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Multisensory processing is of vital importance for survival in the external world. Brain circuits can both integrate and separate
visual and vestibular senses to infer self-motion and the motion of other objects. However, it is largely debated how
multisensory brain regions process such multisensory information and whether they follow the Bayesian strategy in this
process. Here, we combined macaque physiological recordings in the dorsal medial superior temporal area (MST-d) with
modeling of synaptically coupled multilayer continuous attractor neural networks (CANNs) to study the underlying neuronal
circuit mechanisms. In contrast to previous theoretical studies that focused on unisensory direction preference, our analysis
showed that synaptic coupling induced cooperation and competition in the multisensory circuit and caused single MST-d
neurons to switch between sensory integration or separation modes based on the fixed-criterion causal strategy, which is
determined by the synaptic coupling strength. Furthermore, the prior of sensory reliability was represented by pooling
diversified criteria at the MST-d population level, and the Bayesian strategy was achieved in downstream neurons whose causal
inference flexibly changed with the prior. The CANN model also showed that synaptic input balance is the dynamic origin of
neuronal direction preference formation and further explained the misalignment between direction preference and inference
observed in previous studies. This work provides a computational framework for a new brain-inspired algorithm underlying
multisensory computation.

1. Introduction

The primate brain frequently combines multisensory infor-
mation from different sensory modalities, such as informa-
tion of visual, vestibular, auditory, and haptic origin, to
improve the perception of the external world. Both visual
and vestibular information is valuable for the multisensory
cortex to infer self-motion and object motion direction accu-
rately in real time. Previous experimental studies [1, 2]
showed that the macaque dorsal medial superior temporal
region (MST-d) contains neurons responsible for multisen-
sory encoding, e.g., vestibular and visual motion cues. Exper-

imental studies observed that some MST-d neurons respond
preferably to vestibular and visual motion in the same direc-
tion (called “congruent” neurons), while others prefer oppos-
ing directions (called “opposite” neurons) [1–4]. Recent
theoretical studies suggested that congruent neurons mainly
implement cue integration, while opposite neurons mainly
perform segregation. The responses of the congruent and
opposite neurons are critical for the animal to make inference
about whether information from the visual and vestibular
senses are attributed to a common source or two separated
ones. However, the mechanism for the origin of congruent
or opposite neurons in MST circuit is rarely studied.
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Moreover, the mechanisms through which neurons imple-
ment multisensory integration and separation are also
debated [5–13].

Since sensory signals vary across modalities and condi-
tions, Ernst and Banks proposed a general principle that
the brain determines the degree to which a sense dominates
the flow of information based on its reliability, which is
defined as the variance of the sensory estimate [14]. Further
works demonstrated that human and monkey subjects
adjusted the weight of each sensor based on cue reliability
(stimulus motion coherence) and made the decisions about
motion directions in a near-optimal way [15–18]. Evidence
from experiments suggested that multisensory cortical neu-
rons, e.g., MST-d (dorsal medial superior temporal), could
represent the weighing of cue reliability by the neural
response [3], comprising a link between single-neuron activ-
ity and behavior. Combining the theories and behavioral
data, many works assumed that the neural system performs
causal inference in Bayesian approach [19–21], which rede-
fines the inference problem as an assessment of the posterior
probability of integration based on the measurement distri-
bution of each cue. The Bayesian causal inference (BCI)
model managed to explain the experimental findings that
spatially concurrent visual and vestibular inputs improved
direction discrimination performance [3], which is mainly
attributed to congruent neurons [4], while spatially confined
inputs are canceled out by opposing neurons [22, 23]. Fur-
thermore, by fitting the distribution width of sensory mea-
surements, Bayesian computation captures the varying
uncertainty that originates from both stimuli contrast and
physiological noise [24]. Nonetheless, the BCI model does
not explain the biophysical computation principle in neural
systems due to the limit of its mathematical form. It remains
to be solved how the Bayesian approach is achieved physi-
cally by neural systems, especially how the prior and poste-
rior probability is represented by neuronal firing.

In this study, we seek to combine both physiological
recordings and computational models and explore two key
scientific questions: (1) How are visual and vestibular signals
integrated and separated by neuronal circuits? (2) How do
multisensory computing algorithms emerge from hierarchi-
cal cortical circuits for behavioral-level inference decisions?
In contrast to previous works that attribute the inference
to the interaction between the multisensory areas [13], this
study first focuses on the multisensory computation of each
MST-d neuron, which plays a more fundamental role. By
investigating the physiological data from monkey MST-d
neurons, we found that neuronal direction preference in
the MST-d is correlated with relative synaptic input strength
between the visual and vestibular inputs, which may entail
multisensory computation. We further built a multipartite
cortical circuit model that is composed of three continuous
attractor neural networks (CANNs) [25]. The circuit con-
sists of three ring attractor networks, mimicking input trans-
mission from the unisensory visual and vestibular regions to
the MST-d along the cortical hierarchy. We demonstrate by
this model that MST-d neurons naturally compose the cod-
ing bases for integration or separation by various synaptic
coupling strengths between the inputs. The change of direc-

tion preference as observed in the data is an explicit form of
the nonlinear coupling dynamic.

Next, we went a further step and applied this computa-
tional principle to hypothetical decisions about whether the
inputs should be integrated. We revealed that individual
MST-d neurons implement a fixed-criterion strategy, which
makes decisions with deterministic boundaries. However, by
pooling MST-d neurons with different synaptic coupling
strengths, the MST-d population implements Bayesian infer-
ence that leads to distinct decisions based on cue reliability,
constituting a bioplausible process formultisensory inference.

2. Results

2.1. Analysis of Physiological Data. We began with physio-
logical recordings. We first characterized MST-d neurons
with their tuning response functions to the input senses.
The MST region is not only a crucial multisensory region
(responding to both visual and vestibular inputs [1, 26])
but also correlates with perception at the behavioral level
[4, 27, 28]. Specifically, the dorsal part of the MST has a large
receptive field that can respond to translational motion sig-
nals [29], which is well suited for detecting self-motion and
object motion features in the horizontal plane.

In our experiments, monkeys were seated on a motion
platform attached to a screen (Figure 1(a)). Without report-
ing, the subjects perceived visual motion through the optical
flow presented on the screen or/and vestibular motion
through the translation of the platform in the horizontal
plane, comprising unisensory or multisensory conditions.
Both visual and vestibular motion cues are designed to rep-
resent the same velocity and acceleration from one of 8
directions with 45° intervals. The multisensory condition
contains 64 combinations of visual and vestibular input
directions (Figure 1(b)), while the unisensory conditions
contain 8 directions of each input. MST-d neuronal activities
were recorded by a single-unit technique during the delivery
of visual and/or vestibular stimuli. Figure 1(c) shows the
response function of an example MST-d neuron in the uni-
sensory condition (side panels) or multisensory condition
(middle panel). Note that the unisensory condition means
that either visual or vestibular cues are presented without
the other cue (visual-only or vestibular-only), and the uni-
sensory response is a function of each cue direction (θ).

Rmax
vis = max f vis θvisð Þ½ �,

Rmax
ves = max f ves θvesð Þ½ �,

ð1Þ

where θvis and θves represent the visual and vestibular cue
directions, f vis and f ves are the neuronal spatial tuning
response functions, and Rmax

vis and Rmax
ves are neuronal maxi-

mal responses to either visual or vestibular cues, respec-
tively, across all directions. We categorized each MST-d
neuron by the balanced or imbalanced response level based
on the ratio (r)

r =
max Rmax

vis , Rmax
vesð Þ

min Rmax
vis , Rmax

vesð Þ : ð2Þ
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By definition, r ≥ 1. To make it simple, we defined a
neuron as balanced neuron when 1 ≤ r ≤ 1:7 and as imbal-
anced when r ≥ 1:7 (the criteria r = 1:7 are explained later).
In the data, 70 of 115 MST-d neurons were identified as
balanced neurons, characterized by relatively balanced syn-
aptic inputs (Figure 2(a) top panel), and the average max
ðRmax

vis , Rmax
ves Þ was 1.28 times the value of min ðRmax

vis , Rmax
ves Þ

for neurons in this group. On the other hand, 45 of 115
neurons were identified as imbalanced neurons, character-
ized by the dominance of one input over the other
(Figure 2(a) bottom panel). The value of max ðRmax

vis , Rmax
ves Þ

in this group was 2.35 times that of min ðRmax
vis , Rmax

ves Þ on
average. Since the cues were applied with the same reliabil-
ity (velocity and acceleration), the ratio r indeed measures
the degree of contribution from one sense over the other
in each neuron. It was proved that response amplitudes
encode the input reliability that is linked to the signal-to-
noise ratio [3]; thus, r is a neuronal precoded bias property
of cue reliability, which is independent of real-time stimuli.

