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Abstract: 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF, furaneol
®

) and its methyl 

ether 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) are import aroma chemicals and 

are considered key flavor compounds in many fruit. Due to their attractive sensory 

properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H)-

furanones are synthesized by a series of enzymatic steps whereas HDMF is also a product 

of the Maillard reaction. Numerous methods for the synthetic preparation of these 

compounds have been published and are applied by industry, but for the development of a 

biotechnological process the knowledge and availability of biosynthetic enzymes are 

required. During the last years substantial progress has been made in the elucidation of the 

biological pathway leading to HDMF and DMMF. This review summarizes the latest 

advances in this field. 
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1. Introduction 

In 1960, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol
®
, HDMF, also 4-hydroxy-2,5-dimethyl- 

2,3-dihydrofuran-3-one) was reported for the first time as a product of the Maillard reaction or non-

enzymatic browning [1]. Maillard products result from a complex series of chemical reactions between 

an amino acid and a reducing sugar, usually requiring heat [2,3]. Although the reactions have been 

analyzed since 1912 and several of the routes and intermediates have been postulated many are still 

unknown. The best known products that arise from C5, C6 and C7 sugars via Amadori product 

intermediates are 4-hydroxy-5-methyl-3(2H)-furanone (HMF), HDMF and the tautomers 5-(or 2)-

ethyl-4-hydroxy-2-(or 5)-methyl-3(2H)-furanone (EHMF), respectively (Figure 1). Alternatively, 
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HDMF is formed by addition of a C1 fragment, derived from glycine by Strecker degradation, to a 

diketose derived from a C5 carbohydrate. EHMF may arise similarly with addition of a C2 fragment 

produced from alanine to a C5 diketose [4]. The Amadori products, the diketose intermediates and the 

furanones have been identified in a multitude of processed food. The levels of furanones produced 

depend on the type and amount of sugars and amino acids available in the raw food material, the pH 

value and the heating regime. Besides their chemical formation during thermal treatment of food  

4-hydroxy-3(2H)-furanones are biosynthesized by plants [5], microorganism, and insects although the 

detailed formation pathways are still unknown [4]. 

Figure 1. Structures of 3(2H)-furanones: 4-hydroxy-5-methyl-3(2H)-furanone (HMF), 4-

hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) and the tautomers 2-ethyl-4-hydroxy-5-

methyl-3(2H)-furanone (2-EHMF) as well as 5-ethyl-4-hydroxy-2-methyl-3(2H)-furanone 

(5-EHMF). 

 

Due to their low odor thresholds and attractive odor qualities 4-hydroxy-3(2H)-furanones are 

considered exceptional aroma compounds and are used, among others, for the flavoring of jams, 

jellies, beverages, ice creams, alcoholic drinks and sweets. Odor thresholds ranging from 0.03 to  

1,700 µg/L, 2,100 to 23,000 µg/L and 0.04 to 21 µg/L have been reported for HDMF, HMF and 

EHMF, respectively [6]. Their caramel-like flavor is associated with a planar enol-oxo group of a 

cyclic dicarbonyl derivative able to form strong hydrogen bonds. 

Literature about the history, occurrence, synthesis, analysis, property, stability, flavor characteristics, 

biosynthesis, bioactivity and toxicology of 4-hydroxy-3(2H)-furanones has been summarized in two 

comprehensive reviews [4,6]. This article will only outline the recent advances in these fields. 

2. Properties 

The stability of HDMF, its methoxy derivative 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF), 

and the naturally occurring glycosidically bound forms HDMF β-D-glucoside and HDMF 6′-O-malonyl- 

β-D-glucoside [7,8] was investigated at different pH values [9]. Only slight decomposition of DMMF 

and HDMF β-D-glucoside was observed, whereas HDMF and HDMF 6′-O-malonyl-β-D-glucoside 

were found to be unstable at all pH values. In contrast to the rapid hydrolysis of HDMF β-D-glucoside, 

the malonylated glucoside remained unaffected by enzymatic treatment with β-glucosidase [9]. 

