
cells

Article

Uncovering the Translational Regulatory Activity of
the Tumor Suppressor BRCA1

Elise Berthel 1 , Anne Vincent 1 , Lauriane Eberst 2 , Adrian Gabriel Torres 3 ,
Estelle Dacheux 1, Catherine Rey 4, Virginie Marcel 1 , Hermes Paraqindes 1 , Joël Lachuer 4,
Frédéric Catez 1 , Lluis Ribas de Pouplana 3,5, Isabelle Treilleux 6, Jean-Jacques Diaz 1,† and
Nicole Dalla Venezia 1,†,*

1 Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon 1, Centre
Léon Bérard, F-69008 Lyon, France; elise.berthel@inserm.fr (E.B.) ; anne.vincent@lyon.unicancer.fr (A.V.) ;
estelle.dacheux@pasteur.fr (E.D.) ; Virginie.MARCEL@lyon.unicancer.fr (V.M.) ;
Hermes.PARAQINDES@lyon.unicancer.fr (H.P.) ; frederic.catez@lyon.unicancer.fr (F.C.) ;
jeanjacques.diaz@lyon.unicancer.fr (J.-J.D.)

2 Centre Léon Bérard, Medical Oncology Department, Université de Lyon 1, F-69008 Lyon, France;
lauriane.eberst@lyon.unicancer.fr

3 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology,
Baldiri Reixac, 10, 08028 Barcelona, Spain; adriangabriel.torres@irbbarcelona.org (A.G.T.);
lluis.ribas@irbbarcelona.org (L.R.d.P.)

4 ProfileXpert, UNIV-US7 INSERM-UMS 3453 CNRS, F-69000 Lyon, France; catherine.rey@inserm.fr (C.R.);
joel.lachuer@univ-lyon1.fr (J.L.)

5 Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23,
08010 Barcelona, Spain

6 Department of Translational Research and Innovation, Centre Léon Bérard, F-69008 Lyon, France;
isabelle.treilleux@lyon.unicancer.fr

* Correspondence: nicole.dalla-venezia@lyon.unicancer.fr; Tel.: +33-426-556-745
† These authors contributed equally.

Received: 6 February 2020; Accepted: 4 April 2020; Published: 10 April 2020
����������
�������

Abstract: BRCA1 inactivation is a hallmark of familial breast cancer, often associated with aggressive
triple negative breast cancers. BRCA1 is a tumor suppressor with known functions in DNA repair,
transcription regulation, cell cycle control, and apoptosis. In the present study, we demonstrate
that BRCA1 is also a translational regulator. We previously showed that BRCA1 was implicated in
translation regulation. Here, we asked whether translational control could be a novel function of
BRCA1 that contributes to its tumor suppressive activity. A combination of RNA-binding protein
immunoprecipitation, microarray analysis, and polysome profiling, was used to identify the mRNAs
that were specifically deregulated under BRCA1 deficiency. Western blot analysis allowed us to
confirm at the protein level the deregulated translation of a subset of mRNAs. A unique and
dedicated cohort of patients with documented germ-line BRCA1 pathogenic variant statues was
set up, and tissue microarrays with the biopsies of these patients were constructed and analyzed
by immunohistochemistry for their content in each candidate protein. Here, we show that BRCA1
translationally regulates a subset of mRNAs with which it associates. These mRNAs code for proteins
involved in major programs in cancer. Accordingly, the level of these key proteins is correlated with
BRCA1 status in breast cancer cell lines and in patient breast tumors. ADAT2, one of these key
proteins, is proposed as a predictive biomarker of efficacy of treatments recently recommended to
patients with BRCA1 deficiency. This study proposes that translational control may represent a novel
molecular mechanism with potential clinical impact through which BRCA1 is a tumor suppressor.
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1. Introduction

Breast cancer is the most common cancer worldwide, accounting for 2.1 million new cases and
627,000 deaths worldwide in 2018 [1]. Approximately 5% of these patients carry a germline pathogenic
variant in BRCA [2–4] with a risk of developing breast cancer reaching 72% by age of 80 years [5,6].
Additionally, in a significant proportion of sporadic breast tumors, Breast Cancer 1 (BRCA1) promoter
hypermethylation, transcription repression, or somatic BRCA1 pathogenic variants are responsible for its
inactivation [7,8]. BRCA1 pathogenic variant carriers are more likely to be diagnosed with a triple negative
breast cancer (i.e., estrogen-receptor negative, progesterone-receptor negative, and human epidermal
growth factor receptor 2 (HER2) negative), which is associated with poor prognosis due to limited
therapeutic options [9]. The identification of BRCA1 pathogenic variant carriers is of the most importance
since these patients can now benefit from preventive treatments (early detection of contra-lateral breast
cancer, prophylactic mastectomy, or oophorectomy) and most importantly from innovative treatments,
including poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors like olaparib [10].

The BRCA1 protein is a tumor suppressor. It maintains genomic integrity through multiple functions;
the best documented being those related to DNA repair [11–14]. However, other functions participate
in its tumor suppressive capacity including chromatin remodeling, cell cycle regulation, transcription
regulation, mRNA splicing, and apoptosis [11,15,16]. Furthermore, we previously showed that BRCA1
was implicated in translational regulation [17,18]. Whether translational control could be a novel function
of BRCA1 contributing to its tumor suppressor capabilities remains however to be assessed.

