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Purpose: Multiple myeloma (MM) and metastasis originated are the two

common malignancy diseases in the spine. They usually show similar

imaging patterns and are highly demanded to differentiate for precision

diagnosis and treatment planning. The objective of this study is therefore to

construct a novel deep-learning-based method for effective differentiation of

two diseases, with the comparative study of traditional radiomics analysis.

Methods: We retrospectively enrolled a total of 217 patients with 269 lesions,

who were diagnosed with spinal MM (79 cases, 81 lesions) or spinal metastases

originated from lung cancer (138 cases, 188 lesions) confirmed by

postoperative pathology. Magnetic resonance imaging (MRI) sequences of all

patients were collected and reviewed. A novel deep learning model of the

Multi-view Attention-Guided Network (MAGN) was constructed based on

contrast-enhanced T1WI (CET1) sequences. The constructed model extracts

features from three views (sagittal, coronal and axial) and fused them for amore

comprehensive differentiation analysis, and the attention guidance strategy is

adopted for improving the classification performance, and increasing the

interpretability of the method. The diagnostic efficiency among MAGN,

radiomics model and the radiologist assessment were compared by the area

under the receiver operating characteristic curve (AUC).

Results: Ablation studies were conducted to demonstrate the validity of multi-

view fusion and attention guidance strategies: It has shown that the diagnostic

model using multi-view fusion achieved higher diagnostic performance [ACC

(0.79), AUC (0.77) and F1-score (0.67)] than those using single-view (sagittal,

axial and coronal) images. Besides, MAGN incorporating attention guidance
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strategy further boosted performance as the ACC, AUC and F1-scores reached

0.81, 0.78 and 0.71, respectively. In addition, the MAGN outperforms the

radiomics methods and radiologist assessment. The highest ACC, AUC and

F1-score for the latter two methods were 0.71, 0.76 & 0.54, and 0.69, 0.71, &

0.65, respectively.

Conclusions: The proposed MAGN can achieve satisfactory performance in

differentiating spinal MM between metastases originating from lung cancer,

which also outperforms the radiomics method and radiologist assessment.
KEYWORDS

multiple myeloma (MM), spinal metastases, lung cancer, deep learning, attention
guidance strategy, radiomics
Introduction

Multiple myeloma (MM) and metastases are two common

malignant tumors involving spine. MM is the second most

common hematological malignancy with an incidence of 4.6-6

per 10,0000 per year (1). Almost 70% of all bone metastases

occur in the spinal column, which is third most commonly

affected by metastases (2). The occurrences of both diseases are

on the rise because of an increase in overall cancer survival and

the ageing population (3, 4). Although spinal MM and

metastases are two different tumoral entities with completely

different management strategies, both can be presented as single

or multiple lesions in the spine, leading to diverse and atypical

clinical manifestations, including bone pain, neurologic deficits,

and even paralysis with compression of the spinal cord. In

addition, spinal MM and metastasis have shown similar

imaging patterns on conventional imaging methods, appearing

as lytic changes in x-ray and CT images, and overlaps of MR

imaging patterns (5). These factors create great difficulties in the

differential diagnosis of the two diseases especially for those

situations where some MM are non-secretory or hypo-secretory

and patients have spinal metastases of unknown origin (SMUO)

(6, 7). Specific chemotherapy and radiation therapy are currently

the two main options for the treatment of patients with MM, yet

spinal metastases are treated relatively conservatively with

further treatment strategies focusing on primary tumors (1, 4,

5, 8, 9). Since there are significant differences in the treatment

planning and prognosis of the two diseases, early diagnose and

differential diagnose plays a key role in the individual treatment

for patients with spinal MM and metastases.