Although significant organoleptic differences were perceived between the enantiomers of optically 

active 2-substituted-3(2H)-furanones, the absolute configurations of the furanone derivatives have 

remained ambiguous for the past 40 years. Only recently, the absolute configurations of HDMF and 

EHMF were unraveled for the first time using vibrational circular dichroism as well as chemical relay 

reactions [10–12]. Odor evaluation of each enantiomer revealed relationships between their configurations 

and their odor activities (Figure 2). 
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Figure 2. Absolute configuration of 2-substituted 3(2H)-furanones and their odor perceptions. 

 

In plants HDMF is stabilized by glucosylation via an as yet unknown glucosyltransferase [13]. 

Biomimetic enzymatic synthesis of 3(2H)-furanone glucosides were achieved by sucrose 

phosphorylase [14]. HDMF was converted to its 4-O-α-D-glucopyranoside, whereas EHMF yielded 

two major products, namely 2-ethyl-5-methyl-3(2H)-furanone and 5-ethyl-2-methyl-3(2H)-furanone  

4-O-α-D-glucopyranoside. The glucosides are more stable than their aglycones, but can be hydrolyzed 

by an intestinal acetone powder from pigs [14]. 

One of the main shortcomings of the Maillard reaction is the lack of ways to control the different 

pathways, particularly when it is desired to direct the reaction away from the formation of toxic 

products to more aroma and color generation. Thus, systematic approaches were conducted, varying 

numerous reaction parameters, to model the kinetics of the reaction. These studies indicated that  

L-rhamnose is an excellent precursor of HDMF yielding more than 40 mol% [15,16], whereas the use 

of specifically phosphorylated carbohydrates may impart some elements of control over the aroma 

profile generated by the Maillard reaction [17]. Besides, it was suggested that HDMF is formed from 

methylglyoxal and D-glucose by different pathways [18]. 

3. Physiological Activity and Toxicology 

During the last decade the cytotoxicity of 3(2H)-furanones has attracted much attention and has 

been intensively investigated. DNA-breaking activity was demonstrated first for HMF and later also 

for HDMF and EHMF [19]. The 3(2H)-furanone/transition metal–mediated generation of reactive 

oxygen species was held responsible for DNA strand breaks and the formation of 8-hydroxy-2′-

deoxyguanosine [20]. The 3(2H)-furanones, which are known pro-oxidants in foods [21], can produce 

superoxide radicals through, e.g., the reduction of cupric ion to cuprous ion, resulting in the conversion 

to hydrogen peroxide and hydroxyl radicals [22]. Interestingly, the related 2(5H)-furanones were 

inactive [20]. In contrast, the inhibition of cataract formation by furanones in spontaneous cataract rat 

demonstrated an anti-oxidative function of HDMF [23]. It was concluded that the protective activity of 

HDMF and EHMF against superoxide radicals in lens tissue contributed to inhibiting the onset of 

spontaneous cataracts [24]. Thus, 3(2H)-furanones feature anti-oxidative as well as pro-oxidative properties 

depend on the availability of oxygen species which is in line with the instability of HDMF (Scheme 1). 

Bioavailability and metabolism of HDMF was determined in humans. HDMF was administered to 

four male and two female volunteers using fresh strawberry fruit as natural furanone source [25]. 

Female and male volunteers excreted 81–94% and 59–69%, respectively of the HDMF dose (total of 

free and glycosidically bound HDMF) as HDMF glucuronide. HDMF, HDMF β-D-glucoside and its 
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6’-O-malonyl derivative were not detected in human urine. Absorption of HDMF and EDHF was also 

analyzed in mice after a single intraperitoneal or oral administration of 0.5–1.0 g kg
−1

 [26]. They 

appeared in plasma 5 min after oral application, reached maximum between 15–45 min, and gradually 

disappeared after 2 h, indicating that they were absorbed by the digestive tract. HDMF and EDHF 

induced micronucleated reticulocytes in a dose-dependent manner and thus caused genetic damage 

after oral administration. Intestinal absorption of furanones and metabolic conversion was also 

examined by using Caco-2 cell monolayers [27]. The transport of 3(2H)-furanones could not be 

saturated even at levels of 500 µM and occurred in both directions. Passive diffusion by paracellular 

transport was proposed. 