Translational control is a master regulator of gene expression and its deregulation is a hallmark of
cancer. Here, we report translational regulation as a novel pivotal function of BRCA1 that may represent
a novel mechanism through which BRCA1 exerts its tumor suppressive activity. BRCA1 protein controls
the translation of mRNAs with which it interacts. Upon BRCA1 inactivation, Adenosine Deaminase,
tRNA Specific 2 (ADAT2), Cyclin L2 (CCNL2), Protein DBF4 homolog B (DBF4B), and Tripartite Motif
Containing 45 (TRIM45) mRNAs display altered translation efficiencies with concomitant changes
of their protein levels. In mammary tumors from patients mutated for BRCA1, expression of these
proteins is also impacted as a consequence of BRCA1 loss of function. Our study uncovers translational
control as a novel BRCA1 function with potential clinical impact.

2. Materials and Methods

2.1. Chemicals

Refer to Supplementary Material and Methods for details.

2.2. Case Selection

Patients with clinical history suggestive of BRCA1 or BRCA2 pathogenic variants (i.e., predictive
risk of pathogenic variant according to the Eisinger score superior to 3 [19] were referred to a geneticist,
in order to detect a germline BRCA1 or BRCA2 pathogenic variant. Case selection is detailed in
Supplementary Material and Methods.

2.3. Tissue Microarray (TMA) and Immunohistochemistry (IHC)

Breast tumors from each of the 3 groups (exploratory mutant (MT) BRCA1, exploratory wild-type
(WT) BRCA1, and validation MT BRCA1) were inserted into 3 different tissue microarray (TMA) blocks,
each tumor specimen being divided and inserted in triplicate. Four microns thick unstained sections were
cut from each TMA block and mounted on slides. The slides were processed for immunohistochemistry
(IHC) and immunostained as described in Supplementary Material and Methods.

The proportion of positively stained tumor cells in each section was graded as follow: 0, ≤ 10%;
1, 20–40%; 2, 50–80%; and 3, > 80% positive cells. The staining intensity was recorded on a scale
comprised between 0 and 3, corresponding to null to high intensity of the signal. The scores were
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calculated as follows: staining intensity × proportion of positively stained cells. A Chi-square statistical
analysis was conducted to test for the significant difference between cohort scores.

2.4. Cell Culture

Refer to Supplementary Material and Methods for details.

2.5. Transfection with Plasmids

For transfection, MCF-7 and MDA-MB-231 cells were plated at 2× 106 cells per 10 cm diameter dish
24 h before transfection with 4 µg of plasmid and 20 µL of ExGen 500 (Euromedex, Souffelweyersheim,
France). Twenty four hours after transfection, cells were harvested. The pCDNA3 plasmid expressing
full length BRCA1 protein (BRCA1) was previously described [20].

2.6. RNA Interference (RNAi)

The siRNA duplexes were purchased from Eurofins Genomics (Ebersberg, Germany) and provided
as purified and annealed duplexes. The sequence of the siRNA against BRCA1 was si-BRCA1
5′-GGAACCUGUCUCCACAAAG-3′ [17,20]. The siRNA used as control was designed against
luciferase: si-Ctrl 5′- CGUACGCGGAAUACUUCGA-3′.

MCF-7, MDA-MB-231, and HMECs were plated at 2 × 106 cells per 10 cm diameter dish 24 h before
transfection. Cells were transfected with 200 pmol/dish of siRNA and 16 µL/dish of Lipofectamine
RNAiMAX (Thermo Fisher Scientific, Bourgoin-Jallieu, France) using the protocol provided by the
supplier. Cells were harvested 72 h after transfection.

2.7. Immunoblotting

Immunoblotting was performed as previously reported [18]. Refer to Supplementary Material
and Methods for details.

2.8. Isolation of Polysomes and Total Cytoplasmic RNA

Isolation of polysomes and total cytoplasmic RNA was carried out as previously [18]. Refer to
Supplementary Material and Methods for details.

2.9. RNA-Binding Protein Immunoprecipitation (RIP)

RNA-binding protein immunoprecipitation (RIP) experiments were performed mainly using the
standard reference protocols including the relevant non-specific control [21]. Refer to Supplementary
Material and Methods for details.

2.10. Microarray Analysis

RNA isolation following immunoprecipitation with anti-BRCA1 antibody and control antibody (NR)
was performed in triplicate as described in the “RNA-binding protein immunoprecipitation (RIP)” section.

Microarray processing and data analysis was performed at the ProfileXpert core facility
(Lyon, France). Details are provided in Supplementary Material and Method.

The complete set of raw and normalized data is available at the GEO database under accession
number GSE119886 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119886).

For each replicate, the probe intensities issued from the BRCA1 and NR immunoprecipitations
were obtained. The obtained data were normalized with Affymetrix Expression Console software using
the RMA statistical algorithm. Control expression values (NR) were subtracted from their respective
sample counterparts on a probe set basis; the 3 replicates were then averaged. Only genes showing
an immunoprecipitation (IP) ratio IP BRCA1/IP NR (Fc) greater than 1.5 and a p-value lower than 0.05
were retained.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119886
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The retained genes of interest were listed and classified according to their biological process
(BP), cellular compartment (CC), and molecular function (MF) using DAVID (Database for Annotation,
Visualization and Integrated Discovery) on 10th of March 2017 [22] (https://david.ncifcrf.gov/summary.jsp).