Conventional imaging methods have been the mainstream

approach in imaging diagnosis of spinal tumors, including X ray,

computed tomography (CT), and MRI. MRI is the most widely

used imaging modality for diagnosing tumors in the spine.
02
Compared with CT and X ray, MRI has the advantage of

marrow infiltration assessment (10). However, many studies

have revealed that it is often difficult to distinguish spinal MM

from metastases by standard MRI alone, especially for patients

with multiple vertebral focal osteolytic lesions and other atypical

manifestation (11, 12). Many studies pointed out that advanced

MRI including contrast-enhanced (DCE) MRI and diffusion-

weighted imaging (DWI) MRI could help differential diagnosis

in the two diseases (5, 11–13). But relevant studies are still

limited and their findings require further investigation. The 18F-

Fluorodeoxyglucose (18F-FDG) positron emission tomography

(PET) and computed tomography (18F-FDG PET/CT) is

recommended as one the best imaging methods in detecting

MM and metastases (1, 5, 14). However, it comes with

disadvantages such as high exposure to radiation and

expensive costs for patients. More importantly, identification

of lesions by these methods mentioned above relies on subjective

visual assessment and diagnostic experience, which is

undoubtedly a great challenge for younger radiologists.

Recently, radiomics and deep learning(DL) technology have

been fast developed, and also demonstrates outstanding

potential in many computer-aided diagnosis applications,

which serve as new tools to transcend subjective visual

assessment and provide more objective evaluation for diseases.

Several studies successfully applied radiomics analysis for

differentiating spinal MM from metastases and yielded

satisfied outcomes (5, 14, 15). However, other studies revealed

that radiomics has some limitations, including poor repeatability

as well as reliability, and time-consuming and cumbersome

workflows (16). DL can automatically extract comprehensive

features based on the specific classification tasks and has been

reported with better performance for differential diagnosis in

spinal metastases compared with radiomics (6). Nevertheless,

there remains no study to date focusing on differentiating spinal
frontiersin.org
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MM and metastasis based on the DL model, not alone

comparison between the DL and radiomics.

This study aims to develop a novel deep-learning-based

method to differentiate spinal MM from metastases using

contrast-enhanced T1WI (CET1) sequences. Herein, we chose

metastases originating from the lung cancer as the group of

metastases, which are the most common type of spinal

metastases (7, 17). Moreover, we designed two strategies in the

method to guarantee its effectiveness: 1) we employed the MR

images from three different views (sagittal, axial and coronal),

and designed the multi-view feature extraction and fusion

strategies to conduct the differentiation process more

comprehensively; 2) we incorporated the attention-guidance

module in the model framework, which could provide prior

guidance for the trained model to focus more on the lesion

regions, aiming at further improving its classification

performance. Besides, such attention guidance could reduce

the need for numerous training samples when constructing the

deep learning model. We finally validated the diagnostic

performance of our method using the collected dataset, which

was also compared with the radiomics analysis and

radiologist assessment.
Materials and methods

Participants

This retrospective study was approved by the Ethics

Committee of Changzheng Hospital of the Navy Medical

University, and the informed consent was waived. From

January 2014 to December 2020, we retrospected clinically and

MRI information of patients, who received spine surgery or
Frontiers in Oncology 03
needle biopsy and were diagnosed with MM or spinal metastases

originating from the lung cancer. The inclusion criteria were (1):

patients diagnosed with spinal MM and metastasis confirmed by

histological or cellular pathology; (2) patients examined with

preoperative MRI in our hospital to ensure qualified MRI

images; and (3) patients with complete clinical information.

Exclusion criterion: (1) patients diagnosed with other spinal

tumors confirmed by histological or cellular pathology; (2)

Patients who did not receive preoperative MRI in our hospital

or without qualified preoperative images; (3) patients did not

undergo spine surgeries or tissue biopsy without pathological

findings and (4) patients without complete clinical

information (Figure 1).
Image acquisition and data processing

All patients received MRI examinations using one of three

MRI scanners, including 1.5T Siemens, 1.5T General Electric

and 3.0T Philips. Table S1 demonstrates details of imaging

parameters from the three scanners. And all scans were

performed consistently. Imaging sequences included in this

study were CET1 sequences. CET1 was performed after

intravenous injection of contrast medium (GD-DTPA

Injection, Consun Pharma, Guangzhou, China) according to

the recommended dose of 0.2 ml/kg. All sagittal, axial and

coronal views were acquired and saved in DICOM format,

which was then converted to NIFTI format for the subsequent

processes. The tumor lesion’s regions were manually segmented

on the sagittal view. The radiologists were blinded to all other

information in the process of segmentation, including clinical,

imaging, pathological, and follow-up findings. Note that the

delineations were firstly done by one musculoskeletal radiologist
FIGURE 1

The flowchart of patients’ inclusion and exclusion details.
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(5-year experience) using ITK-SNAP software (version 3.8.0),