Scheme 1. 3(2H)-Furanones function as pro- and as anti-oxidants. Me
2+

 transition metal 

cation, O2
−
 superoxide radical anion, H2O2 hydrogen peroxide,

.
OH hydroxyl radical. 

 

The effect of long-term supplementation of HDMF on mouse lipid peroxidation and type I and IV 

allergy responses was investigated [28]. Levels of thiobarbituric acid-reactive substances in lung were 

remarkably increased, and those in kidney and liver were slightly decreased by supplementation of 

HDMF, whereas allergen-sensitized type I and IV allergy responses of mice may be enhanced. 

However, a study investigating the effect of EDHF on oxidative damage of erythrocytes and low 

density lipoprotein (LDL) indicated that EDHF protected human erythrocytes membranes and LDL 

against iron ion-induced oxidative modifications [29]. 

The de-pigmenting capacity of HDMF was investigated in B16 melanoma cells [30]. The melanin 

content and tyrosinase activity induced by α-melanocyte-stimulating hormone were inhibited 

significantly. The study showed that HDMF suppressed the phosphorylation of cAMP response 

element binding protein, which is induced by protein kinase A and suggested that HDMF may be an 

effective inhibitor of hyperpigmentation. 

HDMF also exhibited broad spectrum antimicrobial activity in an energy-dependent manner 

without hemolytic effect on human erythrocytes [31]. Cell cycle analysis showed that HDMF arrested 

the cell cycle at the S and G2/M phase in Candida albicans and thus, HDMF may have potential as an 

anti-infective agent in human microbial infections. 

4. Occurrence 

Since its discovery in pineapples in 1965, HDMF and its metabolites [2,5-dimethyl-4-methoxy-

3(2H)-furanone (DMMF), HDMF-β-D-glucopyranoside (HDMF-glucoside) and HDMF-6′-malonyl-β-

D-glucopyranoside (HDMF-glucoside-malonate)] have been isolated as natural products from many 

different fresh fruits such as strawberry [32], raspberry [33,34], tomato [35], kiwi [36], lychee [37], 

and snake fruit [38]. The natural sources of HDMF have been reviewed [4,6]. By application of aroma 
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extract dilution analysis and calculation of odor activity values, HDMF was defined as one of the key 

odorants in pineapples [39,40]. HDMF was also among the volatiles that showed higher odor units in 

more preferred tomato cultivars [41]. Highest HDMF concentrations were found in the summer crop  

of home-grown tomatoes while the lowest levels were detected in the common ethylene-ripened,  

field-grown, supermarket tomatoes [35]. Levels of HDMF appeared to increase in strawberry fruit after 

9 days of treatment with methyl jasmonate [42].  

HDMF has been frequently found in wines [37,43]. Generally, its concentrations in white wines 

were lower than in red wines [44]. Results showed a significant variation in the level of HDMF in 

wines with grape variety demonstrating the biosynthesis of the furanone in grape berries. However, the 

study of the volatile composition of oak wood pieces that are used as alternatives to barrels for aging 

wines revealed high levels of HDMF thus, wood pieces might serve as an additional source for the 

3(2H)-furanone [45]. HDMF has been identified as one of the key odorants in Spanish aged red wines 

and Aragonez clonal musts by GC-olfactometry [46–48] and in Bordeaux red wines by aroma extract 

dilution analysis [49]. It can still be detected after 5–6 years of storage [50] and has been found to be 

one of the components that distinguish different high-quality Spanish aged red wines [51]. Importantly, 

a synergistic effect of HDMF and EDMF was observed in rosé wine which had a significant impact on 

fruity and caramel notes [52].  