Following the classification, the two encoding bases con-
tained distinct tuning weights in unisensory condition. To
specify the encoding properties in multisensory condition

where both cues are presented, we examined the neural
response Rmul that is a function of both cue directions θvis
and θves (Figure 1(c) middle panel)

Rmul = fmul θvis, θvesð Þ, ð3Þ

where fmul is the multisensory tuning curve function. Rmax
mul

= max ðRmulÞ on the response contour is appointed to the
maximal neuronal response to a specific pair of visual and

vestibular directions (denoted as θprefvis,mul and θprefves,mul). We
defined the spatial disparity between the two directions as
a multisensory-preferred disparity.

θprefvis,mul, θ
pref
ves,mul

h i
= argmax Rmulð Þ,

Δθmul = min θprefvis,mul − θprefves,mul

��� ���, 360° − θprefvis,mul − θprefves,mul

��� ���� �
:

ð4Þ

Similarly, the unisensory-preferred disparity was defined
by the spatial disparity between the preferred directions of
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Figure 1: Experimental protocol and multisensory preference schematics. (a) Schematic of the physiological experiment. The screen was
placed on a platform with 6 degrees of motion. Visual motion stimuli were simulated by the movement of a dot cloud, and vestibular
motion stimuli were simulated by the movement of the platform. (b) Systematic table of multisensory stimuli. Each stimulus took 8
discretized movement directions spaced by 45°; thus, 64 neural responses were recorded for each neuron under the multisensory
condition. (c) Neuronal responses in unisensory (side panels) and multisensory (middle panel) conditions. Multisensory preference was
identified from the maximum response (Rmax

multi) in the grid of 64 responses that specifies a joint visual and vestibular preferred direction.
Multisensory tuning curves were identified by fixing the direction of one modality at the preferred value while varying the other
(multisensory visual curve: solid red line, multisensory vestibular curve: dashed red line). Both multisensory tuning curves intersect at
the maximal response Rmax

multi.
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visual and vestibular cues (θprefvis,uni = argmaxðRvisÞ, θprefves,uni =
argmaxðRvesÞ).

Δθuni = min θprefvis,uni − θprefves,uni

��� ���, 360° − θprefvis,uni − θprefves,uni

��� ���� �
:

ð5Þ

Both Δθuni and Δθmul range from 0° to 180°. In contrast
to Δθmul, Δθuni denotes the neuronal preference in the
absence of multisensory interaction. As a result, Δθuni is
interpreted as the synaptic input disparity to each neuron,
which represents the topological distance between the inher-
ent preferences of two independent cues after synaptic
learning.
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Figure 2: Data analysis of balanced and imbalanced neuronal preference. (a) Averaged tuning curves of balanced neurons (top panels, n
= 70) and imbalanced neurons (bottom panels, n = 45) defined by the response ratio (r). Preferred directions are shifted to align at 0°.
The (b) unisensory and (c) multisensory tuning curves of a typical balanced (top panel) or imbalanced (bottom panel) neuron. The two
curves denote that fixing visual direction are preferred direction and changing vestibular direction (multisensory vestibular curve) and
switching the roles as multisensory visual curve. The two curves intersect at Rmax

multi as the red lines in Figure 1(c) middle panel. Insets
show the preferred visual and vestibular motion directions of the neuron as vectors, and the shaded region indicates the preference
disparity. (d) Distribution of the unisensory disparity pðΔθuniÞ of neurons in the balanced (left) and imbalanced (right) groups. (e)
Distribution of multisensory disparity pðΔθmulÞ. (f) Joint distribution of Δθuni and Δθmul for balanced and imbalanced neurons. Color
gradients indicate Δθmul.
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Crucially, we observed that the multisensory preferences
for visual and vestibular directions are usually different for

each MST-d neuron, i.e., θprefvis,uni ≠ θprefvis,mul or θ
pref
ves,uni ≠ θprefves,mul

(62/70 or 88.57% for balanced neurons; 40/45 or 88.89%
for imbalanced neurons). As a result, Δθmul is usually differ-
ent from Δθuni in each neuron, which revealed the effect of
multisensory operation on the encoding dynamics. Intui-
tively, Δθmul is interpreted as the disparity between the pre-
ferred directions of two sensory cues. The top panels of
Figures 2(b) and 2(c) present a typical balanced neuron that
the disparity between the preferred directions increased
when switching from the unisensory to multisensory condi-
tion. The bottom panels of Figures 2(b) and 2(c) present an
example imbalanced neuron in which the preferred disparity
exhibited a decrement. The disparity preference change in
multisensory condition resulted from the shifted peak of
tuning curves (multisensory tuning curves are derived from
red lines in Figure 1(c)). The neural mechanism will be
explained by a computational neural network in the next
section.

To specify the disparity preference at the population level,
we investigated the probability distribution of unisensory
(Figure 2(d)) and multisensory preferences (Figure 2(e)) in
both balanced (left panels) and imbalanced neurons (right
panel). The unisensory condition was characterized by polar-
ized distributions. Balanced neurons generally preferred small
Δθuni values, while imbalanced neurons generally preferred
large Δθuni values. The summed population of MST-d thus
had a bipolar distribution that parallels previous report
[1]. Under multisensory conditions, imbalanced neurons
presented a major transition to preferring a small disparity
between both cues. On the other hand, balanced neurons
featured a uniform-distributed preference. We further speci-
fied the relationship between Δθuni and Δθmul, as shown in
Figure 2(f). It is clear that balanced neurons had a stronger
correlation between the two disparities. A small Δθuni gener-
ally led to a smallΔθmul and vice versa. In contrast, imbalanced
neurons had a weaker correlation, and Δθmul was generally
biased to 0° regardless of Δθuni.

Based on the results above, we hypothesize that imbal-
anced neurons may serve as a sensory integration encoding
basis because (1) it is commonly acknowledged that animals
are inclined to integrate stimuli with small spatial disparity
[20], in which imbalanced neurons are more likely to
respond strongly given the dominance of the small Δθmul
value. (2) If one cue is unreliable, the subject tends to inte-
grate the cues by giving larger weights to the more reliable
one [14], which matches the precoded reliability bias of
imbalanced neurons. Accordingly, we postulated that bal-
anced neurons serve as a separation encoding basis in neural
circuits since they are the counterparts of each other. In
short, the balanced and imbalanced neurons have the poten-
tial to encode the spatial disparity of visual and vestibular
cues in a reliability-based manner. We assumed that the
Δθmul distributions are identical in all directions; thus,
only disparity coding was considered in this study, while spe-
cific directions were omitted. Next, we aimed to prove this
hypothesis by a computational model that the response ratio,
for either balanced or imbalanced neurons, is the dynamic

origin that determines whether the MST-d neuron is a mul-
tisensory integration or separation encoder.

2.2. Continuous Attractor Neural Network (CANN)
Modeling. To test our hypothesis that the response ratio
for balanced or imbalanced neurons can determine neuronal
encoding function, we constructed a multipartite cortical
circuit model as a continuous attractor neural network
(CANN, Figure 3(a); modified from [25], see Methods for
details). The model simulated hierarchical sensory process-
ing composed of three neural networks, two of which were
the unisensory middle temporal region (MT) and parietal-
insular vestibular cortex (PIVC). We assumed the third
network to be a multisensory subnetwork that received the
population outputs from the MT and PIVC regions and fur-
ther determined the multisensory preference of MST-d
neurons downstream. In other words, the CANN model
simulated multisensory preference formation in specific syn-
aptic input conditions; thus, it is independent of real stimuli.

2.2.1. Model Sketches. Each network is composed of 180
neurons, whose positions denote preferences and are topo-
logically aligned across networks. Neuronal dynamics are
featured by a rate-based model in which activity ranges from
0 to 1 [25]. The inputs to MT and PIVC are visual and
vestibular signals, respectively, and were simulated by a
Gaussian function that centers at position θvis or θves and
has a wide range (Figure 3(b) top panel). Once the inputs
were received, the neurons in two unisensory layers showed
group response “bumps” mainly due to the lateral connec-
tions in a Mexican hat shape (Figure 3(b) bottom panel),
and the center of the bump was usually distorted from θvis
or θves by neuronal intrinsic noise.

Then, the response bumps were sent forward to the mul-
tisensory subnetwork. Notably, the response ratio in the data
reflects the synaptic property because the inputs were
applied with the same motion intensity. It is well acknowl-
edged that synaptic input is the product of synaptic weight
and the input firing rate. Since the input firing rate is nor-
malized to 1, we assumed that the synaptic input is propor-
tional to the synaptic weight; thus, the response ratio is
interpreted as the synaptic weight ratio (more concisely
referred to as the synaptic ratio).

