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MicroRNA-17-92 regulates myoblast proliferation and
differentiation by targeting the ENH1/Id1 signaling axis

H Qiu1,2,5, N Liu1,5, L Luo1,5, J Zhong1, Z Tang1, K Kang3, J Qu2, W Peng2, L Liu4, L Li*,1 and D Gou*,1,6

Myogenesis is an important biological process that occurs during both skeletal muscle regeneration and postnatal growth.
Growing evidence points to the critical role of microRNAs (miRNAs) in myogenesis. Our analysis of miRNA expression patterns
reveal that miRNAs of miR-17-92 cluster are dramatically downregulated in C2C12 cells after myogenesis stimulation, are strongly
induced in mouse skeletal muscle after injury and decrease steadily thereafter and are downregulated with age in skeletal muscle
during mouse and porcine postnatal growth. However, their roles in muscle developmental processes remain elusive. We show
that the miR-17-92 cluster promotes mouse myoblast proliferation but inhibits myotube formation. miR-17, -20a and -92a target the
actin-associated protein enigma homolog 1 (ENH1). The silencing of ENH1 increased the nuclear accumulation of the inhibitor of
differentiation 1 (Id1) and represses myogenic differentiation. Furthermore, the injection of adenovirus expressing miR-20a into the
tibialia anterior muscle downregulates ENH1 and delays regeneration. In addition, the downregulation of miR-17-92 during
myogenesis is transcriptionally regulated by E2F1. Overall, our results reveal a E2F1/miR-17-92/ENH1/Id1 regulatory axis during
myogenesis.
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Myogenesis is an important event during postnatal muscle
growth and regeneration.1,2 It is a multistep process during
which myoblasts proliferate, withdraw from the cell cycle,
differentiate into myocytes, fuse into multinucleated myotubes
with centralized nuclei, and undergo further maturation.3

Myogenic regulatory factors (MRFs) including MyoD, Myf5,
myogenin and MRF4 work in conjunction with E proteins to
activate muscle gene expression.4,5 On the other hand, one of
the master myogenesis inhibitors, inhibitor of differentiation
(Id), competitively binds to MRF and/or E proteins and
subsequently inhibits myogenic differentiation.6 However, the
induction of Id1 reverses the neonatal lethality of transgenic
mice overexpressing myogenin in skeletal muscle.7 It is clear
that investigating the mechanism by which muscle cells
modulate the interaction between myogenic factors and Id is
required for a better understanding of muscle growth and
regeneration.
Increasing evidence suggests that microRNAs (miRNAs)

are involved in skeletalmuscle development and regeneration.
To date, ~ 30 miRNAs have been experimentally identified as
myogenesis-associated miRNAs.8–10 These miRNAs, which
have been discovered primarily from studies using the in vitro
model of skeletal muscle myogenesis, mouse C2C12 cells,
play important roles in skeletal muscle regeneration and
growth. The loss of miR-206 or the knockdown of miR-26a

delays the normal kinetics of muscle regeneration in mice.11,12

The double knockout of miR-208b and miR-499 causes a
dramatic loss of type I fibers in the soleus muscle in mice.13

However, it is clear that there are still many myogenesis-
associated miRNAs that have yet to be discovered.
In this study, to identify additional potential myogenic

miRNAs, we analyzed the miRNA expression profiles of
proliferating and differentiating C2C12 cells using a novel
method of S-Poly(T) Plus real-time PCR.14,15 This method
is one of the most sensitive and accurate methods for the
quantification of miRNAs. Of the 720 detected miRNAs, 55
were differently expressed by at least fourfold. Among these,
three members of the miR-17-92 cluster (miR-17, -20a and
-92a) were highly expressed in the proliferating C2C12
myoblasts and significantly decreased in the differentiating
C2C12 cells. Although miR-17-92 has been well-studied for its
role in tumorigenesis,16–19 its role in skeletal muscle myogen-
esis remains undetermined. Because the proliferation of
skeletal muscle cells is an initial step in muscle growth and
regeneration,20 it is important to understand the regulatory
network through which miR-17-92 controls the steps of
myogenesis. We thus further demonstrated the expression
pattern of the miR-17-92 cluster during myogenesis, muscle
regeneration and postnatal growth. In vitro and in vivo studies
established that miR-17-92 plays an important role in skeletal
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muscle cell myogenesis by downregulating enigma homolog 1
(ENH1), by directly targeting its 3′ untranslated regions
(3′UTR). Finally, we showed that E2F1 transcriptionally
regulates miR-17-92 during muscle myogenesis. Therefore,
our study not only elucidates the roles of miR-17-92 in skeletal
muscle differentiation and development, it reveals the
mechanism which miRNA regulates myogenesis by modulat-
ing a well-established inhibitor of myogenic differentiation.