HDMF also contributes to the aroma of human breast milk [53] and to milk products such as nonfat 

dry milk [54] and sweet whey powder [55]. In the last two products it is probably chemically formed 

during the manufacturing process. Consistently, HDMF levels increased during conching, a process 

used to turn cacao into chocolate [56]. In cheeses, it appears that furanones are rather biochemically 

synthesized during ripening [57] similar to soy sauce which also runs through a fermentation process [58]. 

In thermally generated imitation flavors produced from soybean-based enzyme-hydrolyzed vegetable 

protein HDMF is primarily formed by the Maillard reaction [59]. Similarly, furanones are chemically 

formed from α-dicarbonyl intermediates during storage of Pilsner beer [60] and were detected as 

Maillard products in country ham [61] and cooked beef [62]. 

5. Microbial Formation 

5.1. Yeast 

HEMF was isolated from fermented soy sauce for the first time as it is the major component of the 

flavor of soy sauce [4,6]. The formation of HEMF was promoted by cultivating the halo-tolerant yeast, 

Zygosaccharomyces rouxii, in a medium including the amino-carbonyl (Maillard) reaction products 

based on ribose and glycine [63]. The mechanism was investigated by stable isotopes of the corresponding 

compounds. The skeleton of the five-membered ring and the methyl group of the side chain of HEMF 

originated from ribose, and the ethyl group was derived from D-glucose or acetaldehyde. The role of 

the yeast in HEMF formation was not only to provide the D-glucose metabolite (acetaldehyde), but 

also in combining the Maillard reactants with the D-glucose metabolite [64]. 

Formation of HMF was demonstrated in cytosolic extracts from Z. rouxii after incubation with a 

number of carbohydrate phosphates [65]. Since HMF was spontaneously formed from ribulose-5-

phosphate via the Maillard intermediate 4,5-dihydroxy-2,3-pentanedione [66], it was assumed that 
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ribulose-5-phosphate is enzymatically generated in cytosolic extracts and then chemically transformed 

to HMF. The hypothesis was confirmed by the production of HMF in mixtures containing commercially 

available enzymes and isotopically labeled D-glucose-6-phosphate. Interestingly, HMF has been identified 

as extracellular signal molecule Al-2 catalyzed by the enzyme LuxS and functions in cell-to-cell 

communication in bacteria [67]. The chemical formation of Al-2 from ribulose-5-phosphate may also 

occur in vivo and may be responsible for the Al-2-like activities reported for organisms lacking the 

luxS gene [68]. 

The formation of HDMF by Z. rouxii from D-fructose-1,6-diphosphate was studied under various 

culture conditions [69,70]. Growth of Z. rouxii and formation of HDMF was not observed when  

D-fructose-1,6-diphosphate served as sole carbon source. Although Z. rouxii cells grew in media 

containing D-glucose as the sole carbon source, HDMF was only produced when D-fructose-1,6-

diphosphate was added. The HDMF levels always correlated with the yeast cell count and D-fructose-

1,6-diphosphate concentration. Only single labeled HDMF was formed after addition of 1-
13

C-D-

fructose-1,6-diphosphate but unlabeled furanone was formed in the presence of 
13

C6-D-glucose. Thus, 

the carbons of HDMF originate exclusively from exogenously supplied D-fructose-1,6-diphosphate [69]. 

Higher pH values of the medium had a positive effect on HDMF formation but retarded cell growth 

resulting in an optimal pH value of 5.1. Salt stress stimulated HDMF production. Addition of  

o-phenylenediamine, a trapping reagent for α-dicarbonyl (Maillard) intermediates, to the culture medium 

revealed the formation of three quinoxaline derivatives derived from D-fructose-1,6-diphosphate [71]. 

