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Abstract: This study aimed to facilitate pseudo-CT synthesis from MRI by normalizing MRI intensity
of the same tissue type to a similar intensity level. MRI intensity normalization was conducted
through dividing MRI by a shading map, which is a smoothed ratio image between MRI and a three-
intensity mask. Regarding pseudo-CT synthesis from MRI, a conversion model based on a three-layer
convolutional neural network was trained and validated. Before MRI intensity normalization, the
mean value ± standard deviation of fat tissue in 0.35 T chest MRI was 297 ± 73 (coefficient of variation
(CV) = 24.58%), which was 533 ± 91 (CV = 17.07%) in 1.5 T abdominal MRI. The corresponding
results were 149 ± 32 (CV = 21.48%) and 148 ± 28 (CV = 18.92%) after intensity normalization. With
regards to pseudo-CT synthesis from MRI, the differences in mean values between pseudo-CT and
real CT were 3, 15, and 12 HU for soft tissue, fat, and lung/air in 0.35 T chest imaging, respectively,
while the corresponding results were 3, 14, and 15 HU in 1.5 T abdominal imaging. Overall, the
proposed workflow is reliable in pseudo-CT synthesis from MRI and is more practicable in clinical
routine practice compared with deep learning methods, which demand a high level of resources for
building a conversion model.

Keywords: MRI intensity normalization; pseudo-CT synthesis; convolutional neural network

1. Introduction

The integration of MRI into radiotherapy is an important technological develop-
ment to improve tumor targeting [1,2]. MRI provides superior soft tissue contrast to CT,
which enables better target delineation, but MRI data do not contain electron density
information, which is necessary for accurate dose calculation. Hence, for the MR-LINAC
installed in our department, the anatomical information from the daily MRI scan and the
electron density information from the planning CT scan are integrated through MRI-CT
registration to realize radiotherapy plan adaptation [3,4]. However, image registration
in the chest and abdomen is more complex than in the brain because of breath motion,
internal organ distortion, and stomach/bladder filling [5]. As the clinical reliability of
image registration is not always guaranteed, the introduced error would compromise the
effectiveness of treatment and the patient’s quality of life. One solution to the problem
is to synthesize pseudo-CT from in-room MRI by using voxel-based methods, which has
been considered in attenuation correction of PET/MR imaging [6,7]. Several voxel-based
methods have been proposed for pseudo-CT synthesis from MRI, such as the bulk-density
method, which assigns homogeneous CT numbers to volumes of interest (VOIs) defined
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on MRI, and learning-based methods, which employ model fitting or statistical learning
techniques [8–11]. Before applying these voxel-based methods, intensity inhomogeneity
in MRI, which arises from the imperfections in the image acquisition process, has to be
compensated to provide accurate electron density estimation [12–14]. Since inhomogene-
ity correction methods implemented on different scanners are vendor-specific, different
intensities for the same tissue type are observed among different MRI systems even if
comparable pulse sequences are used. Consequently, the pseudo-CT synthesis method
designed for one MRI scanner cannot be used on other different systems. In our opinion, if
these pseudo-CT synthesis methods are generalized across different scanners, they could
be more easily embedded within routine practice for either MR-LINAC adaptive plans
or PET/MR attenuation correction. The image intensity in MRI is a relative and not an
absolute value, which is different from the CT numbers, which represent linear attenuation
coefficients calibrated with reference to water. It was hypothesized that the pseudo-CT
synthesis method would increase generalization if MR images were normalized to a similar
intensity level within the same tissue type. Therefore, the aim of this study was to propose
an MRI intensity normalization method to facilitate pseudo-CT synthesis from MRI.