Results

miR-17-92 was downregulated during myoblast myogen-
esis, skeletal muscle regeneration and postnatal growth.
To explore the potential miRNAs that are involved in muscle
development, we first analyzed the expression patterns of
miRNAs during myogenesis. We used the mouse C2C12
myoblast, an immortal skeletal muscle cell line that has been
proven to be an ideal cell model for the in vitro study of
myoblast myogenesis.21,22 The C2C12 myoblasts proliferated
in growth medium (GM) and were induced to differentiate into
myotubes with serum depletion in differentiation medium
(DM) (Supplementary Figures S1a and b). A total of 720
miRNAs were quantified using the S-poly (T) plus miRNA
quantitative real-time PCR (qRT-PCR) method (Figures 1a
and b). After two rounds of screening, 55 miRNAs were found
to be differentially expressed by more than fourfold between
the myoblasts (cells in GM) and the myotubes (cells in DM4).
A total of 16 of these 55 miRNAs have been reported to
be myogenesis-associated miRNAs.9,23,24 For the 39 novel
candidates, 30 miRNAs were found to be upregulated and
only 9 were found to be downregulated in the myotubes
(Figure 1a). The downregulated miRNAs include three
members of the miR-17-92 cluster (miR-17, - 20a and - 92a,
Figure 1b). Further investigation at different differentiation
time points confirmed that the miR-17-92 cluster (miR-17,
-18a, -19a, -19b, -20a and -92a) is expressed at high levels in
the proliferating myoblasts but at low levels during differentia-
tion (Figure 1c). We next analyzed the expression of this
miRNA cluster during skeletal muscle regeneration using the
Cardiotoxin (CTX) induced skeletal muscle damage and
regeneration model, which mimics in vivo muscle differentia-
tion. As anticipated, following the CTX injection into the
mouse tibialis anterior muscle, the activated muscle satellite
cells proliferate (1–3 days) and then differentiate to replenish
the damaged myofibers (3–10 days), as confirmed by
hematoxylin and eosin (H&E) staining and the mRNA
expression patterns of Pax7 and MyoD (Supplementary
Figures S2 and S3). We found that miR-17-92 was highly
expressed 3 days post injury and subsequently decreased in
expression thereafter (Figure 1d). The miR-17-92 cluster is
involved in organ development.17,25 However, little is known
about its temporal expression pattern during skeletal muscle
development. The age-dependent decrease in the expres-
sion of miR-17-92 was found in the porcine longissimus dorsi
muscles and the mouse hind leg muscles during postnatal
development (Figure 1e and f). Taken together, these data
indicate that the downregulation of miR-17-92 is associated
with myoblast myogenesis and skeletal muscle development
and regeneration.

miR-17-92 promotes C2C12 myoblast proliferation but
prevents differentiation. To study the functions of miR-17-92,
we first investigated whether miR-17-92 affects myoblast
proliferation. We infected C2C12 cells with a lentivirus
individually overexpressing or inhibiting three major miRNAs
of this cluster (miR-17, - 20a and - 92a). Based on the ethynyl-
2ʹ-deoxyuridine (EdU) incorporation assay, we observed that
the overexpression of miR-17, -20a or -92a significantly
increased cell proliferation (1.37-fold, 1.44-fold and 1.43-fold,
respectively, Po0.01) compared with the control virus
(miR-NC) (Figure 2a and Supplementary Figure S4a). In
contrast, the knockdown of miR-17, -20a or -92a caused the
opposite effect (Figure 2b and Supplementary Figure S4b).
These data show that miR-17, -20a and -92a have pro-
proliferative effects.
Next, we investigated the role of the miR-17-92 cluster on

C2C12 differentiation. First, we performed dual-luciferase
reporter assays by co-transfecting C2C12 myoblasts with
plasmids overexpressing miR-17, -20a or -92a and the
myogenin promoter-driven Firefly luciferase. The overexpres-
sion of miR-17, -20a or -92a reduced the luciferase activity
(Figure 2c), implying that these miRNAs affect myogenic
differentiation. The C2C12 myoblasts were then transfected
with the miR-17, -20a or -92a mimics, or the control (miR-NC)
and transferred to DM. As shown in Figure 2d, the over-
expression of miR-17, -20a or -92a dramatically blocked
myotube formation when compared with the miR-NC group.
Their inhibitory effects on muscle differentiation were further
confirmed by western blot as indicated by a decrease in
myogenin protein expression levels in C2C12 cells or in
primary mouse myoblasts (Figure 2e and Supplementary
Figure S5). Collectively, these results indicate that miR-17,
-20a and -92a promote proliferation but have inhibitory effects
on myoblasts differentiation.

ENH1 is a common target of miR-17, - 20a and - 92a and
represses myogenesis. We next investigated the mechan-
ism through which miR-17-92 regulates myogenesis by
searching for miRNA targets that might mediate its effects.
According to TargetScan 6.2 (Cambridge, MA, USA) and
FINDTAR3 (Shenzhen, China), ENH1 is a common predicted
target of miR-17, -20a and -92a. ENH1 revealed an inverse
relation with miR-17, - 20a or - 92a expression not only during
C2C12 myogenesis but also during skeletal muscle regen-
eration (Figures 3a and b and Supplementary Figure S6),
indicates that ENH1 is a potential target of miR-17, -20a and
-92a in regulating muscle cell proliferation and differentiation.
ENH1 has one binding site (2234-2257) in its 3′UTR for
miR-17 and -20a and another binding site (2791-2811) for
miR-92a (Figure 3c). As shown in Figure 3d, the over-
expression of miR-17, -20a or -92a significantly repressed the
luciferase activities of the wild-type ENH1 3′UTR reporter
(0.58-, 0.73- and 0.60- fold, Po0.001, respectively), whereas
these repressions were completely abolished when their
corresponding binding sites were mutated. To further validate
our results, the C2C12 cells were transfected with the
miR-17, - 20a, - 92a mimics or the control mimic (miR-NC).
Consistent with the above 3′UTR dual-luciferase assay, the
overexpression of miR-17, - 20a or -92a resulted in a
decrease in the expression of ENH1 at the protein level
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(0.59-fold, Po0.05, 0.36-fold, Po0.01 and 0.77-fold,
Po0.05, respectively, Figure 3e). In contrast to miRNA
overexpression, transfection of miR-17, -20a or -92a inhibi-
tors in the C2C12 cells resulted in an increase of ENH1
protein about 1.5-fold (Po0.01) (Figure 3f). Based on these
data, we conclude that ENH1 is a direct target of miR-17,
- 20a and - 92a in myoblasts.
To further investigate the role of the ENH1 on C2C12

myogenesis, we constructed the si-ENH1 vector and con-
firmed its efficiency by western blot (Figure 3g). We subse-
quently transferred the si-ENH1 myoblasts to DM for 4 days.
Consistent with the inhibitory effect of miR-17-92 on muscle
differentiation, the silencing of ENH1 dramatically blocked
myotube formation and repressed myogenin protein expres-
sion (Figures 3h and i). Again, consistent with the pro-
proliferative effects of miR-17, -20a and -92a, the silencing of
ENH1 significantly increased the cell proliferation rate
(Figure 3j and Supplementary Figure S7). Conversely, the

forced expression of ENH1 in C2C12 myoblasts reduced
proliferation (Figure 3k and Supplementary Figure S7). These
results show that miR-17, - 20a and - 92a repress ENH1
expression, which in turn contributes to their functions of
promoting muscle proliferation and preventing differentiation.