Identification of the structures demonstrated for the first time the chemical formation of 1-deoxy-2,3-

hexodiulose-6-phosphate, a generally expected but never identified intermediate in the formation 

pathway of HDMF. Additional enzymatic steps were assumed since HDMF was detected only in the 

presence of Z. rouxii cells. HDMF is also chemically formed in solutions containing D-fructose-1,6-

diphosphate and NAD(P)H at ambient temperature [72]. The NAD(P)H was mandatory and 

application of labeled precursors indicated a hydride transfer to C-5 or C-6 of the D-fructose-1,6-

diphosphate skeleton. It seems that the biological and chemical formation of HDMF from D-fructose-

1,6-diphosphate follow similar pathways. 

Optically active natural products exhibit characteristic enantiomeric excesses due to stereoselective, 

enzymatically catalyzed reactions during their biosynthesis. Although the enzymatic generation of 

HDMF by Z. rouxii and fruits is anticipated, the naturally occurring compound is racemic. The rapid 

racemization of HDMF due to keto-enol-tautomerism accounts for this observation [73,74]. 
1
H-NMR 

analysis tracing the exchange of the proton bound to the furanone-ring at C-2 with deuteron and chiral 

phase capillary electrophoresis analysis showed that the racemization rate of HDMF was lowest at pH 

values between 4 and 5. Thus, to demonstrate the enzymatic formation of HDMF, incubation 

experiments with Z. rouxii and strawberry protein extract were carried out at pH 5. The formation of 

enantiomerically enriched HDMF was demonstrated in both experiments whereas racemic furanone 

was detected under neutral pH conditions [72]. 

5.2. Bacteria 

HDMF was detected after 4 days of growth of Pichia capsulata on casein peptone culture medium 

containing L-rhamnose [75]. Stable isotope ratio mass spectrometry analysis confirmed L-rhamnose as 
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carbon source for HDMF. Time course experiments led to the hypothesis that HDMF is formed by P. 

capsulata from an intermediate which was generated during thermal sterilization of the culture 

medium as was proposed for yeast [63,64]. Similarly, HDMF was detected in media prepared with 

heated sugar and amino acids as a result of the Maillard reaction [76]. However, enhanced level of 

HDMF was observed in the same media fermented by Lactococcus lactis subsp. cremoris. 

6. Formation in Plants 

The biosynthesis of HDMF has been intensively studied in strawberry fruit and although the 

complete biosynthetic route has not yet been fully discovered, substantial progress has been achieved. 

Radiotracer studies identified carbohydrates as the natural precursors of HDMF and its derivatives [77]. 

Incorporation rates of 1-
3
H-D-glucose, U-

14
C-D-glucose, U-

14
C-D-glucose-6-phosphate, U-

14
C-D-

fructose, and U-
14

C-D-fructose-1,6-diphosphate into the total amount of furanones were 0.032, 0.035, 

0.147, 0.202, and 0.289% of the radioactivity entering the fruit, respectively. Deoxysugars, which are 

excellent precursors for HDMF in the Maillard reaction, were not transformed into furanones  

in planta. Later, D-fructose and D-fructose-6-phosphate were confirmed as progenitor of HDMF by an 

independent experiment [78]. 

The incorporation of the radioactivity of S-methyl-
14

C-adenosyl-L-methionine (
14

C-SAM) and 

chemically synthesized 2-(or 5-)methyl-
14

C-HDMF [79] into the furanone structures supported the 

conclusion that 
14

C-SAM is the source of the methyl group in the 4-methoxy compound DMMF and 

that HDMF is the precursor of DMMF and HDMF glycosides [13]. This observation led the 

characterization of an enzymatic activity in strawberry protein extracts that transferred a methyl group 

from SAM to HDMF and sharply increased during ripening of strawberry fruits [80]. The partially 

purified enzyme had a native molecular mass of 80 kDa, with optimum activity at pH 8.5 and a high 

apparent Km value of 5 mM for HDMF whereas 1,2-diphenolic such as caffeic acid and protocatechuic 

aldehyde were accepted with much higher affinities (Km 130 and 20 µM, respectively). Cloning of the 

corresponding cDNA and characterization of the encoded protein provided the nucleotide sequence of 

Fragaria x ananassa O-methyltransferase (FaOMT) and confirmed the methylation of HDMF to 

DMMF by a SAM-dependent OMT [81]. Transcript analysis indicated the accumulation of FaOMT 

mRNA during ripening in strawberry fruit. Transcipts were absent in root, petiole, leaf and flower. A 

common feature of the accepted substrates was an o-diphenolic structure also present in HDMF in its 

dienolic tautomer. Due to its expression pattern it was supposed that FaOMT is involved in 

lignification in the expanding fruit and the biosynthesis of DMMF during strawberry fruit ripening. 