2. Materials and Methods
2.1. Chest Imaging Acquisition for Cancer Treatment

CT simulation scans for treatment planning were taken on a 16-slice Philips Brilliance
Big Bore CT simulator (Philips Healthcare Systems, Andover, MA, USA) with 16 × 1.5 mm
collimation and helix scan mode (pitch = 1). The routine protocol for chest scan uses a fixed
tube current-time product of 250 mAs at 120 kVp, which results in a CTDIvol of 17.6 mGy.
Acquired data were reconstructed using a 512 × 512 matrix with standard FBP algorithm.
The voxel size of the reconstructed CT image was 0.98 mm in the axial plane and 3 mm in
the longitudinal direction.

The MR-LINAC used in this study (ViewRay MRIdian Linac, ViewRay Inc., Oakwood
Village, OH, USA) houses a 0.35 T MRI system, which utilizes a whole-body RF transmit
coil and surface receive coils anterior and posterior to the patient. The receive coils consist
of radiolucent phased arrays with 2 × 6 channels for the torso. The pulse sequence used
for volumetric MRI imaging was a True Fast Imaging with Steady State Precession (TRUFI)
sequence, which is a type of balanced steady-state free precession (bSSFP) sequence,
yielding a T1-weighted contrast. In-plane field of view (FOV) was 50 cm × 45 cm to cover
the whole body. The voxel size of the reconstructed MRI image was 1.5 mm in the axial
plane and 3 mm in the longitudinal direction.

2.2. Abdominal Imaging Acquisition for Lesion Diagnosis

Diagnostic CT scans were performed on a 64-detector row CT system (Brilliance 64,
Philips Medical Systems, Cleveland, OH) using 0.5 s of gantry rotation time. The routine
protocol for abdominal scan uses tube current modulation (TCM) at 120 kVp with 5 mm
slice thickness. The reference parameter of the TCM system is the dose right index (DRI),
which is set as 15 in our routine practice. The acquired data were reconstructed by iDose
iterative reconstruction algorithm with standard reconstruction kernel (B). The voxel size
of the reconstructed CT image was 0.68 mm in the axial plane and 5 mm in the longitudinal
direction.

Diagnostic MRI scans were performed on a 1.5 T system (GE Optima MR450w, GE
Medical Systems Inc., Waukesha, WI, USA), which has a flat indexed tabletop to which
a constructed receiver coil frame can be attached without patient body contact. The T1-
weighted in-phase and out-phase MR image sets were obtained with a 2D fast RF-spoiled
dual gradient echo sequence. Echo time was 4.4/2.2 ms, whereas repetition time and flip
angle were 110 ms and 80◦, respectively. The bandwidth for the entire FOV (34 cm × 34 cm)
was 62.5 kHz. The frequency encoding direction was anterior–posterior. Acquired data
were reconstructed axially using a 512 × 512 matrix. The voxel size of the reconstructed
MRI image was 0.66 mm in the axial plane and 8 mm in the longitudinal direction.
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2.3. MRI Intensity Normalization

Figure 1 illustrates the flowchart of the MR image intensity normalization method
proposed in this work, which was adapted from the shading correction method for cone
beam CT proposed by Marchant et al. [15] Initially, the MRI was segmented into 3 tissue
classes (air/lung, soft tissue, and fat) using the fuzzy c-means (FCM) clustering algo-
rithm [16]. FCM starts with an initial guess for the cluster centers, which moved iteratively
by minimizing the distance from any given data point to a cluster center weighted by the
fuzzy partition matrix exponent. The mask regions were replaced with a bulk intensity of
the corresponding tissue types to generate a three-intensity mask (Figure 2b), whereas the
bulk intensity was the mean value from 20 patients receiving the same MRI examination
on the 0.35 T system. Next, the MRI was divided by the three-intensity mask to produce
a ratio image that indicates the difference between the two images (Figure 2c). The ratio
image was then smoothed by an averaging filter with a width of 10 pixels. The smoothed
ratio image was referred to as a shading map, which contains intensity inhomogeneity in
MRI (Figure 2d). In the last step, the MRI was divided by the shading map for intensity
normalization. MATLAB 7.1 (The Mathworks, Natick, MA, USA) was used to perform all
image processing steps mentioned above. Since the shading map contains only the slowly
varying differences in intensities to be corrected, the high spatial frequency content in MRI
can be preserved after correction (Figure 2e).
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Figure 2. (a) Uncorrected MRI (WL/WW = 200/400), (b) three-intensity mask, (c) ratio image, (d) shading map, and
(e) corrected MRI (WL/WW = 100/200).