Therefore, balanced and imbalanced neurons were
simulated by adjusting the proportion of the forward con-
nection weights from the MT and PIVC to the subnet-
work. The simulations were repeated 1000 times, and the
occurrence of the weight ratio value followed the balanced
(Figure 3(c) top panel) or imbalanced ratio distribution in
the data (Figure 3(c) bottom panel).

When the forward inputs from the MT and PIVC
arrived at the subnetwork, they still carried the distorted dis-
placement between θvis and θves due to the topological align-
ment setting. The neurons in the subnetwork responded to
the inputs and formed bumps due to lateral connections
(with the same parameters as unisensory layers), and the
dynamics of the subnetwork are characterized by bifurcation
states. It is obvious that when the inputs are close in dis-
tance, the neurons are prone to form a common response
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bump and cooperate (Figure 3(d)). In contrast, when the
inputs are distant, the neurons are prone to form two inde-
pendent bumps and compete (Figure 3(e)). Due to noise
interference, both states occur by chance given fixed θvis
and θves; thus, the final bump pattern is bifurcated. When
neuronal responses are saturated in rate-based dynamic,
both states are stable due to the countereffect of excitatory
and inhibitory components in lateral connections, and the
bumps do not collapse unless the inputs are removed.

2.2.2. Model Interpretation. The bifurcation state of the sub-
network explicitly interprets the encoding of integration and
separation for downstream MST-d neurons. The multisen-
sory subnetwork serves as the receptive field of MST-d neu-
rons. When real-time inputs deviate from the bump

locations on the subnetwork, the response of the MST-d neu-
rons is lower, which parallels the multisensory response func-
tion shown in Figure 1(c) (exemplified in the side panels of
Figures 3(d) and 3(e), see also Supplementary Figure S1).
Group cooperation indeed results in sensory integration
because the visual and vestibular inputs share the same
receptive field. In this manner, the response of MST-d
neurons indicates that they originate from the same source.
In contrast, group competition results in sensory separation
because the MST-d response represents visual and vestibular
inputs with distinct receptive fields and thus distinct
sources. The integration and separation are robustly
encoded by measurable neuronal responses. Consistent with
data analysis, we denoted the distance jθvis − θvesj as
unisensory disparity Δθuni, which is a hyperparameter in
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CANN simulations. Since MST-d neuronal preference is
characterized by the subnetwork, the distance between the
responding bumps on the subnetwork is denoted as Δθmul.
When only a common bump exists, Δθmul is defined as 0

°.

2.2.3. Simulation Results. By introducing balanced and
imbalanced forward ratios (Figure 4(a)), we first investigated
the dynamic property in the time domain. Inputs were
applied at t = 0ms and maintained until the end of the trial
(t = 3000ms). Figure 4(b) shows that Δθmul usually became
stable after 1500ms (arbitrary unit). In the balanced group,
the majority of simulated neurons (658/1000 ≈ 66%) pre-
sented two independent response regions in the subnetwork,
and the corresponding Δθmul ranged from 60° to 180° in the
end (Figure 4(b) top panel). However, in the imbalanced
group, the majority (664/1000 ≈ 66%) had one common
response region in the subnetwork, where Δθmul = 0° in the
end (Figure 4(b) bottom panel). Consistent with the data
analysis, we chose the time window of 500ms (t1) to
1500ms (t2) and computed the mean Δθmul in this window.
Figure 4(c) shows that when MST-d neurons encode inte-
gration by a common response region, the mean Δθmul does
not necessarily decrease to 0° in the time window, especially
for neurons in the imbalanced group. This validated that
integration is encoded not only by neurons with Δθmul = 0°
but also by neurons with Δθmulti approximately 45°.
Conversely, separation is encoded by balanced neurons
with Δθmul ∈ ½60°, 180°� and imbalanced neurons with
Δθmul ∈ ½120°, 180°�.

Next, we correlated the encoding functions from CANN
simulations to physiological data. As mentioned above,
experiments involved a 45° range for each recorded direc-
tion; thus, the neurons with Δθmul implied the range ½Δθmul
− 22:5°,Δθmul + 22:5°�. We concluded that balanced neurons
with Δθmul ∈ f90°, 135°, 180°g encode separation, which
includes a spatial range ½67:5°, 180°� that is close to CANN
predictions. On the contrary, balanced neurons with Δθmul
∈ f0°, 45°g encode integration. For imbalanced neurons,
those with Δθmul ∈ f135°, 180°g encode separation, while
those with Δθmul ∈ f0°, 45°g encode integration. Imbalanced
neurons with Δθmul = 90° are reasonably omitted because
they are both rare in CANN prediction and data
(Figure 4(d) bottom panel, the 4 neurons with Δθuni = 90°
and Δθmul = 90° were found to correlate more with balanced
neurons with mean r = 1:84, which is significantly smaller
than that of other imbalanced neurons, p = 0:021, n1 = 11,
n2 = 34, two-sample t-test).

Figure 4(e) demonstrates the integration-encoding prob-

ability (pint) of MST-d neurons as a function of Δθprefuni (here-
after briefed as integration function). pint denotes

nint/ðnint + nsepÞ at each Δθprefuni , where nint is the
integration-encoding neuron count and nsep is the separa-
tion neuron count in the balanced or imbalanced group at
each Δθuni. In the CANN model, pint denotes n′int/ðn′int + n
′sepÞ, where n′int is the number of trials that form one

response region in the end and n′sep forms two response

regions in the end. The total trial count (n′int + n′sep) is

1000 at each Δθuni. The CANN model fitted well with the
experimental data. Both the data and simulations showed
that the integration-encoding probability decreased with
increasing synaptic disparity (Δθuni). Accordingly, the
separation-encoding probability increased. In general, the
balanced neurons were biased to encode separation, while
imbalanced neurons were biased to encode integration.

Figure 4(f) also demonstrates the mean Δθprefmul (Δθ
pref
mul ) con-

ducted from integration or separation encoding neurons
individually. CANN prediction in both balanced and imbal-
anced conditions reproduced data distributions.

In conclusion, the model simulated hierarchical process-
ing from unisensory to multisensory regions and validated
that MST-d neurons receiving balanced synaptic inputs gen-
erally encode sensory separation, while those receiving
imbalanced synaptic inputs generally encode sensory inte-
gration. Jointly, the functional distinction enables MST-d
balanced and imbalanced neurons to be effective bases for
multisensory encoding. This proved our early hypothesis
raised from experimental analysis that the balance level of
synaptic coupling strengths from MT and PIVC input to
MST-d neurons may be the key mechanism in driving
individual MST-d neurons to be congruent neurons for
integration or opposite neurons for segregation by a self-
organization process.

2.2.4. Dynamic Modulations from the Synaptic Ratio and
Intrinsic Noise. We further investigated the role of neuronal
intrinsic noise by altering noise intensities in the CANN
model. Different noise intensities were simulated by Gauss-
ian noise with 0 means and different standard deviations
(σnoise). In each noise condition, we simulated the neuronal
integration probability pint with synaptic ratios of 1.0, 1.8,
2.2, and 2.6. Surprisingly, we found that neuronal intrinsic
noise not only determined how distinct the encoding func-
tions were but also altered the effective encoding bases
themselves.

We first simulated a noise-free condition (σnoise = 0,
Figure 5(a)). In this condition, it was obvious that the model
MST-d neurons encoded the inputs based on a fixed bound-
ary (criterion) [30], and the boundary increased with the
synaptic ratio (the criterion approximately 70°, 90°, 130°,
and 150° as the ratio increased from 1 to 2.6). If the synaptic
disparity range was in the boundary, the neuron robustly
encoded integration; otherwise, it encoded separation. At
the computational level, it is commonly acknowledged that
effective encoding requires distinct neuronal responses. In
this condition, effective encoding obviously relies on neu-
rons preferring congruent or opposite stimuli, which is the
congruent or opposite neurons in [1, 13]. When real inputs
have a low degree of disparity, congruent neurons respond
actively to infer integration, while opposite neurons remain
inactive, and the individual can infer integration based on
the response of congruent neurons and vice versa. Without
loss of generality, we only discuss the encoding of disparity,
while absolute direction is omitted.