The dual function was further substantiated by transformation of strawberry with the FaOMT sequence 

in sense and antisense orientation, under the control of the cauliflower mosaic virus 35S promoter [82]. 

The repression of FaOMT resulted in a near total loss of DMMF, whereas the levels of the other 

volatiles remained unchanged. Furthermore, the ratio of feruloyl 1-O-β-D-glucose and caffeoyl 1-O-β-

D-glucose was affected, indicating a dual function of the enzyme in planta. Only recently, while 

investigating the genetic factors controlling fruit flavor FaOMT was identified as the locus controlling 

natural variation in DMMF content [83]. Sequence analysis identified 30 base pairs in the promoter of 

an inactive FaOMT homoeolog containing putative binding sites for basic/helix-loop-helix, MYB, and 
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BZIP transcription factors. This polymorphism co-segregated with both the presence of DMMF and 

the high expression of FaOMT during ripening. 

Although radiotracer experiments identified D-fructose-1,6-diphosphate as the most efficient 

precursor of HDMF in strawberry fruit [77] the localization of the label in HDMF could not be 

unambiguously determined due to the keto-enol tautomerism and the instability of HDMF. Thus,  

D-fructose labeled with stable isotopes (1-
13

C-D-fructose and U-
13

C6-D-fructose) was applied to 

detached ripening strawberry fruits, and the incorporation into the furanones determined [84]. The data 

proved the direct conversion of D-fructose to the furanones without cleavage of the carbohydrate 

skeleton prior to the formation of the furanones, as expected for a biological Maillard reaction. The 

label was primarily incorporated into the furanone moiety of the HDMF glycosides, indicating that D-

fructose is a more efficient precursor of the furanone than D-glucose component of the HDMF 

glycosides. More elaborate experiments using different isotopically labeled carbohydrates clearly 

showed that 1- and 6-deoxy-D-glucose, (-D-fructose) are not natural precursors of the furanones [85] 

and thus confirmed the data obtained by radiotracer studies [77]. However, 1-
2
H-, 2-

2
H-, 6,6-

2
H2-D-

glucose as well as U-
13

C6-, 1-
13

C-, 1-
2
H- and 6,6-

2
H2-D-fructose were transformed to the furanones 

(Scheme 2). The complete carbon chain of the carbohydrates was recovered in HDMF whereas the 

isotope label of 4-
2
H-D-glucose was not found in the furanones. The observed isotope shift from 2-

2
H-

D-glucose to 1-
2
H-HDMF (Scheme 2) can be explained by the catalysis of phosphohexose isomerase 

in the course of the biogenesis of the furanones [85]. Thus, D-glucose is metabolized to D-fructose-6-

phosphate prior to the transformation into HDMF. 

Scheme 2. Metabolic fate of isotopes during the transformation of D-glucose to the HDMF 

tautomers (summarized from [85]). The complete carbon chain (blue dots) of D-glucose 

was recovered in HDMF. Hydrogen atom (green) located in position 4 of D-glucose was 

lost during the transformation whereas hydrogen atom (blue) at position 2 in D-glucose was 

shifted to carbon 1 in HDMF. Hydrogen atoms located at position 1 (red) and 6 (pink) in  

D-glucose remained attached to the same carbon in HDMF. 