miR-17-92 and ENH1 modulate the abundance of Id1.
The process of myogenic differentiation is regulated by at
least three protein families including E protein, muscle
regulatory factor and Id proteins.6 Ids (Id1–4) are a group of
ubiquitous nuclear proteins that bind to MRF and E protein,
which prevents the heterodimerization of MRF and E protein
in nucleus and subsequently inhibits myogenic differen-
tiation.26,27 ENH proteins are well-established regulators of
the subcellular localization of helix–loop–helix proteins inclu-
ding Ids.28 In C2C12 myoblasts, Id1 mRNA is present at
higher levels than Id2, Id3 or Id4 in myoblasts (Supple-
mentary Figure S8). We thus investigated the regulatory
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Figure 1 miR-17-92 cluster is downregulated during skeletal muscle differentiation, regeneration and development. (a) Workflow of the identification of myogenesis-
associated miRNAs. (b) Volcano plot showing the differentially expressed miRNAs in differentiated C2C12 myotubes compared with myoblasts. The negative Log2-adjusted
P-values (y-axis) are plotted against the Log2 fold changes in expression (x-axis). The horizontal dashed line indicates the threshold for significance (Po0.05) and the vertical
dashed line indicates the upregulated (right side) and downregulated (left side) miRNAs. miR-17, -20a and -92a are indicated. (c) miR-17-92 is downregulated during myogenesis.
C2C12 mouse myoblasts were cultured in growth medium (GM) and then switched to differentiation medium (DM) for 1–7 days. Quantitative RT-PCR was performed to analyze
the expression level of miR-17, -18a, -19a, -20a and -92a. The data were normalized to SNORNA234. miR-17-92 expression in myoblasts cultured in DM was set to 1.0. The error
bars depict the means±S.D. of three independent cell samples. (d) miR-17-92 is upregulated in skeletal muscle on days 1–3 and downregulated on days 5–10 post-CTX injury.
miR-17-92 expression in skeletal muscle before the CTX injection was set to 1.0. The error bars depict the means± S.D. of the samples with six mice in each group. The rest is as
in c. (e) miR-17-92 expression in porcine skeletal muscle during post-natal development. Quantitative RT-PCR validated the level of miR-17-92 in porcine longissimus dorsi
muscles on postnatal days 35, 63, 98 and 161. The Data were normalized to SNORAN202. miR-17-92 expression on postnatal day 35 was set to 1.0. The error bars depict the
means± S.D. of the samples with six pigs in each group. (f) miR-17-92 expression in mouse skeletal muscle during postnatal development. qRT-PCR validated the level of
miR-17-92 in mouse hind legs on days 2, 14, 28 and 42. miR-17-92 expression on day 2 was set to 1.0. The rest is as in d
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axis of miR-17/20a/92a-ENH1-Id1 in muscle differentiation.
Id1 protein was downregulated during differentiation
(Figure 4a), which displayed an inverse correlation with
ENH1 (Supplementary Figure S9a). This inverse correlation
was found only in the late phage of muscle regeneration
(Supplementary Figures S9b and c). On the other hand,
ENH1 has been reported to promote the cytoplasmic
sequestration of Id2 during neuronal cell differentiation.28

We thus investigated whether ENH1 regulates the Id1 during
myogenic differentiation.
We found that Id1 was less abundant in the cytoplasm

as well as in the nucleus at DM4 (Figure 4b). Consistent with
the study of Sun et al.29 that Id1 localizes in the nucleus
of proliferating C2C12 myoblasts while in the cytoplasm
of mature myotubes, little exogenous Id1 was found in the
nucleus of the differentiating C2C12 cells (Figure 4c). How-
ever, the exogenous Id1 wasmostly localized in the nucleus of

si-ENH1 myoblasts (Figure 4d). Moreover, the silencing of
ENH1 caused an increase of endogenous Id1 in the whole cell
(1.53-fold, Po0.05) and in the nucleus (1.32-fold, Po0.05)
(Figure 4e). These results show that the abundance of Id1 in
the nucleus depended on the ENH1 expression level.
Consistent with the effects of si-ENH1, the overexpression

of miR-17, -20a or -92a resulted in more exogenous Id1
accumulated in the nucleus (Figure 4f). Further analysis
shows that the overexpression of miRNA reduced ENH1
protein expression while increased the abundance of endo-
genous Id1 in the cells at GM and DM4 (Figure 4g). Moreover,
a mixture of miR-17, -20a and -92a mimics increased the
Id1 protein level in the cytoplasm (1.30-fold, Po0.05) but not
in the nucleus (1.1-fold, P40.05) (Figure 4h). A further qPCR
showed that the overexpression of miR-17, - 20a and - 92a
increased the transcriptional level of Id1 in the C2C12 cells
(Figure 4i). Therefore, although ENH1 could reduce the
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nuclear Id1 in myoblasts, miR-17-92 modulates the protein
level of Id1 mostly by other regulatory axis rather than ENH1-
mediated pathway.