2.11. Quantitative RT-PCR

2.11.1. RIP Analysis

Three additional replicates of RIP, including inputs, were dedicated to RT-qPCR. RNA extracted from
RIP (IP BRCA1 and IP NR) and RNA extracted from the corresponding inputs, was reverse-transcribed
and pre-amplified with the Nugen Ovation WTA System (TECAN, Redwood City, USA). Quantitative
real-time PCR (qPCR) was carried out using the light cycler 480 II real-time PCR thermocycler (Roche,
Meylan, France). The experimental protocol consisted in an initial polymerase activation for 10 min at
95 ◦C followed by an amplification program of 10 sec at 95 ◦C, 10 sec at 60 ◦C, and 10 sec at 72 ◦C, for
45 cycles. Expression of mRNA was quantified using the LightCycler 480 SYBR Green I Master Mix (Roche)
and normalized using POP4 and Actin expression according to the 2-∆∆Ct method. Immunoprecipitated
RNA was expressed as fold enrichment over input compared to enrichment with non-relevant antibody
(NR) used as a control; fold enrichment Fe = (IP BRCA1 − IP NR)/Input.

2.11.2. Polysome Profile Analysis

Total and polysomal RNA prepared as described above, from BRCA1-depleted and control cells,
were purified and submitted to DNase digestion using NucleoSpin RNA XS Clean-up columns
(Macherey-Nagel, Hoerdt, France) following the manufacturer’s instructions. Next, 250 ng of
total RNA were reverse transcribed using the M-MLV RT kit and random primers (Thermo Fisher
Scientific, Bourgoin-Jallieu, France), according to the manufacturer’s instructions. For each RNA type
(polysome RNA or total RNA prepared from the same cytoplasmic extract as described above),
a ratio between si-BRCA1 and si-Ctrl sample was calculated. The ratios for polysomal RNA
(polyRNA = si-BRCA1/si-Ctrl) and for total RNA (totRNA = si-BRCA1/si-Ctrl) were calculated.
The polyRNA/totRNA ratio was then calculated and defined as translational efficiency (Te). Only genes
showing a Te greater than 1.4 or lower than −1.4 in the three replicates were retained.

Primers were designed using the Primer-Blast software (National Centre for Biotechnology
Information/NCBI, Bethesda, USA; http://www.ncbi.nlm.nih.gov/tools/primer-blast) and purchased
from Eurofins Genomics (Ebersberg, Germany). For each gene, primers were designed within exons
that displayed high exon probe intensities on arrays. Genes tested for polysomal profiling and RIP,
and primers, are listed in the Table S1.

2.12. Quantification of A-to-I Editing

Quantification of tRNA editing was determined as previously described [23] with minor modifications.
Refer to Supplementary Material and Methods for details. The RNAseq data generated for this study has
been deposited at the EBI European Nucleotide Archive (Accession number PRJEB28622).

2.13. Statistical Analysis

Refer to Supplementary Material and Methods for details.

3. Results

3.1. BRCA1 Associates with mRNAs

Having previously shown that BRCA1 depletion affects protein synthesis and translational
efficiency [17,18], we here investigated which mRNA were associated with BRCA1 protein. We used
an RNA binding protein immunoprecipitation (RIP) assay followed by microarray analysis of the
BRCA1-bound mRNA. Three total lysates of MCF-7 cells were independently treated. Each lysate was

https://david.ncifcrf.gov/summary.jsp
http://www.ncbi.nlm.nih.gov/tools/primer-blast
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split in two equal portions. One was incubated with anti-BRCA1 antibody (BRCA1) while the second
was incubated with control antibody (NR). We first confirmed efficient immunoprecipitation of BRCA1
by Western blot analysis (Figure 1a).Cells 2020, 9, x FOR PEER REVIEW 6 of 19 
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of interest (listed in Figure 2a) were colored in gray (1.5 ≤ Fc < 2.0), orange (2.0 ≤ Fc < 3.0), and blue 

(3.0 ≤ Fc ≤ 5.4). The name of the 8 genes with the most changes (colored in blue and orange) was 

included. (c) Gene ontology analysis of mRNA bound to BRCA1, using DAVID (Database for 

Figure 1. Identification of BRCA1-associated mRNAs using large-scale analysis. RNA-binding protein
immunoprecipitation (RIP) performed in triplicate followed by microarray analysis. (a) Immunoblots
showing that BRCA1 is immunoprecipitated in MCF-7 cells. Immunoprecipitation with anti-BRCA1
antibody (BRCA1) and with a control IgG (NR). (b) Microarray analysis of the BRCA1-associated mRNA
isolated by RIP. Lines indicate –log10 (p-value) ≥ 1.3 and abs (log2 (Fc)) ≥ 0.6 for p ≤ 0.05 and abs (Fc) ≥ 1.5
respectively. Among the mRNAs displaying a fold change (Fc) above 1.5, the 16 mRNA of interest (listed
in Figure 2a) were colored in gray (1.5 ≤ Fc < 2.0), orange (2.0 ≤ Fc < 3.0), and blue (3.0 ≤ Fc ≤ 5.4). The
name of the 8 genes with the most changes (colored in blue and orange) was included. (c) Gene ontology
analysis of mRNA bound to BRCA1, using DAVID (Database for Annotation, Visualization and Integrated
Discovery). BP: biological process; CC: cellular compartment; MF: molecular function.
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mRNA normalized against its total abundance (input) in the whole cell (Figure 2b). A significant and 