and further checked by another experienced musculoskeletal

radiologist (10-year experience). In case of disagreements, re-

evaluation would be performed until consensus was reached

between the two radiologists. During the assessment phase, the

two radiologists made diagnosis independently, who were not

informed of the patients’ clinical information and pathology but

were told that each lesion were either MM or metastasis. Three-

dimensional manual segmentations were performed for entire

tumor in all cases. For those with multiple lesions, we manually

delineated all the lesions in turn and integrated them into a

whole for the subsequent analysis process of radiomics and DL.

The tumor diameter was defined as the maximum diameter

measured in sagittal MRI sequences. Figure 2 shows the original

CET1 exemplar image of a patient with spinal MM (Column a),
Frontiers in Oncology 04
with the manual annotations for the tumor region on the sagittal

image (Figure 2A, Column b). It can be observed that the

original normally the tumor region occupies a small part of

the whole image (Figure 2, Column b). Here we further cropped

the image size as 256×256, with the tumor region as the center of

the cropped image (Figure 2, Column c). In this way, we could

unify the size of the training images for model training, and

eliminate the background information which is not around the

tumor region.

As mentioned above, the manual annotation is made only on

the sagittal view (Figure 2A, Column b). To conduct the multi-

view classification, the affine transformation method was

performed in this study. Specifically, DICOM files recorded

the position, orientation, pixel spacing and other parameters

of each image. The coordinates of any point of the image could
A

B

C

FIGURE 2

The exemplar spinal image with annotation in the sagittal view (A), and the annotation transfer to the coronal (B) and axial views (C) using affine
transformation.
frontiersin.org

https://doi.org/10.3389/fonc.2022.981769
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2022.981769
be consequently mapped to the human coordinate system.

Similarly, given a point in the human coordinate system, the

corresponding point in the image could also be found.

Therefore, we first converted the coordinates on the sagittal

images to the human coordinate system, and then converted

them to the coronal (Figure 2B, Column b and c) and axial

(Figure 2C, Column b, c) images. In this way, the annotations in

all views could be obtained. Note that due to the spacing between

slices during scanning, linear interpolation was used to keep the

converted annotations continuous.

The results of alignment are presented in Figure 2 (Column

c). Note that the annotation transfer shown in the figure is not

satisfactory, especially in the boundary part which is quite rough.

However, it was sufficient as attention guidance for the

subsequent classification model training, which could be

verified in the experimental section.
Multi-view attention guided network

In this study, we designed a novel multi-view attention-

guided (MAGN) method for implementing differentiation of

spinal MM and metastases, the main framework is illustrated in

Figure 3. It consists of two major components, which are feature

extraction and classification. We first employed the ResNet50

pre-train model as the backbone structure to obtain the visual

features from images of three views, respectively. The obtained
Frontiers in Oncology 05
feature maps were then processed by the LSE (log-sum-exp)

pooling layer, and the pooled features from all three views were

then concatenated together to obtain the final feature set. Then,

the fully connected layer was incorporated with a sigmoid

activation, which could output the probability estimate if the

subject was spinal MM or metastases.

To ensure the effectiveness of the classification performance,

the attention module was also incorporated in the framework,

which could obtain the attention map based on the extracted

image features using the Class Activation Mapping CAM

method (18). Through the back-propagation without updating

parameters, CAM could get the importance weights of the

convolutional feature maps, and then got the attention map of

the network. In this way, we intended to enhance the network’s

attention to the lesion region, and integrated extra pixel-level

supervision. Specifically, the obtained attention map was then

compared with the manually segmented lesion area, which could

be further refined and back-propagated to the backbone model

to optimize its classification capacity (19).

