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Aberrations in membrane trafficking pathways have profound effects in cellular
dynamics of cellular sorting processes and can drive severe physiological outcomes.
Sorting nexin 27 (SNX27) is a metazoan-specific sorting nexin protein from the PX-
FERM domain family and is required for endosomal recycling of many important
transmembrane receptors. Multiple studies have shown SNX27-mediated recycling
requires association with retromer, one of the best-known regulators of endosomal
trafficking. SNX27/retromer downregulation is strongly linked to Down’s Syndrome
(DS) via glutamate receptor dysfunction and to Alzheimer’s Disease (AD) through
increased intracellular production of amyloid peptides from amyloid precursor protein
(APP) breakdown. SNX27 is further linked to addiction via its role in potassium channel
trafficking, and its over-expression is linked to tumorigenesis, cancer progression,
and metastasis. Thus, the correct sorting of multiple receptors by SNX27/retromer
is vital for normal cellular function to prevent human diseases. The role of SNX27 in
regulating cargo recycling from endosomes to the cell surface is firmly established,
but how SNX27 assembles with retromer to generate tubulovesicular carriers remains
elusive. Whether SNX27/retromer may be a putative therapeutic target to prevent
neurodegenerative disease is now an emerging area of study. This review will provide
an update on our molecular understanding of endosomal trafficking events mediated by
the SNX27/retromer complex on endosomes.

Keywords: membrane traffic, retromer complex, sorting nexin 27, structural biology, coat proteins

INTRODUCTION

Cells communicate with the extracellular environment via cell surface transmembrane proteins that
direct processes such as nutrient uptake, cellular adhesion, and intracellular signal transduction.
Homeostasis of these molecules is precisely controlled by balancing exocytic, endocytic, and
intracellular trafficking pathways. How these pathways are connected and regulated is a question of
fundamental and immense interest, both for understanding normal cell physiology and the etiology
of important human diseases. Mechanisms that regulate transmembrane cargo sorting within
endosomes remain poorly understood. In neurons, proteins and lipids must be exchanged and
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remodeled at the cell surface to maintain synaptic plasticity and
cognitive development (Anggono and Huganir, 2012). Many
critical transmembrane proteins and lipids must be internalized,
while others undergo selective sorting, either through recycling
to the cell surface or trafficking to lysosomes for down-
regulation or degradation. The endocytic network regulates both
structural and functional synaptic remodeling by controlling
the trafficking of numerous transmembrane proteins cargoes;
examples include cell adhesion molecules, receptors required in
signaling pathways, and ion channels (Anggono and Huganir,
2012; Di Fiore and von Zastrow, 2014).

In metazoans, the retromer complex is considered a “master
regulator” of protein sorting at endosomal membranes. The
retromer heterotrimer is formed from Vacuolar Protein Sorting
protein 35 (VPS35), VPS29, and VPS26 (Seaman et al., 1998;
Kerr et al., 2005; Burd and Cullen, 2014). Retromer sorts
transmembrane proteins away from degradation in lysosomes
and instead sorts proteins back to the cell surface; to the trans-
Golgi network (TGN); or to specialized endosomes (Figure 1;
Seaman et al., 1998; Arighi et al., 2004; Carlton et al.,
2004; Seaman, 2004; Chen et al., 2010; Temkin et al., 2011).
The functional retromer complex is formed through binding
members of the Phox homology (PX) protein family. Retromer
binds multiple PX proteins from the sorting nexin (SNX) family,
including dimers of SNX1/SNX2 with SNX5/SNX6 (Cullen
and Korswagen, 2011; Seaman, 2012; Burd and Cullen, 2014;
Simonetti et al., 2017; Chandra et al., 2020); monomeric SNX3
(Xu et al., 2001; Hierro et al., 2007; Strochlic et al., 2007; Harterink
et al., 2011; Seaman, 2012; Burd and Cullen, 2014; Lucas et al.,
2016; Leneva et al., 2020); and its most recently identified
partner, sorting nexin 27 (SNX27) (Gallon et al., 2014; Clairfeuille
et al., 2016; Chandra et al., 2020). Membrane remodeling can
occur when retromer binds SNX-BAR proteins (SNX1/SNX2,
SNX5/SNX6) that induce the formation of tubular transport
carriers (Wassmer et al., 2007, 2009; Temkin et al., 2011; van
Weering et al., 2012a,b). Very recently, SNX3/retromer has also
been shown to induce tubulation in vitro (Leneva et al., 2020) in
the absence of BAR domains, suggesting BARs are not required
for membrane tubulation in the context of retromer coats.