 

Next, an enzyme involved in the biogenesis of HDMF was partially purified. The observed 

distribution of enzymatic activity correlated with the presence of a single polypeptide [86]. Sequence 

analysis showed total identity with the protein sequence of a ripening-induced, auxin-dependent 

putative quinone oxidoreductase (FaQR). The FaQR protein was functionally expressed in Escherichia 

coli and catalyzed the formation of HDMF. 4-Hydroxy-5-methyl-2-methylene-3(2H)-furanone 

(HMMF) was identified as natural substrate of FaQR and precursor of HDMF (Scheme 3, [86]). 
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Scheme 3. Postulated biosynthetic pathway of furanones in strawberry fruit (adapted  

from [86]). 4-Hydroxy-5-methyl-2-methylene-3(2H)-furanone, HMMF; 4-hydroxy-2,5-

dimethyl-3(2H)-furanone, HDMF; Fragaria x ananassa quinone oxidoreductase, FaQR [86]; 

F. x ananassa enone oxidoreductase FaEO [87]; F. x ananassa O-methyltransferase 

FaOMT [80–82]. 

 

As FaQR catalyzes the reduction of the α,β-unsaturated bond of the highly reactive enone HMMF it 

was later renamed to F. x ananassa enone oxidoreductase (FaEO; [87]). FaEO does not reduce the 

double bond of straight-chain 2-alkenals and 2-alkenones but rather hydrogenates a number of HMMF 

derivatives substituted at the methylene functional group. HMMF was also detected in tomato and 

pineapple fruit which suggested that HDMF is synthesized in different fruits by a similar pathway [87]. 

Solanum lycopersicon EO (SlEO) was cloned from cDNA and the recombinant protein characterized. 

Biochemical studies confirmed the involvement of SlEO in the formation of HDMF in tomato  

fruit [87]. FaEO and SlEO exhibited a narrow substrate spectrum in comparison to two other 

NAD(P)H-dependent non-flavin ene reductases [88]. Only recently, to elucidate the molecular mechanism 

of the peculiar reaction catalyzed by FaEO, its crystal structure in altogether six different states or 

complexes, including those with HDMF as well as with three substrate analogs was determined [89]. 

The data revealed that the 4R-hydride of NAD(P)H is transferred to the unsaturated exocyclic C-6 

carbon of HMMF, resulting in a cyclic optically inactive enolate intermediate that subsequently 

becomes protonated, eventually producing HDMF [89]. 
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Notably some reports suggested that the production of furanones may not be a straightforward 

activity of a plant metabolite pathway alone, but a combined effort of the strawberry plant and an 

associated bacterium, Methylobacterium extorquens [4,90]. However, this proposed route is not 

convincing as contradictory reports were published about the final steps to HDMF and DMMF and 

tracer experiments do not support the transformation of the proposed intermediates lactaldehyde and  

6-deoxy-D-fructose-1-phosphate to the furanones [77,85]. 

7. Conclusions 

The 3(2H)-furanones are important aroma chemicals due to their low odor thresholds and attractive 

flavor properties. They are chemically formed from different carbohydrates during the Maillard 

reaction and thus occur in a number of processed foods where they contribute to the aroma. However, 

furanones are also produced by yeast, bacteria and plants and show different physiological functions 

which are probably due to their redox activity. Although deoxysugars such as L-rhamnose are efficient 

precursors of HDMF in the Maillard reaction, D-fructose-1,6-diphosphate was identified as the natural 

progenitor in fruit. In strawberry fruit, the phosphorylated carbohydrate is converted by phosphate and 

water elimination to HMMF which is eventually reduced by FaEO (FaQR) to HDMF. Methylation of 

HDMF leads to the accumulation of DMMF and is catalyzed by FaOMT. Overall, substantial progress 

has been made towards the elucidation of the biosynthetic pathway of natural furanones in micro-

organisms and plants which was made possible by the application of isotopically labeled precursors. In 

the near future, the knowledge of the genome sequence of the woodland strawberry [91] will enable 

the detection of the missing genes of the HDMF pathway and improved imaging systems [92] can help 

to locate the furanones intracellular. Knowledge of the complete set of involved genes and enzymes 

would provide the foundation for the biotechnological production of natural furanones. 
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