Figure 2. Analysis of a representative subset of BRCA1-associated mRNAs. RIP of three new
independent replicates followed by RT-qPCR. (a) Subset of 16 BRCA1-associated mRNAs spanning the
full range of Fc observed in Figure 1b. Colors indicate the range of Fc obtained by microarray. (b) Fold
enrichment (Fe) of the 16 BRCA1-associated mRNAs determined by RT-qPCR. Data are expressed as
means ± SEM. n = 3. (c) Correlation between Fc calculated from the Affymetrix array and Fe measured
by RT-qPCR. Mean RIP fold change obtained by microarray (Fc) and mean RIP fold enrichment obtained
by RT-qPCR (Fe) were plotted and their correlation was assessed using the Spearman test. A significant
correlation was observed. (d) Quantification by RT-qPCR of each BRCA1-associated mRNA in total
extracts of MCF-7 cells (inputs). The TRMT10B value was arbitrarily set at 1 (white bar). Data are
expressed as means ± SEM. n = 3.

The microarray analysis was then performed for each replicate, and the probe intensities issued
from the BRCA1 and NR immunoprecipitations were averaged. Thus, for each mRNA, the binding to
control IgG and the binding to anti-BRCA1 antibody were measured in parallel. Only mRNAs showing
an IP BRCA1/IP NR ratio (Fc) greater than 1.5 and a p-value lower than 0.05 were retained. Overall,
among the 29591 mRNA detected on chip, 498 transcripts representing 2% of mRNAs expressed
in MCF7 cells, were 1.5 fold more abundant in BRCA1 immunoprecipitates compared to control
immunoprecipitates (Figure 1b). To provide a first view of the biological properties of the proteins
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encoded by these mRNAs, we conducted a gene ontology analysis. The identification of the most
enriched biological processes, molecular functions, and cellular compartments associated with these
mRNAs, revealed that most of the enriched processes have previously been related to BRCA1 tumor
suppressor activity such as stress response, RNA splicing, and cell cycle regulation. In addition, we
noticed that the enriched cellular compartments and molecular function, namely cytosol and nucleotide
binding, have been poorly associated with BRCA1 activity up to now (Figure 1c).

Next, we ascertained that the Fc observed for these mRNAs was correlated with their binding to
BRCA1 and not with their cytoplasmic abundance. We selected a subset of 16 mRNAs spanning the
full range of the Fc (Figure 2a).

We conducted three new independent RIP assays to measure the fold enrichment (Fe) of each
mRNA normalized against its total abundance (input) in the whole cell (Figure 2b). A significant and
positive correlation was observed between Fc obtained by microarray analyses and Fe (Figure 2c). The
absence of correlation between RIP Fe and mRNA levels (Figure 2d) underlines that BRCA1 associates
with these mRNA independently of their cytoplasmic quantity.

3.2. BRCA1 Controls Translation of a Subset of BRCA1-Associated mRNAs

To investigate whether BRCA1 regulates the translation of mRNA with which it associates, we
silenced BRCA1 expression in MCF-7 cells using a previously described BRCA1-targeting siRNA [17,20],
which achieved clear BRCA1 depletion (Figure 3a).

We assessed the translational efficiency (Te) of each of the 16 mRNAs by analyzing mRNA
abundance in polysomal fractions (i.e., actively translated mRNA) related to the total cytoplasmic
mRNA, and compared control and BRCA1-depleted cells, in three independent experiments (Figure 3b).

First we performed a polysome profiling following three sequential steps as follows. (1) A large
fraction (80%) of the cytoplasmic extract was loaded on top of a 10%–40% sucrose gradient. After
ultracentrifugation, untranslated mRNAs were present in the top fractions whereas 40S and 60S free
subunits, 80S ribosomes, and polysome-associated mRNAs were distributed along the bottom part of
the gradient. (2) The gradient was then collected using a flow cell coupled to a spectrophotometer to
measure and register continuously the concentration of RNA in each fraction of the gradient represented
by the OD at 254 nm. The gradient was collected into 14 fractions of equal volumes. The variations of
RNA concentration were reported as a function of the gradient fractions and thus determine which
fractions contain free ribosomal subunits, monosomal, or polysomal material. (3) Fractions containing
polysomal material were recovered, pooled, and processed for RNA extraction. In parallel, 20% of the
cytoplasmic extract was directly processed for RNA extraction.

By comparing profiles obtained with BRCA1-depleted cells with those of control cells, we observed
that they were similar, notably regarding the fractions 7–14 containing actively translated mRNA, thus
indicating that translation was not grossly altered by BRCA1.