2.4. Pseudo-CT Synthesis from MRI

Image registration is the first step of pseudo-CT synthesis, which consists of rigid
body registration followed by deformable image registration, whereas in-room MRI was
the fixed volume (reference image) and planning CT was the moving volume (deformed
image). The similarity measure for the multimodal 3D image registration was based on
the Mattes mutual information [17]. The marginal and joint probability density function
was evaluated at 50 uniformly spaced bins using 500 samples. Entropy values were
computed by summing over the bins. Zero-order and third-order B-spline kernels were
used to compute the probability density functions of the fixed and moving images. After
registration, the deformed CT images have the same matrix size and voxel size as those
in MR images. The registered image pairs were then used in building a convolutional
neural network (CNN) model proposed by Nie et al., which converts MRI into pseudo-
CT [18]. Theoretically, the registered image pairs should be used as the input (MRI) and
label (deformed CT) for CNN model training and validation. However, registration error
owing to breath motion, internal organ distortion, and stomach/bladder filling between
MRI and deformed CT would severely affect the efficacy of the CNN model. Therefore,
instead of using registered MRI-CT image pairs directly for model training and validation,
pointwise intensity pairs were extracted from registered image pairs to generate training
and validation datasets. Figure 3 illustrates the processing steps of CNN model training and
validation to convert corrected MRI into pseudo-CT. After image registration, probabilistic
tissue classification was performed by using the FCM clustering algorithm to segment
MRI into 3 tissue classes, namely, air/lung, soft tissue, and fat. Voxels within the mask
regions were sorted according to their MRI intensities. Next, 25 pointwise intensity pairs
evenly covering the MRI intensity range of the mask regions were picked per slice for
lung and fat, while 50 pointwise intensity pairs were picked per slice for soft tissue. Only
chest imaging for cancer treatment was used to extract pointwise intensity pairs, which
were collected from slice numbers 2, 4, 6, and 8 to generate CNN training datasets and
slice number 20 to generate validation datasets (Figure 4a). The intensity pairs were fed
into 4 phantom templates representing lung (Phantomlung, Figure 4b), low-density soft
tissue (Phantomsoft1, Figure 4C), high-density soft tissue (Phantomsoft2, Figure 4d), and
fat (Phantomfat, Figure 4e). The input and label images were prepared as 32 × 32-pixel
sub-images randomly cropped from the original image. To avoid border effects, all the
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convolutional layers have no padding, and the network produces an output image with
18*18 matrix size. The training and validation datasets provide roughly 48,862 and 22,825
sub-images, respectively. The CNN model consists of 3 convolutional stages with deeply
supervised nets (DSN) to supervise features at each convolutional stage, enabled by layer-
wise dense connections in both backbone networks and prediction layers. The model was
trained using stochastic gradient descent with mini-batch size of 128, learning rate of 0.01,
and momentum of 0.9. The image registration and processing were performed in MATLAB
7.1 on a Windows 10 system (version 2004) with an Intel Core i5-9400 processor. The CNN
model was trained and validated by using the Caffe (Convolutional Architecture for Fast
Feature Embedding) CNN platform (version 1.0.0-rc5 with CUDA 8.0.61) on an Ubuntu
server (version 16.04.4 LTS) with two RTX 2080 (NVIDIA) graphics cards.
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2.5. Evaluation Study

After CNN training and validation, the model was tested by comparing the pseudo-CT
converted from corrected MRI with real CT. To verify the efficacy of the proposed intensity
normalization method in facilitating pseudo-CT synthesis, the testing dataset contains both
chest imaging for cancer treatment and abdominal imaging for lesion diagnosis. Besides
model testing, quantitative analysis was also performed on both MRI and CT before and
after processing. With regards to the evaluation of the MRI intensity normalization method,
comparison of histograms for MRI before and after correction was conducted. Moreover,
the mean value, standard deviation, and coefficient of variation (CV) of uncorrected MRI
segmented into 3 different tissue types were compared with those from corrected MRI. The
same analysis procedures were also carried out for pseudo-CT versus real CT comparison.