With increasing noise levels (Figure 5(b)), the integra-
tion functions of different ratios became increasingly distinct
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Figure 4: The CANN model simulates integration functions in the MST-d. (a) Schematics of balanced (top) and imbalanced (bottom)
simulations in the CANN model. All other plots follow this arrangement. (b) Dynamic in the time domain. Five hundred trials are
presented in each graph. The black dashed lines denote Δθmul = 60° and Δθmul = 120°. Side panels denote corresponding dominant
response patterns in the subnetwork. (c) Dynamics in the space domain as a function of synaptic disparity (Δθuni). Δθmul is averaged
from the time window t1 to t2, indicated by the red lines in (b). (d) Classified integration and separation-encoding neuron data in the
joint distribution of Figure 2(f). (e) Probability of integration encoding (pint) as a function of Δθuni. psep = 1 − pint. Data: diamonds.
CANN simulation: dotted curves. (f) Mean Δθmul of integration-encoding as well as separation-encoding neurons (data: diamonds;
CANN simulation: lines). The error bar denotes the standard error.
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from each other across the range of Δθuni values, and the
boundary in each function was blurred. At the noise level
that fitted the data best, effective encoding was produced
by balanced and imbalanced groups as computational bases
(Figure 5(c)), which was the case we demonstrated above. In
this case, integration was effectively inferred by a higher
group response from imbalanced neurons and separation
from balanced neurons. In other words, neuronal intrinsic
noise transferred the encoding bases from congruent and
opposite neurons to balanced and imbalanced neurons,
where the synaptic ratio played a dominant role to discrim-
inate the functions. The encoding of congruent and opposite
neurons became less effective because their responses were
usually similar under noisy conditions, shown as flatter inte-
gration functions across the range of Δθprefuni values.

At a high noise level (σnoise = 15, Figure 5(d)), all integra-
tion functions approximated 50% since randomization was
dominant, and the modulation from the synaptic ratio also
deteriorated. Thus, neither encoding by congruent and
opposite neurons nor encoding by balanced and imbalanced
neurons was efficient.

These results suggested that the synaptic ratio and
intrinsic noise are both keys to neuronal multisensory com-

putation. To quantify the modulation of the synaptic ratio,
the integration functions were averaged as �pint at the best-
fit noise level (�pint =∑n

i=1pint ,Δθiuni /n). With the increasing
synaptic ratio, MST-d neurons were automatically classified
as integration or separation encoders by a threshold of 1.8
(Figure 5(e)). When the ratio was less than 1.8, neurons gen-
erally served as separation encoders on average. When the
ratio was greater than 1.8, they generally became integration
encoders. Thus, the encoding function of MST-d neurons
was dynamically determined by the synaptic ratio. Notably,
the threshold we chose to classify the data (1.7) in physiolog-
ical analysis was close to this optimal threshold.

Moreover, we propose that the typical balanced (r = 1:28)
and imbalanced (r = 2:35) encoding was enhanced by the sto-
chastic resonance (SR) mechanism (Figure 5(f)). SR refers to
the situation in which the existing noise improves the input
and output signal-to-noise ratio [31–33]. In multisensory
encoding, the effect of SR was interpreted as inference efficiency
(ε) measured by the revised Kullback–Leibler divergence
between the integration functions of two encoders (see
Methods). Intuitively, this can be interpreted as more effective
encoding if the function curves deviate more from each other,
allowing clearer representations.
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Figure 5: Dynamic modulation by the synaptic ratio and noise. (a–d) The integration function is modulated by both the synaptic ratio
(from 1.0 to 2.6) and noise (from 0 to 15). (e) Modulation of the synaptic ratio determines neuronal function. The vertical dashed line
shows the ratio that optimizes the threshold (Pint = 50%) between integration and separation. (f) Inference efficiency (ε) is modulated by
the noise level (σ). The gray vertical dashed line shows the optimal noise level for congruent and opposite neurons as encoding bases
(asterisks), and the red vertical dashed line shows the optimal noise level for balanced and imbalanced neurons as encoding bases
(circles). ε on the y-axis is presented in arbitrary units based on a modified form of Kullback–Leibler divergence.
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The model predicted that maximum efficiency was
achieved when σnoise = 6:5 (≈0.26 times the peak amplitude
of the model external input), which was close to the optimal
noise level (σoptnoise) of 6 in our model. This indicated that real
MST-d neurons achieved near-optimal encoding in the
noisy physiological environment. Figure 5(f) also demon-
strates the rescaled efficiency of congruent and opposite
encoding (see Methods). In this case, the efficiency was max-
imized when σnoise=0.8 (≈0.03 times the peak amplitude of
the model external input), suggesting that encoding by con-
gruent and opposite neurons was most efficient in the low-
noise condition. Nevertheless, encoding by balanced and
imbalanced neurons was more efficient over a wide range
of noise intensities. In the predicted physiological noise con-
dition (σbest‐fit), the efficiency of balanced-and-imbalanced
encoding was 185% compared to that of congruent-and-
opposite encoding (in Supplementary Figure S3, the model
results with intrinsic noise following a uniform distribution
are also presented).

2.2.5. Dynamic Modulation from Lateral Connections. Based
on the CANN model results, we propose that balanced and
imbalanced neurons comprise effective encoding with the
help of intrinsic noise. We further investigated the role of
lateral connections in the subnetwork. Potentially, these
connections have a critical role in the encoding functions
because the countereffect from excitatory and inhibitory
connections is the main cause of the bifurcation states. We
introduced a scale factor (βscale) to both excitatory and inhib-
itory components to increase or decrease the lateral connec-
tion weights (Figure 6(a)), while other parameters held the

same weights. The best-fit CANN model refers to βscale = 1:0.
Figure 6(b) presents the integration-encoding functions in bal-
anced simulations given different βscale values. Separation
encoding was robust when lateral weights decreased by half
(βscale = 0:5). Notably, the balanced neurons still encoded sep-
aration even when lateral connections were removed
(βscale = 0), although the integration probability was slightly
larger. This is possibly due to the removal of inhibitory com-
ponents, which is critical in competition among regions.
When lateral weights increased (βscale ∈ f1:5,2g), the function
of balanced neurons was shifted to encode integration. For
imbalanced neurons (Figure 6(c)), neuronal function was aug-
mented to encode separation when lateral weights decreased
(βscale ∈ f0:75,0g), but the function to encode integration
became more robust (pint ~ 1) when lateral weights increased
(βscale ∈ f1:25,2g).

In the best-fit model (βscale = 1), the total lateral input to
one neuron in the subnetwork was nearly one-fifth of the
total forward inputs. Although the lateral inputs appeared
to be subordinate, these results indicated that lateral connec-
tions in the subnetwork are also critical to the functional dis-
tinction. In conclusion, effective encoding must meet certain
requirements of the synaptic ratio (ratio between forward
weights), presence of noise, and adequate lateral weights
on the multisensory layer. These three factors comprise the
neural mechanism of MST-d dynamic encoding.

2.3. Inference Decision Arising from MST-d Populational
Network. The analysis above demonstrated the hierarchical
mechanism of computing function of individual MST-d
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neurons in multisensory integration and separation. In this
section, we took a further step along the cortical hierarchy
and investigated the underlying algorithm of multisensory
decision based on the existing of integrators and separators
in the circuit. Specifically, we sought to resolve the debate
about whether the high-level cortex performs Bayesian deci-
sion or non-Bayesian decision, such as those with determin-
istic strategies [30].

By simulating a bioplausible decision-making process, we
prove that a single MST-d neuron utilizes fixed-criterion
(FC) strategy, which makes deterministic inferences based
on explicit boundaries (non-Bayesian). However, at the popu-
lation level, the MST-d neuron group may compute causal
inference in a reliability-based Bayesian strategy, which takes
each MST neuronal response as a sampling of prior distribu-
tion to calculate the posterior probability of the cue origin state
accordingly.

2.3.1. Single-Neuron Level. The causal inference here
denoted the binary judgment of whether the observed visual
and vestibular inputs (xvis and xves) are attributable to one
common cause (C = 1) or two separate causes (C = 2).

P C = 1ð Þ + P C = 2ð Þ = 1: ð6Þ

We first focused on the inference performed by a single
neuron. Under noise-free conditions, we verified in the last
section that MST-d neurons adopt an FC strategy, which
means that the neurons infer a common cause (C = 1) if
the two measurements are closer than a fixed boundary κ
(jxvis − xvesj < κ) and infer two separate causes (C = 2) other-
wise. The strategy is deterministic because the boundary κ is
explicit and determined [30]. However, the presence of neu-
ronal intrinsic noise (ξ) blurs the measured disparity. To
test whether MST-d neurons still follow the FC strategy in
the noisy condition, we simulated the noisy FC strategy as
jxvis − xvesj + ξ and fitted the integration decision from this
strategy with the neuronal integration functions (see
Methods). The parameter was boundary κ, which varied
across functions, and the noise level was ξ. Figure 7(b) dem-
onstrates that the noisy FC strategy closely reproduced inte-
gration functions in the case of different synaptic ratios
(data here refer to CANN functions for higher Δθuni resolu-
tion). This suggested that in the noisy condition, each
MST-d neuron still performed deterministic inference with
fixed and explicit boundaries, and the boundary varied
among neurons due to different synaptic ratios.

