3.752 <.001 −0.130 0.054 −2.433 .016

Ground cover (%) 0.234 0.049 4.829 <.001 0.210 0.049 4.315 <.001

DBH 0.097 0.046 2.108 .037 0.102 0.045 2.242 .026

MIG top −0.122 0.048 −2.531 .012

Activity edge- space foragers

Ground cover (%) 0.159 0.056 2.855 .005 .14 0.144 0.056 2.552 .012 .17

MIG top −0.126 0.053 −2.366 .019

Activity open- space foragers

Vegetation clutter 
at 5–7 m

−0.239 0.057 −4.218 <.001 .41 −0.197 0.061 −3.215 .001 .41

Ground cover (%) 0.248 0.056 4.442 <.001 0.232 0.056 4.129 <.001

Size green space −0.138 0.048 −2.826 .005 −0.129 0.048 −2.651 .008

MIG top −0.116 0.058 −2.020 .045

Activity N. noctula

Vegetation clutter 
at 0.5 – 1 m

−0.076 0.037 −2.053 .042 .39 −0.079 0.036 −2.208 .029 .40

Vegetation clutter 
at 5–7 m

−0.259 0.048 −5.382 <.001 −0.209 0.054 −3.893 <.001

Ground cover (%) 0.301 0.053 5.603 <.001 0.279 0.054 5.164 <.001

MIG top −0.109 0.054 −2.009 .046

Activity P. pygmaeus

No. trees 0.403 0.113 3.553 <.001 .16 0.403 0.113 3.553 <.001 .16

Ground cover (%) 0.597 0.113 5.256 <.001 0.597 0.113 5.256 <.001

Total species richness

Vegetation clutter 
at 5–7 m

−0.094 0.023 −4.104 <.001 .21 −0.062 0.026 −2.376 .019 .24

Ground cover (%) 0.115 0.022 5.130 <.001 0.101 0.023 4.394 <.001

MIG top −0.068 0.027 −2.519 .013

Species richness edge- space foragers

Ground cover (%) 0.080 0.026 3.080 .002 .05 0.080 0.026 3.080 .002 .05

Species richness open- space foragers

Vegetation clutter 
at 5–7 m

−0.151 0.030 −4.993 <.001 .25 −0.151 0.030 −4.993 <.001 .25

Vegetation clutter 
above 15 m

−0.131 0.040 −3.284 .001 −0.131 0.040 −3.284 .001

Ground cover (%) 0.131 0.029 4.551 <.001 0.131 0.029 4.551 <.001
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(Figure 4), and the explained variation was similar. Besides ground 
cover, activity of P. pygmaeus also increased with the number of trees. 
Mean information gain (MIG) parameters had no effect on activity of 
P. pygmaeus (Table 2, Figure 4).

3.3 | Influence of MIG and field- based descriptors on 
species richness

We recorded 11 bat species and three acoustic groups of which the 
three most common were P. pygmaeus, P. kuhlii/P. nathusii occurring at 
93% of all sampling points, followed by N. noctula (88%), H. savii (73%), 
and P. pipistrellus (61%). The acoustic group M. mystacinus/M. brandtii 
was relatively common, occurring at one- third of the sites. Six other 
species were detected at <10% of the sites (Table A1).

Total species richness and species richness of open- space foragers 
showed similar responses to vegetation complexity (Table 2). Ground 
cover had a significant positive influence on species richness, whereas 
vegetation clutter at 5–7 m had a negative influence. In addition, veg-
etation clutter at above 15 m had a negative influence on species rich-
ness of open- space foragers. When MIG parameters were included, 
the explained variation increased slightly for total species richness 
(Table 2) and MIG top had an additional negative effect. In contrast, 

incorporating MIG parameters did not have any effect on species rich-
ness of edge- space foragers which were only positively affected by 
ground cover (Table 2).

4  | DISCUSSION

We evaluated the suitability of a structural complexity measure derived 
from digital images (MIG) as a useful ecological tool to describe vegeta-
tion complexity in an urban environment and assessed the response of 
insectivorous bats to structural complexity of urban green spaces.