3. Results
3.1. Chest Imaging for Cancer Treatment

The axial images and histograms of MRI acquired with the 0.35 T scanner mounted
on a LINAC before and after intensity normalization are demonstrated in Figure 5 for
chest imaging used to generate the CNN validation dataset (IMGchest

validation) and Figure 6
for chest imaging split into the CNN testing dataset (IMGchest

testing). For IMGchest
validation, the

axial image of corrected MRI acquired with the 0.35 T scanner, its pseudo-CT, and real
CT acquired with the 16-slice CT simulator are demonstrated in Figure 7a–c, while the
histogram of Figure 7b,c is shown in Figure 7d,e. The corresponding results for IMGchest

testing
are demonstrated in Figure 8. Figure 9 summarizes the mean and standard deviation of
image intensity of three different tissue types for uncorrected MRI, corrected MRI, pseudo-
CT, and real CT covering 41 slices. As seen in Figure 9, fat tissue is the component showing
the most serious MRI intensity inhomogeneity, but its impact on pseudo-CT synthesis
was eased after MRI intensity normalization. The mean value ± standard deviation of fat
tissue in MRI was 297 ± 73 (CV = 24.58%) before correction and 149 ± 32 (CV = 21.48%)
after correction. The mean value ± standard deviation of fat tissue in pseudo-CT was
−93 ± 82 HU (CV = 88.17%) and −108 ± 99 HU (CV = 91.67%) in real CT. With regards
to soft tissue, the mean value ± standard deviation was 125 ± 35 (CV = 28.00%) in MRI
before correction, 64 ± 17 (CV = 26.56%) in MRI after correction, 32 ± 19 HU (CV = 59.38%)
in pseudo-CT, and 35 ± 18 HU (CV = 51.43%) in real CT. As for the lung, the mean
value ± standard deviation was 26 ± 11 (CV = 42.31%) in MRI before correction, 14 ± 5
(CV = 35.71%) in MRI after correction, −813 ± 53 HU (CV = 6.52%) in pseudo-CT, and
−801 ± 84 HU (CV = 10.49%) in real CT. The image slice of IMGchest

testing demonstrated in
Figures 6 and 8 is slice number 14.
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3.2. Abdominal Imaging for Lesion Detection

Figure 10 shows the axial images and histograms of MRI acquired with the 1.5 T
scanner before and after intensity normalization for abdominal imaging belonging to the
CNN testing dataset (IMGabdomen

testing ). For IMGabdomen
testing , the axial image of corrected MRI

acquired with the 1.5 T scanner, its pseudo-CT, and real CT acquired with 64-detector row
CT are demonstrated in Figure 11a–c, while the histogram of Figure 11b,c is shown in
Figure 11d,e respectively. Figure 12 summarizes the mean and standard deviation of image
intensity of three different tissue types for uncorrected MRI, corrected MRI, pseudo-CT, and
real CT covering 11 slices. As seen in Figure 12, fat tissue is still the component showing
the most serious MRI intensity inhomogeneity, but its impact on pseudo-CT synthesis
was eased after MRI intensity normalization. The mean value ± standard deviation of fat
tissue in MRI was 533 ± 91 (CV = 17.07%) before correction and 148 ± 28 (CV = 18.92%)
after correction. The mean value ± standard deviation of fat tissue in pseudo-CT was
−72 ± 32 HU (CV = 44.44%) and −86 ± 63 HU (CV = 73.26%) in real CT. With regards to
soft tissue, the mean value ± standard deviation was 298 ± 68 (CV = 22.82%) in MRI before
correction, 65 ± 17 (CV = 26.15%) in MRI after correction, 29 ± 11 HU (CV = 37.93%) in
pseudo-CT, and 32 ± 15 HU (CV = 46.88%) in real CT. As for air, the mean value ± standard
deviation was 65 ± 24 (CV = 36.92%) in MRI before correction, 21 ± 6 (CV = 28.57%) in
MRI after correction, −807 ± 129 HU (CV = 15.99%) in pseudo-CT, and −822 ± 127 HU
(CV = 15.45%) in real CT. The image slice of IMGabdomen