miR-20a promotes proliferation but prevents differentia-
tion of regenerating skeletal muscle. Considering the fact
that miR-20a effectively inhibits ENH1 expression in vitro
(Figure 3e), we injected an adenovirus overexpressing
miR-20a or its control (Ad-miR-NC) into the tibialis anterior
muscles of mice and then evaluated the miR-20a-mediated
regulation of muscle proliferation and differentiation using

the CTX-induced skeletal muscle damage and regeneration
model. Ten days after the Ad-miR-20a injection, miR-20a was
upregulated (1.74-fold, Po0.05) in the muscle (Figure 5a),
and the miR-20a target protein ENH1 was dramatically
downregulated in the Ad-miR-20a mice (Figure 5b). As
previously described, miR-17-92 was upregulated 1–3 days
post injury, which is the active phase of muscle proliferation
(Figure 1d). We investigated whether the overexpression
of miR-20a affects muscle cell proliferation. The results of
H&E staining of muscle cross-sections show that Ad-miR-20a
induced an accumulation of mononucleated cells in the
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damaged area at 1 and 3 days post injury (Supplementary
Figure S10). Therefore, miR-20a enhanced the proliferative
activity of the muscle satellite cells, which is evidenced by the
increases in Ki67 stained cells (2.20-fold, Po0.01) and

PCNA protein levels (2.07-fold, Po0.05) (Figures 5d and e).
As previously described, miR-20a was downregulated
3–10 days post injury (Figure 1d). We next investigated
whether the overexpression of miR-20a would impact muscle
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differentiation as was observed in vitro. Under normal condi-
tions, new myofibers containing central nuclei were formed to
repair damaged fibers on day 5 post injury (Supplementary
Figure S2). However, Ad-miR-20a downregulated the protein
levels of myogenin (0.65-fold, Po0.05) in the tibialis anterior

muscle (Figure 5f) and delayed the growth of new myofibers
(Figures 5c and g), which is evidenced by the analysis of
myosin-stained cross-sectional areas revealing a decrease in
myofiber sizes in the Ad-miR-20a muscle (Figure 5h), with an
average size of 351.7±10.6 versus 638.8±19.2 μm2

D
ay

 0
D

ay
 5

ENH1

ENH1

0.0

0.5

1.0

1.5

2.0 *
R

el
at

iv
e 

m
iR

-2
0a

 le
ve

l

Ad-miR-NC
Ad-miR-20a

0.0

0.5

1.0

1.5

2.0
*

Pr
ot

ei
n 

qu
an

tif
ic

at
io

n
of

 P
C

N
A

Ad-miR-NC
Ad-miR-20a

Day 0 Day 5
0.0

0.5

1.0

1.5

2.0

2.5 Ad-miR-NC Ad-miR-20a

Pr
ot

ei
n 

qu
an

tif
ic

at
io

n
of

 E
N

H
1

*** **

0.0

0.5

1.0

1.5 *

Pr
ot

ei
n 

qu
an

tif
ic

at
io

n
of

 m
yo

ge
ni

n

Ad-miR-NC
Ad-miR-20a

0
20
40
60
80

100 **

Ad-miR-NC Ad-miR-20a

Ad-miR-20a, Day 5Ad-miR-NC, Day 5

Ad-miR-NC, Day 3 Ad-miR-20a, Day 3

Ad-miR-NC, Day 5 Ad-miR-20a, Day 5

55

70
kDa

55

70

PCNA35

55

kDa

Myogenin35

55

kDa

0
10
20
30
40
50
60
70

%
 o

f m
yo

fib
re

 
co

nt
ai

ni
ng

 c
en

tr
al

 n
uc

le
i

Ad-miR-NC
Ad-miR-20a

Ad-miR-NC
Ad-miR-20a

0

200

400

600

800

C
ro

ss
 s

ec
tio

na
l a

re
a 

of
re

ge
ne

ra
tin

g 
m

yo
fib

er
s 

(μ
m

2 )

**

β-tubulin

β-tubulin

β-tubulin

β-tubulin

K
i6

7 
po

si
tiv

e 
ce

lls
 (%

)

Ad-miR-NC, Day 10 Ad-miR-20a, Day 10

Ad-miR-NC Ad-miR-20a

Ad-miR-NC

Ad-miR-NC

M1 M2 M3 M1 M2 M3

M1 M2 M3 M1 M2 M3

Ad-miR-20a

Ad-miR-20a

M1 M2 M3 M1 M2 M3

<200 200-400 400-600 600-800 800-1000 >1000

Fibre cross section area (μm2)