Next, for each of the 16 mRNA of interest (see Figure 2), RT-qPCR were performed on total RNA
from BRCA1-depleted and control cells and on polysomal RNA from BRCA1-depleted and control
cells. Then the Te was calculated following a three steps procedure. (1) We first investigated the
variations in mRNA content within the total cytoplasmic RNA fraction in the presence and absence
of BRCA1, to determine whether BRCA1 modulates the amounts of cytoplasmic mRNAs reflecting
their rates of synthesis, transport, and stability (totRNA = si-BRCA1/si-Ctrl). (2) Then, to evaluate how
BRCA1 affects mRNA recruitment within polysomes, we analyzed the amount of polysomal RNA in
the presence and absence of BRCA1 (polyRNA = si-BRCA1/si-Ctrl). (3) Finally, we determined the Te
of each mRNA by calculating the following ratio: (change in abundance in polysomal mRNA)/(change
in abundance in total mRNA) (Te = polyRNA/totRNA). Therefore, for each mRNA expressed, the Te
value reveals the change in its association with polysomes independently to any change in its total
cytoplasmic amount.
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Figure 3. BRCA1 controls translation of a subset of BRCA1-associated mRNAs. (a) Immunoblots
confirming siRNA inhibition of BRCA1 (si-BRCA1) when compared with control siRNA (si-Ctrl) in
MCF-7 cells. α-Tubulin served as a loading control. (b) Polysomal profiles of MCF-7 cells in response
to depletion of BRCA1. 40S and 60S ribosomal subunits, 80S ribosomes, and polysomes were separated
by ultracentrifugation on sucrose gradients. One representative polysome profile of cells transfected
with control siRNA (si-Ctrl) and with BRCA1-targeting siRNA (si-BRCA1) is shown. (c) Analysis of the
translational efficiency (Te) of the 16 BRCA1-associated mRNAs identified in Figure 2. For BRCA1-depleted
cells (si-BRCA1) and for control cells (si-Ctrl), fractions 7–14 containing polysomal material were recovered,
pooled, and processed for RNA extraction. In parallel, a portion of the cytoplasmic extract was kept
unprocessed to perform total RNA extraction from si-BRCA1 and from si-Ctrl cells. For each of the 16
mRNA of interest, RT-qPCR was performed on total RNA and polysomal RNA from si-BRCA1 and si-Ctrl
cells. The Te was determined by calculating the following ratio: (change in abundance in polysomal
mRNA in the absence and presence of BRCA1)/(change in abundance in total mRNA in absence and
presence of BRCA1). Data are expressed as means ± SEM. n = 3.
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By applying cut-off values of 1.4, we found that loss of BRCA1 deregulated the translation of 7 out
of the 16 mRNAs analyzed (Figure 3c) by impacting their association with polysomes independently of
their abundance in the total cytoplasmic fraction (Figure S1). This cut-off value of 1.4 allowed selecting
a number of mRNA, which was found to (i) further analyze by Western blot and (ii) more importantly
further the investigation of their biological relevance using IHC on human breast cancer samples.

Taken together, these results established a set of seven mRNAs that were translationally controlled
by the BRCA1 protein, with ADAT2 being upregulated, and CCNL2, DBF4B, FNBP4, GOLGA8a,
RHPN1, and TRIM45 downregulated upon BRCA1 depletion.

3.3. BRCA1 Controls ADAT2, CCNL2, DBF4B, and TRIM45 Proteins in Mammary Epithelial Cell Lines

Next, we investigated whether modifications in translational efficiency of these mRNA upon
BRCA1 depletion lead to changes in the corresponding protein levels. Due to antibody limitations,
we could only perform immunoblots of four proteins, namely ADAT2, CCNL2, DBF4B, and TRIM45.
We found that BRCA1 depletion induced an increase in the ADAT2 protein and conversely reduced
CCNL2, DBF4B, and TRIM45 levels in MCF-7 cells, changes that correlated with the translational
efficiency trend (Figure 4a).

These findings were corroborated in other tumoral (MDA-MB-231) and non-tumoral (HMECs)
mammary cells (Figure 4b,c), indicating that BRCA1 deficiency alters the translation of selected mRNAs
and further affects the quantity of their protein products. Conversely, overexpression of BRCA1 in
MCF-7 cells decreased ADAT2 and increased CCNL2, DBF4B, and TRIM45 protein levels (Figure 4d).

To further ascertain the impact of BRCA1 overexpression on the function of the ADAT2 protein in
MCF-7 cells, we examined changes in anticodon inosine abundance. Indeed, since ADAT2 generates
inosine from adenosine at position 34 in the anticodon of tRNA [23], we quantified tRNA A34-to-I34
editing by comparing I34 levels in control MCF-7 cells and in those overexpressing BRCA1. We found
that overexpression of BRCA1 (Figure 4e), while not affecting ADAT2 mRNA levels (Figure 4f), but
reducing ADAT2 protein levels (Figure 4e), significantly reduced the levels of I34 in at least two
substrates of ADAT2: tRNASerAGA and tRNAValAAC (Figure 4g). Importantly, this reduction is
equivalent to that reported in HEK293T cells upon ADAT2 depletion [23]. These results show that
BRCA1 controlled the ADAT2 function by translationally modulating ADAT2 abundance.

3.4. Altered Expression of ADAT2, CCNL2, DBF4B, and TRIM45 Proteins in BRCA1 Deficient Human Breast
Cancers

Given the functional implications of BRCA1 inactivation on the translation of ADAT2, CCNL2,
DBF4B, and TRIM45, we wondered whether the levels of these proteins were correlated to BRCA1
status in breast tumors. We set up cohorts of patients with invasive breast cancers and documented
germ-line BRCA1 and BRCA2 pathogenic variant statuses (Table 1).