4.1 | Image- derived structural complexity vs. field- 
based descriptors

Image- derived structural complexity (MIG) complemented field- based 
descriptors and captured vegetation patterns in urban green spaces, al-
though models conducted with only field- based data generally showed 
higher explanatory power compared to models that only used MIG. 
There are different possible explanations for these results. MIG was able 
to depict vegetation structure (e.g., canopy cover); indeed, MIG top view 
replaced canopy cover and vegetation height due to high collinearity 

F IGURE  3 Regression- fitted lines with 95% confidence intervals for total bat activity when both field- based descriptors and structural 
complexity parameters were considered. All explanatory variables (except the one varying on the x- axes) were set to their mean values. Only 
significant variables are shown
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(Figure S1). Although MIG aggregated individual characteristics of struc-
tural complexity into a single measure, the influence of single attributes 
(i.e., canopy complexity and structural complexity) was distinguishable 
(Figure 2). However, it is possible that anthropogenic structures in urban 
environments influence the performance of MIG. Digital images took 
every structure of the scenery into account, whereas data collected 
with the field- based method only considered vegetation. If and to what 
extent anthropogenic structures change image complexity remains to 
be further investigated, but any such effect may depend on their size, 
form, frequency, and distance from the camera.

Nonetheless, the strength of structural complexity derived from 
digital images was apparent. MIG parameters analyzed separately had 
considerable explanatory power. It is remarkable that models per-
formed solely with MIG parameters accounted for up to one- fourth 
of the variation explained, given the relatively small effort involved 
in their sampling. While photographs were taken in a very brief time 
period (5 min per site), recording field- based descriptors lasted 1 hr on 
average and up to 2 hr in places with high vegetation complexity. In 

addition, processing the images and calculation of MIG took 5 min per 
site (1 min per image), whereas processing field data required an aver-
age of 40 min per site. This adds up to a saving of +270 hr and makes 
MIG an efficient way to sample a large number of sites.

Besides being labor intensive, field- based descriptors may be lim-
ited in their ability to describe important structural complexity attri-
butes, given the variety of possible measures and the need to consider 
a suite of attributes simultaneously to reflect the inherent charac-
teristics of a site (McElhinny et al., 2005). Thus, MIG is an objective 
descriptor of structural complexity that does not require a subjective 
selection of specific structural attributes. However, it is important to 
note that MIG uses the spatial distribution of the colors of pixels in 
a two- dimensional space to represent complex patterns that emerge 
from the presence and the spatial associations of three- dimensional 
objects. Although MIG correlates with three- dimensional metrics 
(e.g., fractal dimension) (Proulx & Parrott, 2009), further research is 
required to compare MIG to other approaches that depict space in 
three- dimensions (e.g., Light Detection and Ranging [LiDAR]).

F IGURE  4 Regression- fitted lines with 95% confidence intervals for activity of (a) edge- space foragers, (b) Pipistrellus pygmaeus (c) 
open- space foragers, and (d) Nyctalus noctula when both field- based descriptors and structural complexity parameters were considered. All 
explanatory variables (except the one varying on the x- axes) were set to their mean values. Only significant variables are shown
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In summary, our results suggest that MIG as a complexity measure 
is a useful and time- efficient tool for characterizing vegetation patterns 
in urban green spaces. However, MIG may be less informative when 
knowledge about amount of vegetation—not only complexity—is re-
quired. Field- based descriptors, on the contrary, may be more suitable 
when the aim is to link species patterns to certain vegetation structures 
as they allow identifying ecological mechanisms. To improve MIG, we 
recommend taking photographs also from the outer perimeter of the 
plots inwards, for example, or by pointing the camera upwards at dif-
ferent angles, similar to the way field- based descriptors were recorded.