Figure 5 Ad-miR-20a delays skeletal muscle regeneration after the CTX injury. C57BL/6 mice were injected in their tibialis anterior muscles with CTX. Adenoviruses
expressing miR-20a (Ad-miR-20a) or control (Ad-miR-NC) were injected into the tibialis anterior muscles 10 days prior to the CTX injection. The tibialis anterior muscles were
collected on 0, 1, 3, 5 and 10 days post-CTX injury. (a) Quantitative PCR shows that the injection of Ad-miR-20a increases miR-20a in the mouse tibialis anterior muscles 10 days
after the adenoviruses injection. qRT-PCR of miR-20a normalized to SNORNA234 is shown relative to control adenovirus-injected samples. The error bars depict the means±
S.D. of the samples from six mice. *Po0.05. (b, left) Injection of Ad-miR-20a in the tibialis anterior muscles downregulates the ENH1 protein level as detected by western blot on
post-CTX injury day 0 and 5 (top panel). M1, mouse 1; M2, mouse 2; M3, mouse 3. Beta-tubulin served as the loading control. (Right) The ENH1 proteins were quantified, and the
data were expressed relative to the control adenovirus-injected (Ad-miR-NC) samples. The data are presented as the means±S.D. of the samples from five mice. **Po0.01 and
***Po0.001. (c) H&E images of the tibialis anterior muscle cross-sections of mice injected with Ad-miR-NC or Ad-miR-20a on 5 and 10 days post-CTX injury. Arrows indicate the
regenerating myofibers. Scale bar, 200 μm. (d, left) Immunostaining of Ki67 in the tibialis anterior muscle on day 3 after the CTX injury. Scale bar, 200 μm. (Right) Quantification
of Ki67-positive cells from 10 random fields per sample. The error bars depict the means± S.D. of the samples from six mice. *Po0.05. (e, left) Western blot for PCNA in the
tibialis anterior muscles on day 1 after the CTX injury. (Right) Quantification of PCNA protein levels. Ad-miR-20a increased the protein levels of PCNA in the tibialis anterior
muscle. The results were normalized to beta-tubulin and expressed relative to the control. The error bars depict the means± S.D. of samples from five mice. *Po0.05. (f) Ad-
miR-20a downregulated the protein expression of myogenin in the tibialis anterior muscles on day 3 post-CTX injury. Western blot (left) and the quantification (right) of myogenin in
the tibialis anterior muscles. The rest is as in e. (g) Immunostaining of MHC in regenerating fibers on day 5 post-CTX injury. Scale bar, 200 μm. (h) Analysis of the cross-sectional
areas of regenerating fibers on day 5 post injury using the ImageJ software. Only myofibers containing centralized nuclei were measured. The error bars depict the means±S.D.
of samples from five mice. (i) Average area of the cross-sections of regenerating fibers on day 5 post-CTX injury. Approximately eight random fields were captured, and41500
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(Ad-miRNA-20a versus control muscle, Po0.01; Figure 5i).
These results indicate that miR-20a represses muscle
differentiation during muscle regeneration. At 10 days post
injury, the majority of the damaged myofibers were repaired in
the control muscle, whereas abundant mononucleated cells
and regenerating myofibers persisted in the Ad-miR-20a
muscle (Figure 5c), indicating that the abnormal high
expression of miR-20a delays muscle regeneration. Taken
together, and as found in vitro, the overexpression of miR-20a
enhances muscle proliferation but delays muscle regenera-
tion by inhibiting its target ENH1 in vivo.

miR-17-92 expression is positively regulated by E2F1 in
skeletal muscle. E2F1 regulates miR-17-92 expression in
various cell systems.30,31 We found that the downregulation
of miR-17-92 was accompanied by a decrease in E2F1
protein during C2C12 myoblast myogenesis (Figure 6a).
Moreover, E2F1 was downregulated during muscle regen-
eration and postnatal development in mice (Figures 6b
and c). We carried out a miR-17-92 promoter luciferase
assay. The overexpression of E2F1 induced an increase in
the luciferase activity (8.06-fold, Po0.001), whereas the
elimination of E2F1-binding sites from the miR-17-92
promoter abolished this activation (Supplementary
Figure S11). In contrast, the mimics of miR-17 and -20a,
but not of miR-92a, reduced the E2F1 protein level in C2C12
myoblasts (Figure 6d). These results show that E2F1
enhances the transcription of miR-17-92, whereas miR-17-
92 induces a negative feedback loop and inhibits E2F1 in
skeletal muscle cells.

Discussion

In this study, we analyzed the expression pattern of 720
miRNAs in mouse C2C12 myoblasts before and during
differentiation and identified miR-17-92, a cluster of six
miRNAs that was significantly downregulated, as an inhibitory
myogenic miRNA. We demonstrated the pro-proliferative and
anti-differentiation effects of miR-17-92 in vitro and in vivo
and elucidated the E2F1/miR-17-92/ENH1/Id1 regulatory
axis in muscle myogenesis, regeneration and development
(Figure 7).
Of the 55 miRNAs differentially regulated in response to

differentiation (Figure 1a), 16 miRNAs have previously been
shown to play functional roles in myogenesis, including miR-1,
-133, -24, -26a, -27, -29, -206 and -486,9,32–34 indicating that
this novel method is successful in profiling miRNA expression
patterns in a high-throughput manner. Therefore, this study
offers a new strategy to efficiently identify myogenesis-asso-
ciated miRNAs. Some of the additional miRNAs unstudied
herein will be investigated in future studies.
Previous studies reveal a critical requirement for miR-17-92

at the early stage of development. A similar expression pattern
has also been found during the normal development of lung
and heart.17,25 miR-17-92 knockout causes lung hypoplasia,
cardiac defects and a reduction of pre-B cells, which sub-
sequently results in early-postnatal lethality.17 Moreover,
miR-17-92-deleted embryos exhibit multiple skeletal abnor-
malities.17 Given the anti-differentiation role reported of
other downregulated miRNAs during myogenic differentia-
tion, including miR-155, -669a, -669q, -487b, -3963 and
-6412,10,35,36 the reduction in these miRNAs at the initial step
of myogenesis can be considered a miRNA signature of anti-
differentiation effectors. In contrast, the differentiation-induced
miRNAs, such as miR-1, -27 -26a, -29, -206 and -378, consis-
tently induce the opposite effect on myogenesis.11,37–41

Surprisingly, some upregulated miRNAs, such as miR-133,
have repressive abilities on myogenic differentiation.37