2.3.2. Population Level. At the MST-d population level, we
postulated that a new strategy emerges due to the pooling
of various boundaries. Since the decisions are decoded from
responses in neural circuits, we first characterized the MST-
d neuronal multisensory response properties based on the
recorded data. The multisensory response was characterized
as a function of both preferred disparity and real cue dispar-
ity (f bal and f imbal, Figure 7(c)). Both f bal and f imbal were
obtained by averaging the multisensory responses relative
to the preferred condition in real data (see Supplementary
Figure S2 for methods), and they characterized the real-

time balanced or imbalanced neuronal response to
hypothetical cues as R = f ðΔθ′Þ, where Δθ′ = jΔθmul−Δθcuej.
For example, if Δθcue is 30°, the neurons for which Δθmul
=30° exhibit a maximal response because f ðjΔθmul−ΔθcuejÞ
= f ðΔθ′ = 0°Þ = Rmax

multi. However, the neurons for which Δ
θmul=180

° have low responses because f ðΔθ′ = 150°Þ. We
simulated Δθcue from 0° to 180° in the horizontal plane,
which is the same as the experimental conditions.

Second, we adopted a probabilistic Monte Carlo sam-
pling process of neuronal responses in balanced and imbal-
anced groups individually. The response sampling is widely
observed along the cortical hierarchy [34, 35]. Here, the
sampling of MST-d neuronal responses simulated that
MST-d neurons were randomly activated by fixed Δθcue in
noisy physiological condition, and each neuronal response
served as a prior sample of the cues based on the inherent
tuning property. To seek a minimal requirement to realize
flexible decisions, we sampled 15 neurons from MST-d
group, 9 of which were balanced neurons and 6 of which
were imbalanced neurons. The proportion followed data
observations (nbal : nimbal = 70 : 45 ≈ 3 : 2).

Next, the sampled responses were summed as balanced
or imbalanced group responses and sent to a decision neu-
ron, which compared the group response amplitude to reach
a binary decision (the limited sample size is plausible
because it is little likely that responses of all MST-d neurons
are sent to a common neuron downstream). Since we proved
that imbalanced neurons are integration encoding bases and
balanced neurons are separation encoding bases, the resul-
tant decision was to integrate the senses and report common
source if imbalanced groups had higher responses or to sep-
arate the senses and report different sources otherwise. At
each Δθcue, we simulated such binary decision-making for
100,000 times to obtain the averaged decision probability
of reporting a common source (pcommon) as a function of
external cue disparity (Figure 7(d)).

It is crucial to note that balanced and imbalanced neu-
rons are actually reliability-based. Previous works proved
that imbalanced neurons are more sensitive to reliability
changes in the dominant cue but less sensitive to those in
the subordinate cue [36]. On the other hand, balanced neu-
rons have equal sensitivity to both cue reliabilities. Thus, it is
reasonable to expect that when one cue is unreliable, the
response of the balanced neurons is weaker, while the imbal-
anced neurons that prefer the other cue maintain the
response level (we assume each decision is made with imbal-
anced neurons with the same cue dominance). The response
change was simulated by amplitude scaling (R′ = α∙R),
where α is the scale factor. In this situation, the amplitude
change was expressed as αbal < 1 and αimbal = 1. We
simulated a mild decrease to balanced responses as
αbal ∈ f0:9, 0:8g, and we presented that the probability
of reporting a common source (pcommon) significantly shifted
toward 100% (Figure 7(d), circles, from black to light blue),
which means that the decision was prone to integrate cues
when a specific cue was unreliable.

To specify the strategy during such decisions, we simu-
lated classical Bayesian optimal inference [20] (see Methods).
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The Bayesian strategy differs substantially from the FC strat-
egy because it computes the posterior probability of C =
1 or C = 2 based on sampled measurements xvis and xves
and prior pðC = 1Þ. We considered the Bayesian strategy
here because the prior may be computed by pooling the
fixed boundaries during the decision. In the simulation,
the prior was set as a parameter that varied across the
decision functions.

As the curves in Figure 7(d) demonstrated, the Bayesian
strategy approximated well with decisions from the sam-
pling process. Notably, the case when αbal = 1 and αimbal = 1
matched the real neuronal recording when both cues repre-
sented the same motion. In this case, the best-fit prior was
0.48, which was close to the flat prior (0.5). This result sug-
gested that the inference in the adult brain assumes a fair
prior when both cues are equally reliable. Furthermore,
when the reduced reliability of one cue was projected to
the weaker response of balanced neurons, the prior
increased accordingly (Figure 7(e)) and resulted in a higher
probability of reporting a common source.

Next, we considered the other case in which the domi-
nant cue is unreliable. Consequently, the imbalanced neuron
response decreased more than the balanced neurons. It is
obvious that when both responses are decreased proportion-
ally, the decision is the same as that when αbal = 1 and
αimbal = 1. Thus, we simulated the case in which αbal = 1
and αimbal ∈ f0:9, 0:8g instead (Figure 7(f)). We presented
data in Figure 7(g) that decisions from the sampling process
were biased to different sources in this case. The Bayesian
strategy consistently approximated the decisions with
decreasing prior (Figure 7(h)). In conclusion, we proved that
the Bayesian strategy naturally emerged from the encoding
of balanced and imbalanced encoding bases. The two bases
linked disparity coding with cue reliability in the form of
prior computation and produced flexible decisions that var-
ied accordingly with cue reliability. In other words, the
fMCS model provided a physical base to derive multisensory
decision by the posterior probability of integration based on
the response samples in MST-d.

Finally, we demonstrated the Bayesian interpretation of
sample size (total size = n′bal + n′imbal, Figure 7(i)). Note that
the sample size in this section is independent of the sample
size in experimental recordings. The variation of sample size
could result from inherent synaptic connection from MST-d
neurons to the specific decision neuron or from different
intensities of external cues, where strong intensity activates
more MST-d neurons, and more samples participate in a
decision trial therewith. With an increasing total sample size,
the decision functions showed steeper gradients (Figure 7(j)),
indicating that decisions were made with more confidence. In
other words, accumulating evidence is represented by more
neurons participating in the decision. This is consistent with
behavioral conclusions that the more evidence accessible, the
more confidence is associated with the decision [37, 38]. The
decision functions were nicely fitted by a Bayesian strategy
with a narrower probability distribution, while other param-
eters were fixed (Figure 7(k), pðxvisjsÞ and pðxvesjsÞ, where s
denotes the sensory source and x the sensory measurements;
prior probability = 0:51 in these simulations; see Methods for

details). The narrowing distribution in Bayesian fitting
matched the statistical rules that standard error decreases
with increasing sample size (standard error = σ/

ffiffiffi
n

p
, where

σ is the standard deviation of sensory measurements and n
is the sample size). These results strongly proved the emer-
gence of a probabilistic Bayesian strategy from coding in
the balanced and imbalanced groups of neurons.

Previous works argued that both FC and Bayesian strat-
egies are likely to underlie brain inference, and we validated
that the two strategies function on different levels. Crucially,
a Bayesian decision cannot be reduced to the summation of
individual neurons that perform FC strategy only. This is
because each neuron carries a fixed prior representation,
but the change in the prior is computed by pooling neurons
with different synaptic features during a decision. Such
group coding allows the realization of a flexible probabilistic
decision that is biased to integrate the inputs from different
modalities when one of them is not reliable and separate them
when both of them are reliable. This section proposed the
Bayesian-decision emergence by varying neuronal response.
We also presented in Supplementary Figure S4 that change
of proportion between balanced and imbalanced neurons
also produced Bayesian-like decision, where the prior has
more drastic bias. The change of proportion could result
from various neuronal activation threshold in physiological
condition. The proportion change added to the multisensory
inference flexibility in real brain.

3. Discussion

This study is aimed at revealing the neural encoding mecha-
nism of multisensory causal inference in the MST-d. The
novel focus of this paper is to prove computationally that
the balance level of synaptic coupling strengths from MT
and PIVC inputs to MST-d neurons may be the key mecha-
nism in driving the MST-d neurons to be congruent
encoders for integration or opposite/intermediate encoders
for segregation by a self-organization process. The computa-
tional results also demonstrated another novel mechanism
that produces the maximum coding capacity by stochastic
resonance with the optimal intensity of intrinsic noise. Based
on these mechanisms, we further demonstrated that each
MST-d multisensory neuron implements a non-Bayesian
FC strategy, but the prior emerges by pooling diversified cri-
teria. Moreover, MST-d neuron populations implement a
probabilistic Bayesian strategy. Therefore, this study estab-
lished a computational framework that the feedforward inputs
from early pathways play a key role in determining the emer-
gence of congruent and opposite neurons in multisensory
decoding, and sensory motion discrimination requires both
Bayesian and non-Bayesian strategies, each serving at the
single-neuron or populational level.

3.1. Synaptic Coupling Generates a Novel Set of Neural Bases
for Multisensory Encoding. Previous works generally assumed
that unisensory congruent neurons perform sensory integra-
tion, while opposite neurons perform sensory separation; the-
oretical works verified this assumption through vector
computation [1, 13]. However, there are also works
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demonstrating that congruent neurons can perform separa-
tion, and opposite neurons can perform integration [39].