There were two loss functions designed for network

optimization: First, the classification loss function is the binary

cross-entropy of classification results and classification labels:

LC = − 1
No

N

I=1
yi log ŷ ið Þ + 1 − yið Þ log 1 − ŷ ið Þ, (1)

where yi is the ground truth of the data, ŷ i is the probability

of malignant schwannoma predicted by the model, and N is the
FIGURE 3

The overall framework for the attention-guided multi-view spinal classification method.
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number of batch size; Second, the segmentation loss function is

the mean square error between the network’s attention map and

the label map of the tumor region:

Ls = − 1
No

N

I=1
si − ŝ ið Þ2, (2)

where si is the label map and ŝ i is the attention map. Since we

include image information from all three views in this work, the

computation of overall segmentation loss LS_all is written as:

LS _ all = LS _ sagittal + LS _ axial + LS _ coronal , (3)

where LS_sagittal , LS_axial and LS_coronal are the segmentation

loss for the images in sagittal, axial and coronal views,

respectively. The overall loss is therefore written as:

L = Lc + 0:5LS _ all : (4)

Note that we balanced the priority of the two losses in the

computation, and experiments showed that the coefficient

shown in the above equation could provide the optimal

classification performance. All parameters in the model were

first set up following the “He Uniform initializer”21, and

optimized by Adams optimizer with an initial learning rate of

1e-3, which was reduced by 10% in every 5 epochs. The batch

size was set up as 16. The network was built using Python 3.8.3

and Pytorch 1.5. It was trained and tested on an Ubuntu 16.04

computer with GeForce Titan RTX GPU.
Classification and validation

To validate the MAGN method and radiomics analysis, we

conducted 5-fold cross-validation experiments where all subjects

were randomly and equally divided into 5 groups following the

ratio of spinal MM and metastases. For each fold, one group of

subjects was selected as the testing group, while the rest for

training. Also note that all models in the experiments were

trained using ResNet-50 as the backbone, which was the most

suitable pre-train model for this study based on the experiments.
Differential diagnosis using MAGN
and radiomics

The ablation study was conducted to demonstrate the

effectiveness of our MAGN method in identifying the spinal

MM and metastases. Here we commenced by conducting the

differentiation study on the sagittal, axial, coronal views and

multi-view separately. In addition, the controlled trials with and

without the attention guidance strategy were also designed to

clarify their effectiveness. Furthermore, to validate our attention

guidance module in visualization, the incorporated Grad-CAM

technique (20) was referred to obtain the attention heatmaps
Frontiers in Oncology 06
for two classification models trained with and without

attention guidance.

To further validate the performance of the proposed method,

we also conducted a comparative experiment among radiologist

assessment, radiomics method and the proposed method. The

radiomics features were extracted through the Python package

PyRadiomics (21) from the preprocessed images. Radiomics

features can be obtained after extraction, which was then utilized

for classification through a gradient boosting classifier. The same 5-

fold cross-validation was also performed in the experiment using

the radiomics method. The performances for different methods of

differential diagnosis were all validated by their receiver operating

characteristic (ROC) curve and the following three scores: accuracy

(ACC), area-under-curve (AUC) and F1-score.
Statistical methods

Continuous variables of MM and metastases groups were

compared through independent samples t-test or Mann—

Whitney U-test. Categorical variables were assessed through

the chi-square test or Fisher test. Python (version 3.8.1) was

used to select features, construct models, and compare the

diagnostic efficiency of the models. Clinical data analysis and

ROC curve plotting were performed by IBM SPSS (version 21.0,

New York, USA). P <0.05 was considered statistically significant.
Results

Basic patient information

A total of 217 patients with 269 spinal lesions were enrolled in

this study, of which 79 cases were diagnosed as spinal MM with 81

lesions, and the remaining 138 cases were confirmed as metastases

from lung cancer with 188 lesions (Figure 1 and Table 1). They aged

from17 to 86 yearswith amean of 57.35±12.375 and amedian of 59

years with a male-female ratio of 1.4:1. Table 1 summarizes statistics

and comparison of basic information between the two group

patients. And there was no significant difference in baseline data.
Diagnostic performance using
DL methods

Table 2 shows the comparison classification performance

among different DL methods, evaluated by 5-fold cross-validation.

It is noted that the multi-view classification achieves the highest

scores in ACC (0.79), AUC (0.77) and F1-score (0.69), which also

supports our claim that the information from all three views can

lead to the improvements in the diagnosis. Besides, it can further

improve the performance for all configurations with the

incorporation of the attention guidance strategy. Specifically for
frontiersin.org
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the multi-view classification method, the ACC, AUC and F1-score

have increased to 0.81, 0.78 and 0.71 respectively. Besides, among

the three single-view classification models, the model with the

sagittal view achieved the best performance with the highest

scores of the ACC, AUC and F1-score.