Regardless, the principal effects of miRNAs on myogenesis
are the modulation of cell proliferation and differentiation.
Muscle differentiation and regeneration are highly depen-

dent on the pro-proliferative capacity of a pool of muscle cells.
In vitro studies demonstrated that the expression of MyoD and
myogenin was upregulated in a density-dependent manner in
C2C12 myoblasts.42 At a low-cell density, Myf5 inhibited the
induction of myogenin in the human U20S cells.43 Moreover,
the number of regenerating myofibers and the expression of
MyoD and myogenin are decreased when the proliferative
ability of the satellite cells is inhibited, for example, by
angiotensin II.44 These studies suggest that sufficient num-
bers of progenitor cells are required for myogenesis and
muscle regeneration. Given the high expression of miR-17-92
at the early stage of myogenesis and regeneration (Figures 1c
and d), one might have predicted that its high expression
would favor the accumulation of muscle progenitor cells.
Conversely, our skeletal regeneration experiments reveal that
the abnormal high expression of miR-20a caused a hyper-
proliferative phenotype and impeded muscle differentiation
and myofiber maturation. Similarly, the transgenic overexpres-
sion of the miR-17-92 cluster in mice leads to the hyper-
proliferation of lung epithelium, the inhibition of differentiation

1 0.61 1.01
β-actin

E2F1

β-actin

E2F1
70

40

kDa

55

Day 42Day 2 Day 14 Day 28 Day 63

E2F1

M1     M2      M1     M2       M1     M2    M1    M2      M1     M2

E2F1

Day 5Day3 Day 10
M1     M2      M1      M2      M1    M2       M1     M2     M1     M2

70

55

kDa

55

70

55

kDa

55

β-tubulin

β-tubulin

70

40

kDa

55

Day 0 Day1

0.82

Figure 6 E2F1 increases the transcription of miR-17-92 in myoblasts. (a–c)
E2F1 protein expression during C2C12 myoblast myogenesis (a), mouse muscle
regeneration (b) and postnatal growth (c). Beta-actin and beta-tubulin served as the
loading controls. (d) Overexpression of miR-17, -20a or -92a reduces E2F1 protein
expression in C2C12 myoblasts transfected with the miR-17, -20a or -92a mimics.
The data are presented as the means of the samples from three different cell
samples. M1, mouse 1; M2, mouse 2. Beta-actin served as the loading control

Mir-17-92 regulates muscle development via ENH1/Id1
H Qiu et al

1665

Cell Death and Differentiation



and subsequently an abnormal lethal phenotype character-
ized by the absence of air in the lungs.25

ENH1 is a heart/skeletal muscle-specific PDZ-LIM protein
and is implicated in heart and skeletal muscle develop-
ment.45–48 Yoshida and co-workers48 have shown that this
protein promotes the mRNA levels of myoD and myogenin in
C2C12 cells. ENH1 has also been shown to have anti-
proliferative effects on human neuroectodermal cell lines.28

Here, we confirmed that ENH1 has anti-proliferative and pro-
differentiation effects in myoblasts. The sequestration function
of ENH1 is attributed to specific protein domains, with the
PDZ domain of ENH1 binding to cytoskeletal proteins (such as
actin and alpha-actinin) allowing for the organization of protein
complexes at the cytoskeleton,45 and the LIM domain
interacting with diverse partners.28,49 Previous studies have
shown that alternative PDZ-LIM proteins could contribute to
the regulation and subcellular compartmentalization of
nuclear proteins.46 As mentioned above, ENH1 has been
linked to the cytoplasmic localization of Id2 in neuronal cells.28

In our study, we highlighted the negative effect of ENH1 on the
nuclear abundance of Id1 (Figure 7). It should be noted that
this study investigated only Id1. In fact, Id1 and Id3 can both
bind to ENH1,28 and the regulation of these Id proteins by their
subcellular localization has been demonstrated to modulate
cell proliferation and differentiation.50–52 Therefore, the effect
of ENH1 on the localization of Id1, Id2 and Id3 during
myogenesis remains to be determined (Figure 7).
E2F1, along with E2F2 and E2F3, bind to the promoter of

miR-17-92 to activate its transcription, and miR-17 and -20a
simultaneously repress the translation of E2F1-3 via 3′UTR-
binding sites,30,31 establishing an auto-regulatory feedback
loop between E2F1 and miR-17-92. Here we confirmed the
positive regulation of E2F1 on miR-17-92 transcription
(Figures 6a–c and Supplementary Figure S10), highlighting

that miR-17-92 expression is induced by E2F1 during muscle
differentiation, regeneration and postnatal development.
However, E2F1 protein can be inhibited by miR-17 and -20a,
but not by miR-92a (Figure 6d), further validating the E2F1-
miR-17/20a feedback loop in skeletal muscle cells.
In conclusion, we demonstrated the miRNA expression

patterns in response to differentiation and identified the mem-
bers of the miR-17-92 cluster as myogenesis-associated
miRNAs. We then dissected the function of miR-17-92 in
controlling muscle proliferation, differentiation and regenera-
tion and discovered the E2F1/miR-17-92/ENH1/Id1 regulatory
axis in myogenesis.

Materials and Methods
Cell culture. The HEK 293A, HEK 293T and C2C12 cells were purchased from
American Type Culture Collection (ATCC, Manassas, VA, USA). The C2C12 cells
were cultured in GM and transferred to DM for myogenesis. In brief, the C2C12 cells
were maintained in DMEM (Corning Cellgro, Manassas, VA, USA) supplemented
with 10% fetal bovine serum (FBS, Biowest, Nuaillè, France) in a humidified
incubator with 5% CO2 at 37 °C. To induce myogenic differentiation, the culture
medium was switched to DMEM with 2% heat-inactivated horse serum (Gibco,
Grand Island, NY, USA). The 293A and 293T cells were cultured in DMEM with 10%
FBS in a humidified incubator with 5% CO2 at 37 °C.