We analyzed by immunohistochemistry (IHC) the expression of ADAT2, CCNL2, DBF4B, and
TRIM45 in an exploratory cohort of 45 tumor samples, 26 from patients with no BRCA1 pathogenic
variant (WT BRCA1), and 19 from patients with documented BRCA1 pathogenic variant (MT BRCA1)
hampering BRCA1 protein production. Since patients in the MT BRCA1 and WT BRCA1 groups
were matched according to other histoprognostic factors (Scarff Bloom and Richardson (SBR) grade,
hormonal status, and histological subtype), BRCA1 expression was the only discriminant factor
between the two groups, enabling the comparison of ADAT2, CCNL2, DBF4B, and TRIM45 expressions
(Table 1).
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3.4. Altered Expression of ADAT2, CCNL2, DBF4B, and TRIM45 Proteins in BRCA1 Deficient Human 

Breast Cancers 

Figure 4. BRCA1 controls ADAT2, CCNL2, DBF4B, and TRIM45 proteins in mammary epithelial cell
lines. (a–c) Immunoblot analyses of ADAT2, CCNL2, DBF4B, and TRIM45 proteins from MCF-7 cells
(a), MDA-MB-231 cells (b), and HMECs (c) transfected with BRCA1-targeting siRNA (si-BRCA1) or
control siRNA (si-Ctrl). (d) Immunoblot analysis of ADAT2, DBF4B, CCNL2, and TRIM45 proteins
from MCF-7 cells transfected with BRCA1-expressing plasmid (+BRCA1) or empty plasmid as control
(+Ctrl). β-actin and α-tubulin were used as loading controls. (e) Immunoblot showing increased levels
of BRCA1 and decreased levels of ADAT2 in MCF-7 cells transfected with BRCA1-expressing plasmid
(+BRCA1) compared with control (+Ctrl). Numbers indicate the quantity of BRCA1 and ADAT2
in BRCA1-enriched cells compared to control cells and normalized against α-Tubulin. (f) RT-qPCR
analysis of ADAT2 mRNA in MCF-7 cells overexpressing BRCA1 (BRCA1) or a control vector (CTRL).
Experiments were performed as previously described [23,24]. n = 2. (g) Relative proportion of inosine
found at position 34 in tRNASerAGA and tRNAValAAC in BRCA1-enriched (BRCA1) compared to
control (CTRL) MCF-7 cells. Data are expressed as means ± SEM. n = 2. Results of the Fisher’s Exact
Test are indicated by * p < 0.05.
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Table 1. Clinical and tumor characteristics of breast carcinoma tissues.

Exploratory Cohort Validation Cohort
Characteristics WT BRCA1 MT BRCA1 MT BRCA1

n = 26 n = 19 n = 13

Tumor Type (%)
Invasive ductal

carcinoma 26 (100) 19 (100) 13 (100)

SBR Grade (%)
1 0 (0) 0 (0) 0 (0)
2 8 (31) 0 (0) 2 (15)
3 18 (69) 19 (100) 11 (85)

Subtype (%)
HR negative HER2

negative 17 (65) 13 (68) 10 (77)

HR positive HER2
negative 9 (35) 6 (32) 3 (23)

Age (year)
Median (min-max) 43 (28–65) 38 (23–61) 43 (36–65)

Staining scores showed that the expression of ADAT2 was significantly increased in MT BRCA1
tumors compared to WT BRCA1 tumors (Figure 5a,e), consistent with ADAT2 upregulation in
BRCA1-depleted mammary cell lines. Conversely, staining scores of CCNL2, DBF4B, and TRIM45
were significantly decreased in MT BRCA1 tumors, supporting the above findings of a downregulation
of these proteins in BRCA1-depleted cells (Figure 5b–e).

Interestingly, ADAT2 appeared as the sole protein to be enriched in BRCA1-deficient tumors and
was readily measured by IHC. This raised the possibility that ADAT2 could constitute a candidate
biomarker of BRCA1 deficiency, since determining the BRCA1 status remains an issue. We analyzed
ADAT2 protein levels in a validation cohort of 13 tumor samples from MT BRCA1 patients (Figure 5a
and Table 1) and found that ADAT2 staining was statistically different compared to the control group
(WT BRCA1), confirming that ADAT2 high expression was correlated with low expression of BRCA1
in breast tumor samples.Cells 2020, 9, x FOR PEER REVIEW 13 of 19 

 

 

Figure 5. Altered expression of ADAT2, CCNL2, DBF4B, and TRIM45 proteins in BRCA1 deficient 

human breast cancers. (a–d) Score of ADAT2 (a), CCNL2 (b), DBF4B (c), and TRIM45 (d) in breast 

cancer samples of 45 patients (exploratory cohort): 26 patients non-mutated (WT BRCA1) and 19 

patients mutated (MT BRCA1) for BRCA1. For ADAT2, a validation cohort of 13 BRCA1 mutated 

patients (MT BRCA1 validation) was additionally analyzed. Stacked bars represent the fraction of 

total tumor samples (expressed in %) from a tissue microarray (TMA) with low (white bar) and high 

(black bar) scores. Results of Chi-square test are indicated by NS = non-significant; ** p < 0.01; *** p < 

0.001. Corresponding number of samples are presented under histograms. (e) Representative TMA 

immunohistochemical images demonstrating differential ADAT2, CCNL2, DBF4B, and TRIM45 

staining between BRCA1 mutated (MT BRCA1) and BRCA1 non-mutated (WT BRCA1) tumors. Scale 

bars = 100 µm. 