testing demonstrated in Figures 10 and
11 is slice number 10.
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4. Discussion

Since MRI intensities do not have a fixed tissue-specific value, the same tissue could
have a wide range of intensities, even within the same protocol, for the same body region,
for images of the same subject obtained on the same MRI scanner, which were all found in
the MR images acquired with either a 0.35 T or 1.5 T scanner used in this study. Under this
physical phenomenon, one of the possible strategies to improve the reliability of MRI to CT
conversion is to train and validate the conversion model with datasets covering a variety of
imaging conditions, but the size of the datasets may be too huge to be practicable. Hence,
this work tried to investigate this issue through another approach, i.e., normalizing MRI
intensity of the same tissue type to a similar intensity level. Various intensity normalization
methods have been proposed by previous studies, but most of them were focused on
brain imaging acquired with 1.5 T MRI scanners [12,14]. Since the torso is the body region
investigated in this work and the magnetic strength is only 0.35 T in our MR-LINAC,
the resulting artifacts may be different from those presented in previous studies. Hence,
an MRI intensity normalization method was proposed and evaluated in the first part of
this study. Accurate target delineation is very important in radiotherapy, so one critical
characteristic that a proper MRI intensity normalization method for MR-LINAC should
have is to preserve the high spatial frequency content in MRI after correction, i.e., edges.
Therefore, the initial idea of the proposed intensity normalization method came from
the shading correction method used in cone beam CT proposed by Marchant et al. [15].
However, we also found out that our proposed method is a modified version of the method
proposed by Axel et al. for correcting intensity inhomogeneity in MRI [19]. Evaluation of
the proposed normalization method was performed on chest imaging for cancer treatment
and abdominal imaging for lesion detection. At single slice level, it can be found based on
naked eye observation and histogram analysis that the inhomogeneity in three different
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tissue types became more homogenous after correction, especially in fat tissue. Regarding
the performance at single scanner level, the variations in mean and standard deviation
of MRI segmented into three tissue types of the same body region but at different axial
locations were decreased after correction. Moreover, the mean values of 0.35 T corrected
MR imaging were similar to those from 1.5 T corrected MR imaging, demonstrating the
effectiveness of the proposed method on MRI acquired with different scanners of different
body regions. The CVs from uncorrected MRI were similar to those from corrected MRI,
demonstrating the preservation of high spatial frequency content.