Animals and muscle collection. The C57BL/6 and BALB/C male mice
were purchased from the Guangdong Medical Laboratory Animal Center
(Guangzhou, China). The mice were used at 2–10 weeks of age and were age-
matched for each independent experiment. The castrated male hybrid pigs
(Landrace × Large White × Duroc) were used at 35–161 days of age and maintained
at the South China Agricultural University. The use of animals was in accordance
with the recommendations of the Guide for the Care and Use of Laboratory Animals
of China. All the protocols were approved by the Animal Ethical and Welfare
Committee of Shenzhen University (Approval No. AEWC-2014-001004). The pigs
were housed in a controlled environment and were provided free access to food and
water. The experimental diet was designed according to the NRC2012 (Nutrient
requirements of swine, 2012). The porcine longissimus dorsi muscles were
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collected at postnatal days 35, 63, 98 and 161. The hind leg muscles of the BALB/C
mice were collected at postnatal days 14, 28, 42 and 63. There are at least six pigs
or mice in each group. The muscle samples were immediately frozen in liquid
nitrogen and stored at − 80 °C.

Mouse muscle regeneration model and adenovirus injection.
Muscle degeneration and regeneration in mice were induced by injecting cardiotoxin
(CTX). Six week-old C57BL/6 mice were injected in their tibialis anterior muscles
with 100 μl of 10 μM CTX. Adenoviruses expressing miR-20a or negative control
(1010 to 1011 p.f.u./ml) were injected into the tibialis anterior muscles 10 days prior
to the CTX injection. Two tibialis anterior muscles from each mouse were collected
at 0, 1, 3, 5 and 10 days post-CTX injury. One sample was fixed in 4%
paraformaldehyde for histology and immunohistochemistry. The other sample was
frozen in liquid nitrogen and stored at − 80 °C for RNA and protein extraction.

RNA extraction and qRT-PCR. Total RNA was extracted with the RNAiso
Reagent (TaKaRa, Dalian, China) according to the manufacturer’s instructions. The
isolated RNA was quantified using the NanoDrop 2000c Spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA). miRNA quantification was
performed by qRT-PCR based on the S-Poly(T) Plus method (Geneups, Shenzhen,
Guangdong, China).15 SNORNA44, SNORNA202 and SNORNA234 were used as
the human, porcine and mouse miRNA endogenous controls, respectively. The
SYBR Green method was used for mRNA quantitative determination using oligo(dT)
plus random primers to initiate cDNA synthesis. RPL-14 was selected as a
normalization control. The PCR reactions were carried out in the StepOnePlus
Real-Time PCR System (Applied Biosystems, Grand Island, NY, USA). The primers
used for reverse transcription and qPCR can be found in Supplementary Table S1.

Plasmids
ENH1 3′UTR luciferase reporter assay: To construct the ENH1 3′UTR
luciferase reporter plasmid, the ENH1 3′UTR was amplified from mouse genomic
DNA using the primer listed in Supplementary Table S2. The purified PCR products
were then cloned into the downstream region of the Firefly luciferase reporter gene
at the EcoRI/XbaI restriction sites of the miRGlo vector (Promega). The
corresponding mutant constructs with 6–7 mutated residues in the predicted
binding site were generated by site-directed mutagenesis using the primer sets
listed in Supplementary Table S2.

Myogenin promoter luciferase assay. To construct the myogenin promoter-driven
luciferase reporter vector, a fragment (1.1 kb) of the mouse myogenin promoter was
subcloned into the basic vector pGL4 (Promega) via the XhoI/MluI sites. The
myogenin promoter was amplified from mouse genomic DNA by using the primers
listed in Supplementary Table S2.

miR-17-92 promoter luciferase assay. To construct the miR-17-92 promoter-driven
luciferase reporter vector, a fragment (250 bp) of miR-17-92 promoter that contains
two E2Fs-binding sites was amplified from human genomic DNA using the primers
listed in Supplementary Table S2, then was subcloned into the vector pGL4 via the
KpnI/MluI sites. The mutant construct with mutated residues in the two E2Fs-binding
sites was generated with the primers listed in Supplementary Table S2.

miRNA overexpression and inhibition. The lentiviral vectors expressing miR-17,
-20a, -92a or -17-92 were constructed by inserting the primary miRNAs into the
pLVX-Puro vector (Clontech, Mountain View, CA, USA). To monitor for the
transduction efficiency, the open reading frame of EGFP containing a stop codon
was inserted between the CMV promoter and the primary miRNAs. The pLVX-miR-
NC containing the EGFP fragment without any miRNA sequences was used as a
negative control vector. The adenoviral vectors (Ad-miR-20a and Ad-miR-NC) were
constructed with the BLOCK-iT Adenoviral RNAi Expression System (Invitrogen,
Carlsbad, CA, USA). The lentiviral-based miRNA inhibitors dTuD-miR-17, -20a
or -92a were constructed based on the Tough Decoy (TuD) design,53 using the
two-step PCR method.54

Lentivirus packaging and transduction. The lentiviral particles were
packaged in HEK 293 T cells by the transfection of the following three individual
plasmids at a ratio of 2:1:5—(i) psPAX2 encoding HIV Gag-Pol (Addgene plasmid
12260; Addgene), (ii) pVSVg encoding the VSV-G glycoprotein (Addgene plasmid
8454; Addgene), and (iii) a lentiviral vector. Briefly, the HEK 293 T cells were
seeded in 10-cm culture dishes at a density of 4 × 106 cells per dish. After 24 h of
incubation, the cells were transfected with lentiviral vectors (12.5 μg) and the

packing plasmids (7.5 μg) using the PEI reagents. The cell-free supernatants were
then harvested 48 and 72 h after transfection and used for subsequent cell infection
in the presence of 8 μg/ml of polybrene. The infected cells were then selected by
supplementing the culture medium with 1–2 μg/ml of puromycin 48 h after infection.
The efficiency of the overexpression/inhibition of miRNAs was confirmed by qRT-
PCR analysis.