Furthermore, Figure 4 plots the ROC curves representing the

classification performances based on the five folds in the AUC

score, and the overall performance by averaging the results of all

folds. It can be observed that the performance from the five folds

is generally stable, and the ROC curve for the overall

performance also supports the effectiveness of the trained model.

To validate our attention guidance module in visualization,

which is presented in Figure 5. Here, we referred to Grad-CAM

technique to obtain the attention heatmaps for two classification

models, which were trained with and without attention

guidance. It can be observed that the heatmap can better

match the lesion region with the help of attention-guided

classification (Figure 5 Column c) than without (Figure 5

Column d), indicating that our attention-guided classification

model is reliable and interpretable.
Diagnostic performance for radiomics
methods and radiologist assessment

In the radiomics model, we acquired 768 radiomics features

from the images after feature extraction, including shape, first-

order statistics, textural and wavelet features. To further

optimize the extracted radiomics features, we further

implemented feature selection using the random forest

method, which could not only be used for classification but

also to rank the priority of the radiomics features. We finally

acquired 30 informative features from the preprocessed images,

which was then utilized for classification. The specific 30 features

selected in sagittal view are shown in Table S2. After the ranking

of the features was completed, we selected the first half for the

final classification. Note that the radiomics feature extraction

and selection procedures were applied on three views (axial,
Frontiers in Oncology 07
coronal and sagittal) of the images independently, which were

then used to construct three random forest classifiers,

respectively. We also constructed a corresponding multi-view

radiomics classifier, where the feature selection was based on the

features from all three views. The experimental results are shown

in Table 2. It can be revealed that the multi-view classifier (ACC

0.71, AUC 0.76, F1-score 0.54) outperforms all of the single view

classifier by a large margin, indicating that the multi-view

strategy also works for radiomics analysis.

As presented in Table 2, the ACC, AUC and F1-score for

radiologist assessment were 0.65, 0.64 & 0.56 (Radiologist 1 with

5-year experience), and 0.69, 0.71 & 0.65 (Radiologist 2 with 5-

year experience), respectively.
Comparison among the MAGN,
radiomics and radiologist assessment

According to Table 2 and Figure 4, it can be concluded that

our proposed method still outperforms radiomics methods and

radiologist assessment in differentiation performance with

higher ACC, AUC and F1-score (0.81,0.78 and 0.71 of the

MAGN vs. 0.71, 0.76 and 0.54 of multi-view radiomics

method vs. 0.69, 0.71 & 0.65 of radiologist assessment with 10-

year experience). For the three single-view models, the proposed

method also conducts higher performance than the radiomics.

We attribute them that our MAGN method can extract more

comprehensive features that represent the characteristics of the

spinal diseases, which help them in better differentiating the

spinal MM and metastases.
Discussion

In this study, we intend to differentiate the spinal MM and

metastases originating from lung cancer using the DL model and

the radiomics analysis. Specifically, we design a novel Multi-view

Attention Guided Network (MAGN) which has shown a
TABLE 1 Basic clinical information for patients with spinal MM and metastases from lung cancer.

MM Metastases P-value

Age 58.57±11.17 56.64±12.98 0.271

Gender 0.053

Male 53 (24.4%) 74 (34.1%)

Female 26 (12%) 64 (29.5%)

Anatomic Site 0.333

Cervical vertebrae 12 (5.5%) 35 (16.1%)

Thoracic vertebrae 40 (18.4%) 61 (28.1%)

Lumbar vertebrae 21 (9.7%) 35 (16.1)

Sacrococcygeal vertebrae 6 (2.8%) 7 (3.2%)