In pseudo-CT synthesis from MRI, one of the most critical issues that determines the
conversion accuracy is the structure consistency between MRI and CT used for model
training and validation. Although applying advanced registration methods is one of
the possible strategies to deal with this issue, some degree of registration error is still
inevitable [20,21]. Another possible strategy is to generate the conversion model based on
deep learning methods that could take unpaired MRI and CT, but the computing power and
datasets required by unsupervised learning methods limit their clinical practicality [22,23].
Therefore, the CNN training and validation datasets used in this work were generated
based on pointwise intensity pairs and phantom templates. The data generation workflow
can be realized easily, and the resulting intensity pairs reveal the effective intensity range
for MRI to CT conversion. Because the relationship between MRI intensity values and CT
numbers can be monitored in our conversion model, accurate conversion was pursued
by normalizing MRI intensity into an effective range instead of increasing the amount
of datasets for model training and validation. As seen in Figures 7–9, the mean values
of pseudo-CT segmented into three tissue types were similar to those in real CT, but
the intensity ranges in pseudo-CT were slightly narrower than those in real CT. The
performance of pseudo-CT synthesized using the conversion model for other patients who
underwent 0.35 T scans was similar to the results shown in this work, which is probably due
to the similar MRI intensity range (data not shown). To verify the efficacy of our proposed
workflow in MRI with an intensity range that is very different from chest imaging for
cancer treatment, the conversion model was tested by using abdominal imaging for lesion
diagnosis acquired with a 1.5 T scanner. Theoretically, the conversion model that was built
based on chest imaging for cancer treatment cannot be applied in abdominal imaging for
lesion diagnosis to synthesize pseudo-CT owing to the difference in MRI intensity range
between the two datasets (Figures 9a and 12a). Nevertheless, similar intensity ranges were
observed in corrected MRI acquired with different systems (Figures 9b and 12b), so the
conversion model was also applied to the abdominal MRI acquired with a 1.5 T scanner
to evaluate the efficacy of the proposed method. As seen in Figures 11 and 12, the mean
values of pseudo-CT segmented into three tissue types were similar to those in real CT, but
the intensity ranges were slightly narrower than those in real CT.

Several limitations to this study need to be acknowledged. First, the atlas-based
method used in our routine practice was still used to generate pseudo-CT from MRI for
bone tissue [3,4]. In radiotherapy, treatment quality is highly correlated with the accuracy
and reproducibility of patient positioning. In addition to using immobilization equipment,
patient positioning can also be confirmed by locating the bony landmarks. Consequently,
the accuracy of registration between MRI and CT is higher in bone than in other tissues.
The bone intensities in pseudo-CT shown in Figures 7b, 8b and 11b are those from real
CT after being registered with MRI. There are also several voxel-based methods that were
proposed for bone intensity conversion, but most of them require multiple MRI acquisitions
or special pulse sequences that cannot be performed on the 0.35 T scanner [11,21,24]. Hence,
the atlas-based method was used for bone tissue in this study. Second, the density values
in pseudo-CT synthesized via our proposed workflow were compared with those in real
CT for two different imaging systems, but no evaluation study was designed to verify the
accuracy of radiotherapy dose calculation based on the synthesized pseudo-CT. In chest
imaging for cancer treatment, the difference between mean values in pseudo-CT and real CT
was 3, 15, and 12 HU for soft tissue, fat, and lung, respectively. As for abdominal imaging
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for lesion diagnosis, the difference between mean values in pseudo- and real CT was 3, 14,
and 15 HU for soft tissue, fat, and air, respectively. These results indicate that the proposed
method has substantial reliability in pseudo-CT synthesis for both MRI systems. However,
assessment of the proposed workflow in dose calculation for MR-LINAC adaptive plans
needs to be further investigated.

5. Conclusions

An MRI intensity normalization method was proposed to facilitate pseudo-CT synthe-
sis from MRI. The intra-scanner and inter-scanner reliability of the proposed method were
evaluated. Based on our results, fat tissue is the component showing the most serious MRI
intensity inhomogeneity. The mean value ± standard deviation of fat tissue in 0.35 T MRI
was 297 ± 73, and it was 533 ± 91 in 1.5 T MRI. After MRI intensity normalization, the
corresponding results were 149 ± 32 and 148 ± 28. With regards to pseudo-CT synthesis
from MRI, the mean values of pseudo-CT segmented into three tissue types were similar to
those in real CT, while the intensity ranges were slightly narrower than those in real CT. In
chest imaging for cancer treatment, the difference in mean values between pseudo-CT and
real CT was 3, 15, and 12 HU for soft tissue, fat, and lung, respectively. The difference in
abdominal imaging for lesion diagnosis was 3, 14, and 15 HU for soft tissue, fat, and air,
respectively. These results indicate that the proposed method has substantial reliability in
pseudo-CT synthesis. Moreover, compared with deep learning methods, which demand a
high level of resources for building a conversion model, the workflow presented in this
study is more practicable in clinical routine practice.
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