Figure 5. Cont.



Cells 2020, 9, 941 12 of 18

Cells 2020, 9, x FOR PEER REVIEW 13 of 19 

 

 

Figure 5. Altered expression of ADAT2, CCNL2, DBF4B, and TRIM45 proteins in BRCA1 deficient 

human breast cancers. (a–d) Score of ADAT2 (a), CCNL2 (b), DBF4B (c), and TRIM45 (d) in breast 

cancer samples of 45 patients (exploratory cohort): 26 patients non-mutated (WT BRCA1) and 19 

patients mutated (MT BRCA1) for BRCA1. For ADAT2, a validation cohort of 13 BRCA1 mutated 

patients (MT BRCA1 validation) was additionally analyzed. Stacked bars represent the fraction of 

total tumor samples (expressed in %) from a tissue microarray (TMA) with low (white bar) and high 

(black bar) scores. Results of Chi-square test are indicated by NS = non-significant; ** p < 0.01; *** p < 

0.001. Corresponding number of samples are presented under histograms. (e) Representative TMA 

immunohistochemical images demonstrating differential ADAT2, CCNL2, DBF4B, and TRIM45 

staining between BRCA1 mutated (MT BRCA1) and BRCA1 non-mutated (WT BRCA1) tumors. Scale 

bars = 100 µm. 

Figure 5. Altered expression of ADAT2, CCNL2, DBF4B, and TRIM45 proteins in BRCA1 deficient
human breast cancers. (a–d) Score of ADAT2 (a), CCNL2 (b), DBF4B (c), and TRIM45 (d) in breast
cancer samples of 45 patients (exploratory cohort): 26 patients non-mutated (WT BRCA1) and 19
patients mutated (MT BRCA1) for BRCA1. For ADAT2, a validation cohort of 13 BRCA1 mutated
patients (MT BRCA1 validation) was additionally analyzed. Stacked bars represent the fraction of
total tumor samples (expressed in %) from a tissue microarray (TMA) with low (white bar) and
high (black bar) scores. Results of Chi-square test are indicated by NS = non-significant; ** p < 0.01;
*** p < 0.001. Corresponding number of samples are presented under histograms. (e) Representative
TMA immunohistochemical images demonstrating differential ADAT2, CCNL2, DBF4B, and TRIM45
staining between BRCA1 mutated (MT BRCA1) and BRCA1 non-mutated (WT BRCA1) tumors. Scale
bars = 100 µm.

4. Discussion

We herein demonstrated that the BRCA1 protein was a translational regulator, which controlled
the translational efficiency of a subset of mRNAs with which it associates.

To our knowledge, genome-wide association of mRNA with BRCA1 has not been described
previously. In addition, few studies performing small scale analysis of BRCA1-dependent RIP identified
some BRCA1-bound RNA [25–27]. However, no direct association with BRCA1 has been shown until
now as two large scale analyses searching for RNA binding proteins by using UV-crosslink failed
to identify BRCA1 among the proteins identified [28,29]. These data and our results underscored
the importance of further deciphering at the molecular level the ribonucleoprotein complexes in
which BRCA1 protein associates to mRNA. A search for particular RNA motif (Figure S2) within
BRCA1-bound mRNAs identified 14 motifs among which only two (motif #2 and motif #7) happened
to be recognized by the RBPs SRP14 and KHSRP respectively. Thus, it is tempting to speculate that
BRCA1 regulates the translation of subsets of mRNA defined by either motif #2 or motif #7, through its
interaction with specific translation initiation complex containing either SRP14 or KHSRP.
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The 5′untranslated regions (5′UTRs) and 3′untranslated regions (3′UTRs) of mRNA contain
cis-regulatory sequences that allow direct binding with trans-regulators and consequently contribute
to modulate the translational efficiency of the corresponding mRNA [30]. Among them, some are
secondary structures such as Internal Ribosome Entry Sites, stem-loops, and RNA G-quadruplex.
Thus, it will be worth examining the features of the 5′UTR and the 3′UTR of the mRNA translationally
controlled by and associated to the BRCA1 protein, to further decipher at the molecular level the mode
of action of BRCA1. Especially ribonucleoprotein complexes containing both the BRCA1 protein and
CCNL2, DBF4B, TRIM45, or ADAT2 mRNA will need deep scrutiny to shed light on the molecular
mechanism through which BRCA1 regulates the translational efficiency of these mRNA.

Low BRCA1 expression in cells along with BRCA1 inactivation in breast tumors is associated with
reduced expression of CCNL2, DBF4B, and TRIM45. These proteins are respectively implicated in
mRNA splicing and apoptosis, DNA replication, and cell cycle regulation, transcription repression
of pro-proliferative signaling, all biological functions known to contribute to the tumor suppressive
activity of BRCA1.

Firstly, CCNL2 transcriptionally regulates pre-mRNA splicing [31,32]. Its overexpression induces
apoptosis of human hepatocellular and gastric carcinoma cell lines [31,33], while its knockdown
promotes growth of pulmonary artery smooth muscle cells [34]. A recent preclinical study conducted in
breast cancer cell lines and tissue arrays reported that CCNL2 mRNA transcript expression was lower
in breast cancer than in normal breast tissue [35]. Therefore, positively controlling CCNL2 translation
may represent a novel mechanism through which BRCA1 exerts its tumor suppressive activity.