4.2 | Response of insectivorous bats to structural  
complexity

Our results indicate that, in most cases, canopy complexity (MIG 
top view) of urban green spaces had a significant negative effect on 
bats. This effect remained even when field- based descriptors were 
included. The negative effect of canopy complexity in green spaces 
indicates that areas with open canopy may facilitate foraging activity 
for some bat species. This is supported by previous findings where 
bat activity decreased with canopy closure and increased with rela-
tive area of open canopy (Ford, Menzel, Menzel, Edwards, & Kilgo, 
2006; Kusch, Weber, Idelberger, & Koob, 2004). Foliage- free spaces 
between tree crowns were also more suitable for hunting bats, as 
these combined high insect abundance and the obstacle- free spaces 
needed for foraging, while still providing some protection from aer-
ial predators (Marques, Ramos Pereira, & Palmeirim, 2016). Canopy 
complexity, therefore, seems to be disadvantageous to the majority 
of recorded species likely due to maneuverability and echolocation 
characteristics (Kusch et al., 2004; Müller et al., 2012). One could also 
argue that the negative effect of canopy complexity may be an artifact 
given that bat calls might be easier to detect in areas with low vegeta-
tion clutter. However, we insured that the vicinity of bat detectors 
was free of any structures to minimize this known bias. In addition, 
we believe that we further coped with potential biases by analyzing 
different functional groups and representative species.

Species richness was not affected by structural complexity (MIG 
side views), which was surprising because complex habitats comprise 
more niches and would therefore be expected to increase the number 
of species (e.g., Huston, 1979). To date, only a few studies have demon-
strated a positive relationship between image- derived habitat complex-
ity and species richness in natural environments (Mellin et al., 2012; 
Proulx & Parrott, 2008). In this study, only canopy complexity had a 
negative effect on total species richness, which highlights that canopy 
vegetation patterns are a key factor affecting the number of species in 
green spaces. However, given the low explained variability, other fac-
tors such as proportion of native vegetation (Threlfall et al., 2016) or 
anthropogenic disturbance (Stone, Harris, & Jones, 2015) may poten-
tially have a greater impact than habitat or canopy complexity alone.

Previous studies have suggested that vegetation clutter at 10- 
20 cm seems to reduce access to prey, affecting both capture success 
and time to capture (Rainho, Augusto, & Palmeirim, 2010). However, 
we found that proportion of vegetation cover on the ground had a 

positive effect on bat activity and species richness, even when MIG 
variables were included. Given the high degree of imperviousness in 
cities, vegetation on the ground in green spaces may provide higher in-
sect density (Di Giulio, Edwards, & Meister, 2001; Grüebler et al., 2008). 
Nonetheless, vegetation clutter at 0.5- 1 m indeed decreased total bat 
activity, suggesting the adverse effect of clutter in the understory (e.g., 
Brigham et al., 1997; Law & Chidel, 2002; Lintott et al., 2015).

As expected, vegetation clutter at different heights affected activ-
ity of edge- and open- space foragers in different ways. Edge- space for-
agers are adapted to hunting in gaps but in the vicinity of background 
clutter (Adams, Law, & French, 2009; Denzinger & Schnitzler, 2013), 
whereas open- space foragers and N. noctula, a typical open- space bat, 
were negatively affected by vegetation clutter. Open- space foragers 
show higher avoidance of closed canopy areas than edge- space for-
agers because of their different physiological tolerances to structural 
clutter (Crome & Richards, 1988) and different hunting strategies 
(Denzinger & Schnitzler, 2013). Nonetheless, open- space foragers 
may use closed forest, but above the tree canopy (Müller et al., 2013). 
Nyctalus noctula, in particular, flies at heights of up to 100 m, but hunts 
within a range of 5–20 m (Richarz & Limbrunner, 1992). Therefore, 
clutter in the upper layers and tree canopy may be unfavorable.

Interestingly, open- space foragers were highly active in small 
green spaces. Perhaps this can be explained by their flexibility in 
echolocation behavior (Rydell, 1990) or the synanthropization (Uhrin 
et al., 2016) of some of the species in this group. When flying in the 
open space above roofs or vegetation, these species predominantly 
use their long, almost- constant- frequency calls. If they use the more 
limited space in small green spaces (i.e., more clutter due to neighbor-
ing buildings), then open- space foragers may “dive down” into them 
and thus modify the structure of their calls by switching to shorter, 
more frequency- modulated calls to achieve a higher resolution of ob-
stacles. Alternatively, some species have adapted to urban environ-
ments (Uhrin et al., 2016) and use buildings as daytime roosts (Kubista 
& Bruckner, 2015); thus, higher activity in small green spaces could be 
associated with accessing roosting sites or searching for new locations.