Tumor Size 4.03±1.17 3.85±1.65 0.379
front
MM, Multiple myeloma.
iersin.org
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stronger capability in differential diagnosis than that of the

radiomics model and radiologist assessment. MAGN achieved

the highest ACC, AUC and F1-score among all models, trained

by CET1 images. Moreover, the incorporation of the attention

guidance strategy in MAGN can further improve the efficiency

of the model. To the best of our knowledge, this study is the first

to differentiate spinal MM and metastases coming from lung

cancer by methods of DL and radiomics.
Frontiers in Oncology 08
Early diagnosis and differential diagnosis are of

great importance in the individualized management for

patients with spinal MM and metastases. Histopathological

examination of bone biopsy remains the gold standard for

detecting benign and malignant tumors, which plays an

irreplaceable role in directing the treatment regimen. But its

limitations are not negligible due to invasive procedures and

limited number of sample sizes. In many cases, pathological
TABLE 2 The Comparison of Classification Performance among Different Methods and Configurations on 5-fold Cross-validation.

Methods Attention ACC AUC F1-score

Attention guided network

Sagittal – 0.7692 0.7546±0.1011 0.6696

√ 0.8061 0.7492±0.0671 0.6893

Axial – 0.7419 0.7020±0.0268 0.5760

√ 0.7739 0.7196±0.0441 0.6096

Coronal – 0.7466 0.6642±0.0808 0.5552

√ 0.7834 0.7322±0.1112 0.6694

Multi-view – 0.7876 0.7661±0.0841 0.6685

√ 0.8108 0.7847±0.1030 0.7120

Radiomics model

Sagittal – 0.6035 0.6438 ± 0.0445 0.3474

Axial - 0.6221 0.6417 ± 0.0651 0.3992

Coronal - 0.6682 0.6587 ± 0.0514 0.4616

Multi-View - 0.7098 0.7616 ± 0.0386 0.5363

Radiologist assessment

Radiologist 1 - 0.6544 0.6417 0.5562

Radiologist 2 - 0.6912 0.7085 0.6455
fron
ACC, accuracy; AUC, the area under the receiver operating characteristic (ROC) curve.
The bold numbers represent the best result for the deep learning model of MAGN.
FIGURE 4

The ROC curves for the five-fold cross validation experiments with the overall performance, radiomics model and radiologist assessment.
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diagnose still needs to be performed in combination with

imaging signs. However, it is the similar clinical manifestations

and radiological imaging finds of the two diseases that make the

differential diagnosis extremely difficult by conventional

imaging examination including X-ray, CT and MRI (5, 11, 11,

22). Some advanced MRI technologies have been proposed to

differentiate spinal MM from metastases in several studies,

including DEC and DWI. When detecting malignant lesions of

bone, DWI has shown benefits in providing a better signal to

background ratio (23). Park et al. evaluated the performance of

DWI MRI in differential diagnosis between spinal MM and

metastases, and suggested that the combination of standard MR

and axial DWI had higher accuracy, sensitivity, and specificity

than that of conventional MRI (11). Hyejung Hwang et al. also
Frontiers in Oncology 09
revealed that conventional MRI in combination with DWI could

be useful to discriminate between bone plasmacytoma and bone

metastasis in the extremities (24). However, DWI still has some

limitations, such as poor performance in anatomical resolution,

and assessment of fracture risk for osteolytic lesions. Previous

studies have demonstrated that DEC-MRI could supply

additional information by measuring vascular parameters in

spinal tumors. Ning Lang et al. first used the DCE MRI in

detecting spinal MM and metastases, and found that myeloma

and metastatic cancers have significantly different DCE kinetics

using the evaluation of curve patterns, heuristic analysis of DCE

character is t ic parameters or a more sophist icated

pharmacokinetic modeling analysis (12). Although 18F-FDG

PET/CT is recommended as the optimal imaging modality in
A

B

D

C

FIGURE 5

The exemplar of the spinal image with lesion annotation (A–D) shows the attention maps generated by the classification model without and
with the attention guidance.
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detecting MM, Zhang Jiahui et al. pointed out that vascular

parameters measured by DCE-MRI and glucose metabolism

measured by 18F-FDG PET/CT from the most aggressive

tumor area did not show a significant correlation (1, 25). In

addition, DCE MRI is much cheaper and easily accessible with a

much lower radiation exposure. CET1 sequences, rather than

conventional sequences were therefore selected for analysis to

provide more comprehensive information of spinal malignant

tumors involved in our study.