Transfection and luciferase reporter assays. The synthetic miRNA
mimics and siRNAs were purchased from RiboBio (Guangzhou, Guangdong,
China). The miRNA mimics or siRNAs were transfected into HEK 293A or C2C12
cells using the K2 transfection system (Biontex Laboratories GmbH, München,
Germany). The transfection of plasmids into C2C12 cells was performed with the
PEI transfection reagent following the manufacturer’s instructions. For the myogenin
promoter luciferase reporter assay, C2C12 cells were co-transfected with plasmids
overexpressing miRNA, myogenin promoter luciferase reporter plasmids and
internal control of in-house modified SV40 promoter-driven Renilla luciferase vector
(pSV40-R.Luc). For ENH1 3′UTR luciferase assays, C2C12 cells were transfected
with miRNA mimics and ENH1 3′UTR or mutated ENH1 3′UTR reporter plasmids.
At 48 h post transfection, the measurement of luciferase activity was performed
with a luminometer Lumat3 LB9508 (Berthold Technologies, Bad Wildbad,
Germany) using a dual-luciferase reporter assay system (Promega) following the
manufacturer’s instructions. The relative luciferase activities were calculated by
comparing the Firefly/Renilla luciferase ratio.

Cell proliferation analysis. The EdU incorporation assay was performed
using the EdU assay kit (Ribobio) according to the manufacturer’s instructions.
Briefly, 24 or 48 h after transfection, the C2C12 cells were cultured in GM containing
EdU (50 μM) for 1.5 h. The EdU labeling was conducted for 1 h for the C2C12 cells
stably expressing miRNA or dTuD-miRNA. The C2C12 cells were further analyzed
by calculating their EdU incorporation.

Immunoblotting, cell immunostaining and immunohisto-
chemistry
Western blot: The total proteins of the C2C12 cells or muscle samples were
extracted with RIPA lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40,
0.25% sodium deoxycholate and 1 mM EDTA) supplemented with protease inhibitor
cocktail (Roche, Mannheim, Germany) and quantified using the bicinchoninic acid
(BCA) protein assay kit (Thermo Scientific, Beijing, China). The separation and
preparation of cytoplasmic and nuclear protein from C2C12 were performed with
NE-PER nuclear and cytoplasmic extraction reagents kit (Thermo Scientific)
The proteins were electrophoresed with SDS-PAGE and transferred to PVDF
membranes. After blocking with 5% skim milk in TBST (20 mM Tris·HCl, pH 7.6,
150 mM NaCl, and 0.1% Tween 20), the blots were incubated with primary
antibodies and then with HRP-conjugated secondary antibodies. The protein bands
were visualized using the SuperSignal chemiluminescent detection module (Pierce
Biotechnology, Rockford, IL, USA), and images were captured with the Tanon-5200
imaging system (Tanon, Shanghai, China). The following primary antibodies were
used: β-actin (1 : 10 000; Proteintech, Wuhan, Hubei, China), β-tubulin (1 : 5,000;
Proteintech), E2F1 (1 : 600; Santa Cruz Biotechnology, Santa Cruz, CA, USA),
ENH1 (1 : 300; Proteintech), Id1 (1 : 100; CalBioreagents, San Mateo, CA, USA),
myogenin (1 : 5,000; Abcam, Cambridge, MA, USA) and PCNA (1 : 2,000;
Proteintech). The HRP-conjugated secondary antibodies (1 : 10 000; Bio-Rad,
Hercules, CA, USA) were also used.
Immunostaining: The immunostaining of cells was carried out with slight
modifications of the previously reported protocols.38 The C2C12 cells were grown
on sterile glass coverslip in 24-well plates, fixed with 4% formaldehyde in PBS for
20 min at room temperature and permeabilized with 0.5% Triton X-100 in ice-cold
PBS for 10 min. The pretreated cells were blocked with 1% bovine serum albumin
for 15 min and incubated with primary antibodies for 3 h at room temperature or
overnight at 4 °C at the following dilutions: anti-Myosin heavy chain (1 : 100;
Abcam) and anti-Flag (1 : 25; Proteintech). The indirect immunofluorescence was
detected after incubation with fluorescein isothiocyanate-conjugated anti-mouse/
rabbit IgG (1 : 500; Abcam). The cell nuclei were stained with 4′,6-Diamidino-2-
phenylindole dihydrochloride (DAPI) for 5 min. After several washes with PBS, the
cells were subjected to a fluorescence microscope (Carl Zeiss, Oberkochen,
Germany).
Immunohistochemical staining: Immunohistochemical staining of skeletal
muscle tissue sections was performed as previously described.55,56 The muscle
tissue sections (paraffin-embedded) were deparaffinized and treated with the heat-
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induced epitope retrieval (HIER) antigen retrieval EDTA-Tris buffer (pH 9.0). After
retrieval, the sections were then incubated with the primary antibodies (anti-BrdU
(1 : 50; BD Pharmingen, San Diego, CA, USA) and rabbit anti-Ki67 (1 : 100;
Abcam)). The 3′,3 diaminobenzidine (DAB) substrate was used as a chromogenic
substrate for the detection of HRP. Images were captured with a fluorescence
microscope.

Histology. The paraffin-embedded skeletal muscle tissue samples were cut into
5-μm-thick sections, mounted and stained with H&E. Images were captured using a
fluorescence microscope. The determination of the area of regenerating fibers was
performed with at least 30 fields from 5 sections of the tibialis anterior muscle in 5
mice for each group. The analysis of the fiber area was performed with the ImageJ
software (National Institute of Mental Health, Bethesda, MD, USA).

Statistical analysis. All results are expressed as the mean of at least three
triplicates for each treatment. Pairwise comparisons were performed using a two-
tailed Student’s t-test with STATGRAPHICS (Centurion XVI.I) software (StatPoint
Technologies, Warrenton, VA, USA). A P-value ofo0.05 was considered statistically
significant.
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