In contrast to the other groups, activity of P. pygmaeus increased 
significantly with the number of trees (DBH > 0.3 m). This result sup-
ports previous findings that P. pygmaeus uses urban woodlands or sem-
inatural habitats (Glendell & Vaughan, 2002; Lintott et al., 2015; Park 
et al., 2012). The species’ high maneuverability and hunting strategy 
(i.e., within or near vegetation) explain the tolerance of P. pygmaeus to 
vegetation clutter and thus the lack of significance of any structural 
complexity variables. Besides providing potential prey, trees also offer 
shelter from wind and predation (Verboom & Spoelstra, 1999) and in-
deed are valuable habitat components for foraging insectivorous bats 
(Lumsden & Bennett, 2005).

5  | CONCLUSIONS

Our results suggest that image- derived structural complexity (MIG) is 
a time-  and cost- effective tool for capturing complexity of vegetation 
and complements field- based descriptors. No method is likely to meet 
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all needs. When time and money are a serious constraint and research 
questions do not aim to identify underlying ecological mechanisms, 
MIG is a suitable sampling tool. Otherwise, other measures such as 
field- based descriptors should be considered.

We demonstrated that insectivorous bats respond to structural 
complexity in urban green spaces. Additionally, a proportion of veg-
etation covering the ground and number of large trees favor total bat 
activity. Although canopy complexity had a negative effect in most 
cases, bats’ response to structural complexity was group-  and species- 
specific. Open- space foragers as well as N. noctula showed a higher 
avoidance of vegetation clutter at the upper layers and tree canopy 
than edge- space foragers. In contrast, P. pygmaeus, an edge- space for-
ager, was positively influenced by the number of trees.

The group-  and species- specific response to vegetation- structural 
complexity highlights the need for manifold management strategies in 
urban green spaces: increasing or reinstating the extent of ground veg-
etation cover, including seedlings and grass; managing complex vege-
tation in multiple strata, such as promoting shrubs and bushes while 
simplifying higher strata; or balancing out areas of high complexity 
with areas encompassing shorter and simplified vegetation and open 
spaces. Lastly, retaining large and mature trees would support sen-
sitive species. These strategies would insure conservation of the full 
spectrum of insectivorous bat species occurring in urban green spaces.
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APPENDIX 

TABLE  A1 Occurrence of verified bat species recorded in 180 sampling points in Vienna, Austria

Species Common name Acronym Occurrence (%) FFH- directive Red List

Pipistrellus pygmaeus Soprano pipistrelle Ppyg 93.3 IV DD

Pipistrellus kuhlii Kuhl’s pipistrelle Pmid 93.3 IV VU

Pipistrellus nathusii Nathusius’ pipistrelle Pmid 93.3 IV NE

Nyctalus noctula Common noctule Nnoc 88.3 IV NE

Hypsugo savii Savi’s pipistrelle Hsav 73.3 IV EN

Pipistrellus pipistrellus Common pipistrelle Ppip 61.1 IV NT

Myotis mystacinus Whiskered bat Mbart 31.7 IV NT

Myotis brandtii Brandt’s bat Mbart 31.7 IV VU

Barbastella barbastellus Barbastelle Bbar 18.9 II, IV VU

Plecotus auritus Brown/Common long- eared 
bat

Plecotus 16.1 IV VU

Plecotus austriacus Gray long- eared bat Plecotus 16.1 IV LC

Myotis daubentonii Daubenton’s bat Mdau 3.9 IV LC

Myotis emarginatus Geoffroy’s bat Mema 3.3 II, IV VU

Myotis nattereri Natterer’s bat Mnat 3.3 IV VU

Eptesicus nilssonii Northern bat Enil 2.2 IV LC

Myotis myotis Greater mouse- eared bat Mmyo 1.7 II, IV LC

Myotis alcathoe Alcathoe Whiskered bat Malc 0.6 IV –

Scientific and common names, acronyms, and conservation status of the FFH- directive and of the Red list of Austrian′s endangered mammals (Spitzenberger 
2005) are included: EN (endangered), VU (vulnerable), NT (near threatened), LC (least concern), DD (data deficient), NE (not evaluated),— (not listed).