Secondly, DBF4B is required for the efficient progression of S and M phases [36], and for DNA
replication [37]. Accordingly, DBF4B knockdown leads to an increase in DNA damage in HeLa cells
and affects cell cycle in the Xenopus laevis model [38]. Therefore, BRCA1 may control DNA replication
and S phase progression in response to DNA damage, two hallmarks of its tumor suppressor activity,
through at least in part positive regulation of DBF4B translation.

Thirdly, TRIM45 belongs to the family of tripartite motif proteins that play important roles in
cell proliferation, differentiation, and apoptosis. TRIM45 suppresses cell proliferation by negatively
regulating the mitogen-activated protein kinase signaling pathway [39] and the transcriptional activity
of NF-kB [40]. In a large-scale gene expression array analysis conducted in breast cancer samples
from Taiwanese women, TRIM45 expression was diminished [41]. Consistently, TRIM45 was recently
identified as a tumor suppressor in the brain [42]. Here, the translational control of TRIM45 by BRCA1
that leads to low TRIM45 levels in BRCA1-deficient breast tumors, may represent a novel mechanism
contributing to the onco-suppressive role of BRCA1.

Our most intriguing finding was however the repression of ADAT2 expression and function
by BRCA1. ADAT2 is the catalytic subunit of the heterodimer ADAT2/ADAT3 responsible for the
post-transcriptional modification of tRNA at its first anticodon (wobble) position (position 34). The
inosine, (I34), which is generated from adenosine, can translate not only codons ending in uracil, but
also those ending in cytosine or adenine. This modification enlarges the codon recognition capacity
during protein synthesis [43,44]. We previously suggested that ADAT might be controlling specific
genetic programs [45]. Therefore, the BRCA1-driven negative regulation of ADAT2 may silence
specific genetic programs the codon usage of which makes their translation dependent on tRNAs
with I34 [46]. Emerging evidence indicates that tRNA expression and tRNA repertoire are modulated
during tumorigenesis [47,48]. Perturbations of a number of tRNA modifications and altered expression
of the corresponding modifying enzymes such as TRMT12, NSUN2, or DNMT2, have been linked
to numerous human diseases, including cancer, neurological disorders, and mitochondrial-linked
disorders [49,50]. Thus, ADAT2 up-regulation observed upon BRCA1 inactivation in breast tumors
exposes A34-to-I34 editing as a novel tRNA modification that is altered in cancer.

These findings raise the possibility of using ADAT2 as a predictive biomarker of efficacy of
anti-PARP-based therapy. Indeed, since PARP inhibitors are now available for the treatment of
metastatic breast cancer [51], ADAT2 could be used as a predictor of efficacy of such treatments. Of
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course, this would need further exploration, in particular in patients with BRCA1 pathogenic variant
in the tumor (i.e., somatic BRCA1 pathogenic variant).

The anti-PARP-based therapy recently proposed to patients with BRCA1 deficiency makes the
identification of BRCA1 pathogenic variant carriers essential. Today, BRCA1 gene sequencing remains
the mainstay of BRCA1 pathogenic variants identification [52]. However, widespread BRCA1 genetic
testing in unselected individuals is hardly feasible [53]. A simple IHC assay to monitor BRCA1
deficiency directly in tumor biopsies could be more convenient and affordable [54]. So far, none
of the many attempts of setting up IHC BRCA1 staining to assign the tumor BRCA1 status has
been successful [55–58]. Our analysis shows a correlation between the high level of ADAT2 and
the BRCA1 deficiency among BRCA1 deficient breast tumor samples. Therefore, it could be worth
examining further whether detection of ADAT2 by IHC could be proposed as a first screen for BRCA1
deficiency. Moreover, sporadic breast cancer cases, which harbor BRCA1 deficiency, may benefit from
this IHC since they become more and more important in clinical practice, with respect to anti-PARP
based therapy. Nevertheless, our analysis is based on a relatively small sample size and so further
validation on a large cohort will be required to fully assess the potential of ADAT2 as a marker of
BRCA1 deficiency.

BRCA1-mediated ADAT2 regulation may contribute to increase the diversity of the proteome.
In addition we have shown that BRCA1 regulates protein synthesis [17] and it was reported that by
its interaction with RNA Polymerase I and RNA Polymerase III machineries, BRCA1 could regulate
synthesis of rRNA and tRNA [59,60]. This strongly supports the notion that BRCA1 is a translational
regulator, a key function for its tumor suppressive activity as it has been shown for the P53 tumor
suppressor [61,62].

5. Conclusions

In this study, we provided evidence that BRCA1 altered translational efficiency of subsets of
mRNAs involved in major programs in human tumors. The BRCA1 protein associated with these
mRNA in ribonucleoprotein complexes and modulated their translational efficiency. We focused on
ADAT2, CCNL2, DBF4B, and TRIM45 mRNAs that played key roles in cancer biology to demonstrate
that alteration of their translational efficiency occurred via a BRCA1-dependent mechanism in cultured
cells and in patient tumors. This study raised the possibility of using ADAT2 as a predictive biomarker
of efficacy of anti-PARP-based therapy. These findings are crucial not only for basic research but also
for clinical outcome since most BRCA1 mutated tumors are defined as “triple negative breast tumors”,
which are associated with a very poor prognosis.
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