Compared with current mainstream imagingmethods based on

visual assessment, machine learning has provided an objective tool

in many clinic tasks such as differential diagnosis, assessment of

therapeutic response and prognosis. In the field of spinal tumor,

radiomics shows its effectiveness in distinguishing spinal primary or

metastatic tumor (6, 26, 27), prediction of gene mutation (28, 29),

early reoccurrence (27), condition monitoring (30) and assessment

of treatment response (31, 32). However, there are limited studies

focusing on the differential diagnosis between spinal MM and

metastases. Xing Xiong et al. (5) established radiomics models

based on T1WI and T2WI images, which were successfully applied

in differentiating spinal MM from metastases for the first time. The

accuracy, sensitivity, and specificity of their optimal model reached

0.815, 0.879, and 0.790, respectively. Jianfang Liu et al. also

constructed radiomics model based on conventional vertebral

MRI data (T1WI and FS-T2WI) to detecting spinal MM from

metastases (15). Different from Xing Xiong et al. study, they

improved the methods of features selection, and radiomics model

established with 10 events per independent variable (EPV) achieved

the best diagnostic performance (AUC= 0.84). In this study, we also

performed radiomics analysis based on MRI sequences in

differential diagnosis between spinal MM and metastases. Unlike

earlier studies, our models were constructed based on CET1

sequences, considering that contrast-enhanced imaging may help

provide additional information about the spinal malignancies

described above. In addition, three-dimensional manual

segmentations were performed for all lesions to delineate the

entire tumor, which differed from prior studies where volume of

interest (VOI) were defined along the largest cross-sectional area on

the sagittal or only the largest lesion was selected and delineated for

analysis. All these procedures were designed to provide more

comprehensive information for assessment of spinal malignancies,

which could contribute more to find features differences between

spinal MM and metastases. More importantly, all patients with

spinal metastases in our study were from a single origin of lung

cancer, which contrasted with prior studies including various

metastases. It has been well established that extensive

heterogeneity is identified between individual cancers (33). Spinal

metastases from different origins were all divided into one group in

prior studies, which could not guarantee the grouping of

biologically homogeneous cancers. In addition, Ning Lang et al.

have revealed that there existed significant differences in imaging

features between spinal metastases from lung and other cancers (6).
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Notably, the radiomics based on multi-view in our study had only

moderate efficiency in differential diagnosis with the highest ACC of

0.71 and the highest AUC of 0.76 (Table 2), which was consistent

with the prior two studies. The diagnostic accuracy might be limited

by the vascular bone marrow and complicated anatomic structures

in the spine.

DL technology has been reported to outperform radiomics in

detecting efficiency (6, 34). Despite its widespread use in evaluating

other types of cancer, there have been several reports focusing on

spinal diseases. Moreover, no study to date has compared the

efficiency of DL and radiomics in detecting spinal MM from

metastases. In this study, we proposed a novel DL model of

MAGN, which outperformed the radiomics method in

distinguishing spinal MM from metastases coming from lung

cancer with higher ACC, AUC and F1-score (0.81,0.78 and 0.71of

theMAGN vs. 0.71, 0.76 and 0.54 of multi-view radiomics method).

Meanwhile, the efficiency of MAGA was further improved by the

multi-view feature extraction and fusion strategy, which could

conduct the differentiation task in a more comprehensive

manner. Besides, we incorporated the attention guidance strategy,

which could not only provide prior guidance to aid the model

training process, but also produced the attention heatmap

(Figure 5). The heatmap can resolve the interpretability issue in

the DL model, which may indicate the most invasive regions of

spine and assist radiologists in differential diagnosis.

There have several limitations in this study. Firstly, it is a

retrospective study in a single center with a relatively small

population. Further multicenter studies need to be carried out to

confirm our results. Secondly, we only selected the spinal metastases

coming from lung cancer as the group of metastases to be compared

with spinal MM. In next research, we will investigate differential

diagnosis between MM and other metastases, as well as among

spinal metastases from different origins.
Conclusion

Our findings reveal that the DL model of MAGN can achieve

satisfactory performance in differentiating spinal MM from

metastases originating from lung cancer, outperforming the

radiomics model and radiologist assessment. Our constructed

model may become a promising tool for reaching an early

diagnosis and optimizing precision medicine in patients

suspected of spinal MM or metastases.
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