In this study, we first pointed out that neuronal prefer-
ence in multisensory conditions is usually different from that
in unisensory conditions. Therefore, implementing multi-
sensory coding by unisensory distributions generally led to
confusion. Second, we proposed the novel encoding bases
of balanced and imbalanced neurons, whose encoding
properties originates from inherent synaptic features but
not unisensory features. In this case, the congruent and
opposite neurons are not tightly correlated with the balanced
and imbalanced categories (Supplementary Figure S5). The
CANN model further demonstrated a neuronal encoding
mechanism based on balanced and imbalanced neuronal
bases, which is nearly twice as efficient as the mechanism
based on congruent and opposite bases (Figure 5(f)).
Notably, our results solved three outstanding problems. (1)
Unisensory intermediate neurons are usually omitted in
functional analysis. Here, we confirmed that these neurons
also participated in dynamic multisensory encoding, and
they are equally functional as unisensory congruent and
opposite neurons. (2) We confirmed the finding from
Rideaux et al. through physiological analysis and revealed
that multisensory encoding is probabilistic. (3) The vector
computation proposed by Zhang et al. does not cover the
neuronal functions when Δθmul = 90°. We specified the role
of these neurons as separation encoding, which explained
behavioral observations that separation estimation generally
has less estimated error than integration [20, 40]. In our
theory, the separation encoding basis is the balanced
neuron group, which has more neurons encoding a wider
range of disparity (from 60° to 180°). Therefore, separation
encoding has higher resolution in comparison because the
disparity is detected by more neurons.

In our theory, causal inference emerges from the sensory
processing hierarchy from unisensory to multisensory cortical
areas, which has been verified by fMRI studies [21]. As the
means of connection of this hierarchy, the synaptic coupling
mechanism explains the finding in evolutionary biology that
multisensory computation emerges postnatally with the devel-
opment of synaptic connections [41]. In the superior colliculus
(SC) of the cat, multisensory neurons are initially unable to
integrate combinations of sensory cues to produce significant
enhancement or depression of responses [42], but the ability
to integrate cross-modality inputs gradually increases with
postnatal experience as cortical SC synapses are modified fol-
lowing Hebbian rules [43]. Furthermore, the findings of the
present study are in line with functional conclusions that the
spatial reference frame of the MST-d varies as a function of
the relative strength of visual and vestibular inputs when dif-
ferent modalities are combined [44].

3.2. Model Interpretation of the Subnetwork. We propose
that the subnetwork is necessary for multisensory attractor
computation, while the recorded MST-d neurons mainly
serve to report the inference. There are a few plausible expla-
nations for this subnetwork identity. First, this network
belongs to an anatomical subregion in MST-d. In this case,
the responding units involved in separation encoding may

be recorded as singularly tuned neurons because they only
respond to a single input, while in integration encoding,
the responding units may be considered multisensory neu-
rons with aligned preferences. This hypothesis will be fur-
ther substantiated if structural organization in MST-d is
revealed in the future. Another potential identity is the ven-
tral intraparietal area (VIP). The VIP meets three require-
ments crucial to attractor computation: (1) the VIP is
anatomically connected with the PIVC [45] and reciprocally
connected with the MT [46]; thus, in the multisensory con-
dition, the response of the VIP may be fed back to preceding
cortical areas to change the receptive field property. (2)
Almost half of the neurons in the VIP are dominated by
congruent visual and vestibular preferences [47]. This is cru-
cial to the multisensory attractor computation because it
passes Δθuni from unisensory areas to a common level and
the disparity feature is preserved. (3) VIP neurons have a
larger activity correlation than MST-d neurons measured
by correlated noise [47], which indicates that VIP neurons
process multisensory signals more intensively than other
neurons. Although it seems inappropriate to assume a whole
network computation for each recorded MST-d neuron, the
majority of neurons in this subnetwork are redundant and
can be released from the circuit after synaptic modification,
and only specific neurons carrying multisensory direction
preference are preserved. It is also possible that the hypo-
thetical subnetwork stands for an undiscovered type of mul-
tisensory synaptic attractor learning rule, which requires
further work.

3.3. Probabilistic Bases in Group Encoding Are the Key to
Flexible Probabilistic Decision-Making. MST-d neurons are
predetermined as integration and separation encoders based
on synaptic inputs. Due to noise, balanced and imbalanced
groups have distinct functions in multisensory inference,
which makes them ideal computational bases to maximize
inference efficiency. Although we consider each MST-d neu-
ron an essential encoding component in a decision, our the-
ory still supports the idea that MST-d group encoding is the
foundation of multisensory discrimination [20]. Since the
FC strategy applied by each MST-d neuron also stems from
the group coding of the preceding unisensory areas, it seems
that the complexity increases as downstream cortical neurons
receive preceding inputs and produce outputs. Although the
probabilistic decision substantially matches the behavioral
results of similar tasks [35, 48–50], the psychophysical results
show low resolution, with the threshold between integration
and separation discrimination being approximately 47°

(Figure 7(g)), whereas the threshold in behavioral tasks lies
at 20°. Other mechanisms, such as top-down modulation or
crosstalk between several multisensory areas, might be neces-
sary to further improve the resolution [30].

While many works have focused on the direct correla-
tion between one decision and a specific neural basis, our
results indicated that real cognitive performance may not
be able to be reduced to a corresponding smaller structure
but may instead emerge naturally through a series of proba-
bility distributions of bases. We presented in Supplementary
Figure S6 that a clear correlation between the causal scenario

14 Research



and neurons only makes rigid decision, while the distributed
preference as we observed in data produces maximal
inference efficiency. In conclusion, the brain functions as
an integrated hierarchy, and neural firing in different
cortical areas represents different features. In multisensory
areas, it is likely that single neuron encodes multiple
features that is either reliability-based or modality-based.
The multidimensional encoding may serve as the key to
produce flexible intelligence behavior.

3.4. Limitations of This Study and Suggestions for Potential
Future Research. The physiological results must be inter-
preted with caution because of the limited sample size. Fur-
thermore, the model used a simplified structure that
excludes real neuronal synaptic dynamics, such as neural fir-
ing heterogeneity within and across the cortical area. The
diversity of synapses may enrich the dynamics of integration
and separation inference. Moreover, the model did not
employ a synaptic learning process to transfer the character-
istics of the response subnetwork to the receptive field prop-
erty. Regarding possible future directions, further study is
needed concerning receptive field modification to develop
a complete attractor computation process. Additionally, fur-
ther studies can test this synaptic modulation theory in other
multisensory areas, such as the VIP, to specify the scale on
which synaptic encoding modulation functions as a general
mechanism.

4. Methods

4.1. Subjects and Surgery. Two male rhesus monkeys
(Macaca mulatta) served as subjects. The general procedures
followed in this study have been described previously [51,
52]. Each animal was outfitted with a circular molded plastic
ring anchored to the skull with titanium T-bolts and dental
acrylic. To monitor eye movements, a scleral search coil
was implanted in each monkey. The Institutional Animal
Care and Use Committee at Washington University
approved all animal surgeries and experimental procedures,
which were performed following National Institutes of
Health guidelines. Animals were trained to fixate on a cen-
tral target for fluid rewards using operant conditioning.

4.2. Vestibular and Visual Stimuli. A 6-degree-of-freedom
motion platform (MOOG 6DOF2000E; Moog, East Aurora,
NY) was used to passively translate the animals along one of
eight directions in the horizontal plane, spaced 45° apart. A
tangent screen was affixed to the front surface of the field
coil frame, and visual stimuli were projected onto it by a
three-chip digital light projector (Mirage 2000; Christie Dig-
ital Systems, Cypress, CA). The screen measured 60 × 60 cm
and was mounted 30 cm in front of the monkey, thus sub-
tending ~ 90° × 90°. The visual stimuli simulated transla-
tional movement along the same eight directions through a
three-dimensional cloud of stars. Each “star” was a triangle
that measured 0:15 cm × 0:15 cm; the cloud measured
100 cm wide by 100 cm tall by 40 cm deep and had a star
density of 0.01 per cm3. To provide stereoscopic cues, the
cloud was rendered as a red–green anaglyph and viewed

through custom red–green goggles. The optic flow field con-
tained naturalistic cues mimicking the translation of the
observer in the horizontal plane, including motion parallax,
size variations, and binocular disparity.

4.3. Electrophysiological Recordings. We recorded action
potentials extracellularly from both hemispheres in each of
the two monkeys. For each recording session, a tungsten
microelectrode was passed through a transdural guide tube
and advanced using a micromanipulator. An amplifier, an
eight-pole bandpass filter (400–5000Hz), and a dual
voltage-time window discriminator (BAK Electronics, Mount
Airy, MD) were used to isolate action potentials from single
neurons. Action potential times and behavioral events were
recorded with 1ms accuracy by a computer. Eye coil signals
were processed with a low-pass filter and sampled at 250Hz.

Magnetic resonance imaging (MRI) scans and Caret
software analyses along with physiological criteria were used
to guide electrode penetration into the MST-d area [1]. Neu-
rons were isolated while a large field of flickering dots was
presented. In some experiments, we further advanced the
electrode tip into the lower bank of the superior temporal
sulcus to verify the presence of neurons with response char-
acteristics typical of the MT [1]. Receptive field locations
changed as expected across guide tube locations based on
the known topography of the MT [1].

4.4. Experimental Protocol. We measured neural responses
to eight heading directions evenly spaced every 45° in the
horizontal plane. Neurons were tested under three experi-
mental conditions. (1) In vestibular trials, the monkeys were
required to maintain fixation on a central dot on an other-
wise blank screen while being translated in one of the eight
directions. (2) In visual trials, the monkeys were presented
with optic flow simulating self-motion (in the same eight
directions), while the platform remained stationary. (3) In
bimodal trials, the monkeys experienced both translational
motion and optic flow. We paired all eight vestibular head-
ings with all eight visual headings for a total of 64 bimodal
stimuli. Eight of these 64 combinations were strictly congru-
ent, meaning that the visual and vestibular cues simulated
the same heading. The remaining 56 cases had conflicting
cue stimuli. This relative proportion of strictly congruent
and conflicting stimuli was adopted purely to characterize
the neuronal combination rule and was not intended to be
ecologically valid. Each translation followed a Gaussian
velocity profile. It had a duration of 2 s, an amplitude of
13 cm, a peak velocity of 30 cm/s, and a peak acceleration
of 0:1 × g (981 cm/s2).

These three stimulus conditions were interleaved ran-
domly along with blank trials, which included neither trans-
lation nor optic flow. Ideally, five repetitions of each unique
stimulus were collected for a total of 405 trials. Experiments
with fewer than three repetitions were excluded from the
analysis. When isolation remained satisfactory, we ran addi-
tional blocks of trials with the coherence of the visual stim-
ulus reduced to 50% and/or 25%. Motion coherence was
lowered by randomly relocating a percentage of the dots
on every subsequent video frame. For example, we randomly
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selected one-quarter of the dots in every frame at 25% coher-
ence and updated their positions to new positions consistent
with the simulated motion, while the other three-quarters of
the dots were plotted at new, random locations within the
3D cloud. Each block of trials consisted of both unimodal
and bimodal stimuli at the corresponding coherence level.
When a cell was tested at multiple coherence levels, both
unimodal vestibular tuning and unimodal visual tuning were
independently assessed in each block.

Trials were initiated by displaying a 0:2° × 0:2° fixation
target on the screen. The monkeys were required to fixate
on the target for 200ms before the stimulus was presented
and to maintain fixation within a 3° × 3° window to receive
a liquid reward. Trials in which the monkeys broke fixation
were aborted and discarded.

4.5. Data Analysis. The neural responses were binned in
25ms time windows. Mean neural responses were averaged
from 5 trials, and the units of measurement were spikes per
second. The outliers in the 5 trials were removed, and the
mean response was averaged from the remaining 4 trials.
Using MATLAB (MathWorks, Natick, MA), we chose the
window of 625ms to 1250ms to select valid data. We con-
sidered a neuron to have discriminative tuning properties to
one specific stimulus modality if the maximum response
was 5 spikes/s more than the minimum response of the
same curve. Tuning curve symmetry was not considered.
Neurons that failed to meet this requirement for either
the visual or the vestibular unisensory condition were con-
sidered unisensory-tuned neurons or poorly tuned neurons
and removed from further analysis. Then, we computed the
response ratio based on the visual and vestibular unisensory
tuning curves of that neuron in the same time window. A
threshold of 1.7 was chosen to discriminate between bal-
anced and imbalanced data. We analyzed the tuning curve
in the time window from 1000ms to 1250ms, which corre-
sponds to the maximum motion speed and maximum neu-
ral response (data not shown). The window parameters
were first scanned and then selected comprehensively to
show the discrimination of the integration probability Pint
between the balanced and imbalanced neurons and to be
physiologically plausible.

The group Δθ distribution was rectified by doubling the
probability at 0° and 180°, while the probabilities in other
directions remained the same. This procedure was followed
because of the experimental protocol in which directions
were binned in 45° intervals; a 0° preference encompassed
preferences from -22.5° to +22.5°, and a 180° preference
encompassed preferences from 167.5° to 202.5°. However,
each of the other preference bins was represented twice
because both sides were included (for example, Δθ of 45°

encompassed directions from 22.5° to 67.5° and from
-22.5° to -67.5°). To align the widths of the probability bins,
the data counted at 0° and 180° were included twice.

4.6. Continuous Attractor Neural Network Modeling. The
model is composed of three identical neural networks with
hierarchical structures, of which two simulate the unisen-
sory middle temporal region (MT) and parietal-insular

vestibular cortex (PIVC), while the third simulates a sub-
network. Each network is specified as a ring attractor with
the same structure. We consider a network of L (180) neu-
rons i ∈ ½1, 2,⋯, L� arranged along a ring topology, each
representing a 2° direction range (preference) in the exter-
nal world. Due to the circular structure, neuron i = L is a
neighbor of neuron i = 1, and we defined a circular dis-
tance dði, jÞ between neurons i and j as dði, jÞ =min ðji −
jj, L − ji − jjÞ, which takes a value from 0°~180°.

Without loss of generality, we adopted a normalized
rate-based model to describe the neural dynamics, which
was sufficient for attractor computation. The activity of neu-
ron k in all layers is described by the following equation.

τ
d
dt

yk tð Þ = −yk tð Þ + S Ik,r + Ik,e + Ik,noiseð Þ: ð7Þ

τ is the time scale, and ykðtÞ is the neuronal activity. SðIÞ
is the sigmoid activation function.

S Ið Þ = 1
1 + exp w∙ I − φð Þð Þ : ð8Þ

Ik,r is the recurrent connection within each ring network.

Ik,r = 〠
L

j=1
wj,k∙yj tð Þ: ð9Þ

The connection weights wj,k follow the Mexican hat pro-
file, which is identical across layers.

wj,k
��
j≠k

=wex∙exp
−d2j,k
2σ2

ex

 !
−win∙exp

−d2j,k
2σ2in

 !
, ð10Þ

where wex and win are excitatory and inhibitory components
(wex >win) and σex and σin characterize the excitatory and
inhibitory range (σex < σin). dj,k denotes the topological dis-

tance from the jth neuron to the kth neuron. As unisensory
layers, MT and PIVC receive corresponding visual and ves-
tibular external inputs with range σ from proceeding areas,
whose intensity decays with the relative distance (d) from
the input center (θmax,vis and θmax,ves).

Ik,e =wexternal∙exp
−d θmax, kð Þ2
2∙σ2

external

 !
, ð11Þ

where wexternal is the maximal input weight and σexternal is the
input range. Once the inputs are applied, the neurons in the
same layer interact with each other through lateral connec-
tions and eventually form the group response in a bump
shape on the layer. Meanwhile, the responses of two unisen-
sory areas are sent to the subnetwork by forward synaptic
connections, which are topologically aligned such that one
neuron receives maximally weighted input from the
upstream neuron at the same position.

16 Research



Isubk,e = 〠
L

i=1
wMT∙exp

−di,k
2

2∙σ2forward

 !
∙yMT

i

+ 〠
L

j=1
wPIVC∙exp

−dj,k
2

2∙σ2
forward

 !
∙yPIVCj ,

ð12Þ

where wMT and wPIVC are forward synaptic weights from the
MT and PIVC regions to the multisensory subnetwork. The
ratio between two weights simulates balanced and imbal-
anced neurons. σforward characterizes the forward input
range. d denotes the topological distance from the ith MT
neuron or jth PIVC neuron to the kth subnetwork neuron,
whose activity is yMT

i and yPIVCj individually.
Finally, each neuron is independently subjected to

Gaussian intrinsic noise except for the individual MST-d
multisensory neuron downstream.

Ik,noise = ψ tð Þ,
ψ t1ð Þ∙ψ t2ð Þh i = 0,

ψ t1ð Þ2� �
= σ2

noise:

ð13Þ

When inferring the integration or separation from the
response of the subnetwork, the threshold is set as 0.15 to
discriminate effective population response from an unde-
tectable response or neural avalanche. The cases in which
all neurons in the final state have responses lower than
0.15 or higher than 0.15 were excluded. The threshold was
fixed and used only when inferring the integration and sep-
aration trials. The optimal values of the parameters are listed
in Table 1.

4.7. Neuronal Response Curve Simulation. We supplemented
direction interpretation with observations from the data by
projecting the computation of the CANN network on the
MST-d neuron by the leaky integrate-and-fire model. The
input for this model is an external stimulus with different
directions and the output the neuronal fire rate. For a given
MST-d neuron along with its circuit, the input direction is
fixed by the receptive field, and the input intensity decreases
when the real motion direction is misaligned with the pref-
erence. The unisensory preference is fixed by the assigned
location of two inputs on the receptive field.

Δθuni = min θmax,vis − θmax,ves
�� ��, L − θmax,vis − θmax,ves

�� ��� 	
: ð14Þ

In the unisensory condition, each simulated neuron
receives preceding inputs from the aforementioned direc-
tions when real input directions θ ∈ ½0°, 360°�.

Iθk,e =wθ
external∙exp

−d θunimax, k
� �2
2∙σ2external

0
B@

1
CA, ð15Þ

where wexternal is the external input weight at θ
uni
max (same as

that in the CANN model), whose intensity decreases when

the real input direction θ deviates from θunimax. Thus, the
group output Y from either the MT or PIVC is the summa-
tion of each neuronal response,

Yc = 〠
L

i=1
yi,c, c isMT or PIVC, ð16Þ

where yi,c is the i
th neuronal response on layer c. The afferent

input current IstiðtÞ is further specified as

Isti tð Þ = αYc − thr: ð17Þ

α denotes the rescaling factor (limited in this section),
and thr denotes the signal detection threshold. The mem-
brane potential (V) of neurons in the `MST-d is derived
from the differential equation

C
dV
dt

= −gl V tð Þ − Vmð Þ + Isti tð Þ, ð18Þ

where Vm is the resting potential (-65mV) and VðtÞ denotes
the membrane potential at time t.

In the multisensory condition, the subnetwork is set to
update the preference after 30ms, and both inputs are sent
to the MST-d.

Iθk,e =wθ
external∙exp

−d θmulti
max , k

� �2
2∙σ2external

0
B@

1
CA, t > 30ms,

C
dv
dt

= −gl v tð Þ − vmð Þ + IMT
sti tð Þ + IPIVCsti tð Þ:

ð19Þ

4.8. Computation of Inference Efficiency Shown in Figure 6.
We measured the inference efficiency based on cross-
entropy (Kullback–Leibler divergence) since we measured
the distribution of integration probability (though not
the probability distribution, which requires ∑pintðxÞ = 1).
Cross-entropy achieves a maximum value if two distributions
are identical; however, the computational principle requires
the encoding bases to differentiate distributions. Thus, we
denote the inference efficiency ε by negative cross-entropy.
To balanced and imbalanced neuronal encoding,

ε = 〠
180°

Δθ=0°
p ybalð Þ log2p yimbalð Þ − p ybalð Þ log2p ybalð Þ½ �: ð20Þ

To congruent and opposite neuronal encoding,

ε′ = 〠
Δθ0+90°

Δθ0

p yoppo
� �

log2p ycong
� �

− p yoppo
� �

log2p yoppo
� �h i

,

ð21Þ

where Δθ0 is 0° in congruent neurons and 90° in opposite
neurons. The congruence and opposite cases are set as
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mutually exclusive here to match the balanced and imbal-
anced classification. The congruent probability is the mean
probability of congruent neurons (0° ~ 90°) from both bal-
anced and imbalanced groups and the opposite probability
from opposite neurons (90° ~ 180°) from both groups. To
align with the scale of balanced and imbalanced encoding,
we denote ε = 2ε′ when plotting the congruent-and-
opposite inference efficiency in Figure 5(f).

4.9. Inference Based on a Fixed-Criterion Strategy.

P C = 1 xvis, xvesjð Þ =
1 if xvis − xvesj j + ξ < κ,

0 if xvis − xvesj j + ξ ≥ κ,

(
ξ ~N 0, σnoiseð Þ:

ð22Þ

xvis and xves are the visual and vestibular location sam-
ples from each Gaussian distribution, and jxvis − xvesj corre-
sponds to one sampling of Δθuni. The fixed-criterion (FC)
strategy results in an inference based on the criterion κ,
which is fixed and independent of the prior. The inference
is binary: if the measured disparity jxvis − xvesj is smaller
than κ, the unit infers robust integration
(PðC = 1jxvis, xvesÞ = 1); otherwise, it infers separation
(PðC = 1jxvis, xvesÞ = 0). When noise is present, the disparity
measurement is modified as jxvis − xvesj + ξ, but κ remains
fixed. In this case, both integration and separation inferences
are possible if the noisy measurement approaches κ. The
inference was repeated 100,000 times to represent the inte-
gration functions of MST-d neurons. When the integration
functions were fitted, only κ was set as a free parameter.

4.10. Inference Based on a Bayesian Strategy.We assumed that
the stimulus measurements would follow a Gaussian distribu-
tion with different mean positions (xvis ~ svisðμvis, σvisÞ and
xves ~ svesðμves, σvesÞ), where σvis = σves = σ is a free parameter.
The Bayesian strategy computes the posterior probability
based on the prior [46, 53, 54].

P C = 1 xvis, xvesjð Þ = P xvis, xves C = 1jð ÞP C = 1ð Þ
P xvis, xvesð Þ : ð23Þ

Aside from the sampling distribution σ, the common
cause distribution and the prior probability PðC = 1Þwere also
set as free parameters to provide an optimal fit for the biophys-
ical simulation. To align the binary judgments, we adopted an
optimal Bayesian reporter that reports integration if PðC = 1j
xvis, xvesÞ > 0:5; otherwise, it reports separation [20, 21, 30].
As with the fixed-criterion strategy, reporting was repeated
100,000 times. Different integration functions and psycho-
physical functions were fitted by adjusting only the prior
PðC = 1Þ.

4.11. Psychophysical Decisions by Neural Monte Carlo
Sampling. We adopted a biophysically plausible decision
process that weighs the group response sampling of each
type of multisensory encoder. The balanced group has been
demonstrated to encode separation, and the imbalanced
group has been demonstrated to encode integration. Consid-
ering both of them as computation bases, the decision neu-
ron reported separation if the balanced group responded
more strongly than the imbalanced group and vice versa.
Since Δθmul is characterized by distribution in both groups,
the multisensory preference (Δθmul) of the MST-d inputs
may not be traversed, as the decision neuron does not neces-
sarily receive many inputs under real conditions. Based on
this fact, the decision neuron model performed probabilistic
sampling according to the observed distribution of Δθmul in
the balanced (Dbal) or imbalanced (Dimbal) group; mean-
while, the input components remain proportional (balanced
group: 70/115 = 0:61; imbalanced group: 45/115 = 0:39;
balanced : imbalanced ≈ 3 : 2). For example, if the decision
neuron received 15 inputs from the MST-d, then 9 of them
were from balanced neurons and 6 were from imbalanced
neurons. Among the 9 balanced neurons, the distribution
of Δθmul was fairly uniform for each neuron, and there was
a fairly good chance that neurons with various disparities
were represented. On the other hand, each of the 6 imbal-
anced neurons was more likely to sample a small Δθmul.
The neuronal response was obtained from a data-averaged
multisensory tuning function (f bal and f imbal; see Supplemen-
tary Figure S2), which measures the difference between the
preferred multisensory disparity and real input disparity
(Δθ′). Finally, the decision neuron computed the summed
responses and decided which response was higher. We
repeated such decision reports for 100,000 trials in each real
input disparity condition.

Δθ′i = Δθinput−Δθi, whereΔθi ∈Dbal,

Δθ′j = Δθinput−Δθj, whereΔθj ∈Dimbal,

Ri
bal = f bal Δθ′i

� �
:

Rj
imbal = f imbal Δθ′j

� �
:

Decision = 〠
nbal

i=1
Ri
bal − 〠

nimbal

j=1
Rj
imbal

≥0⟶ Separation

<0⟶ Integration

(
:

ð24Þ

Data Availability
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current study are available from the corresponding author
on reasonable request.

Table 1: Model parameters.

Lateral connections
(Mexican hat)

External inputs Forward connections
Intrinsic
noise

wex σex win σin wexternal σexternal wMT and wPIVC σforward μ σnoise

5 10 3 70 25 160 Follow data distribution of ratio (r) 5 0 6
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Figure S1: model simulation of response curves of MST-d
neuron. Figure S2: data-derived multisensory tuning
functions of balanced and imbalanced groups. Figure S3:
stochastic resonance elicited by noise following a uniform
distribution. Figure S4: simulated decision with varying cat-
egory proportions. Figure S5: distribution of congruent and
opposite neurons in balanced and imbalanced categories.
Figure S6: simulation from uniform to polarized (skewed)
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