Retromer is thought to coordinate cargo sorting in two ways:
by selecting cargo based on specific sequences and by promoting
membrane remodeling to form tubular carriers enriched in
certain cargoes (Cullen and Korswagen, 2011; Seaman et al., 2013;
Burd and Cullen, 2014). Cargo recognition and binding use at
least two mechanisms. Some cargoes directly bind VPS35 and
VPS26 subunits (Seaman, 2007; Tabuchi et al., 2010; Fjorback
et al., 2012). Increasing evidence suggests retromer uses various
SNX proteins as cargo adaptors (Strochlic et al., 2007): SNX3
(Xu et al., 2001; Strochlic et al., 2007; Burd and Cullen, 2014),
SNX5 (Simonetti et al., 2017, 2019), and SNX27 (Temkin et al.,
2011) are all implicated in cargo recognition. Mutations in
or loss of functional retromer have been increasingly linked
with neurological disorders (Willnow and Andersen, 2013;
Reitz, 2015). In this review, we provide an update on the
current understanding of SNX27/retromer biology with focus on
molecular details and the link between SNX27 and retromer in
sorting critical cargoes required for human health.

SNX27 AND RETROMER IN
ENDOSOMAL TRAFFICKING

Identification of Retromer in Eukaryotes
Genetic screening in Saccharomyces cerevisiae identified more
than 40 “Vacuolar protein sorting” (Vps) genes required for
the efficient lysosomal trafficking of acid hydrolases (Bankaitis
et al., 1986; Rothman and Stevens, 1986; Robinson et al.,
1988; Rothman et al., 1989). Subsequently, several Vps proteins
(Vps29, Vps26, Vps35, Vps5, and Vps17) were shown to
form a multiprotein complex to transport the transmembrane
protein hydrolase receptor Vps10 in a retrograde direction from
endosomes to the Golgi (Horazdovsky et al., 1997; Nothwehr and
Hindes, 1997; Seaman et al., 1997, 1998). Later, the pentameric
complex containing Vps29, Vps26, Vps35, Vps5, and Vps17
proteins was named “retromer” (Seaman et al., 1998). Budding
yeast retromer is regarded to exist in a stable pentameric
complex (Seaman, 2012; Burd and Cullen, 2014) composed of
two subcomplexes: the Vps35/Vps26/Vps29 heterotrimer and
Vps5/Vps17 heterodimer (Horazdovsky et al., 1997; Seaman
et al., 1998).

In metazoans, recent evidence suggests the retromer
heterotrimer has diverged functionally from its role in yeast
(Seaman, 2012; Burd and Cullen, 2014). The mammalian
homologs of the Vps35/Vps26/Vps29 heterotrimer are VPS35,
VPS26A/VPS26B, and VPS29, respectively (Haft et al., 2000;
Koumandou et al., 2011); in this review, we refer to this
heterotrimer as “retromer.” Differential incorporation of
VPS26A or VPS26B subunits into retromer likely allows
differential cargo sorting abilities (Bugarcic et al., 2011; McMillan
et al., 2016). Functionally, SNX1 and SNX2 are considered
equivalents of yeast Vps5, while SNX5 and SNX6 are Vps17
equivalents (Horazdovsky et al., 1997; Carlton et al., 2004;
Seaman, 2004; Wassmer et al., 2007, 2009; Koumandou
et al., 2011). These metazoan proteins likely arose from gene
duplication. The SNX1/2:SNX5/6 heterodimer is the mammalian
counterpart of yeast Vps5/Vps17, and it contains both PX and
Bin/Amphiphysin/Rvs (BAR) domains (Cullen, 2008). The
SNX-BAR heterodimer has long been considered responsible
for membrane remodeling to promote cargo recycling and has
been referred to as the “membrane deformation complex” (van
Weering et al., 2010; Burd and Cullen, 2014). More recently,
the SNX-BAR dimer has been shown to bind and sort cargo
in a retromer-independent manner as the ESCPE-1 complex
[(Simonetti et al., 2017, 2019; Evans et al., 2020); recently
reviewed in Chandra et al. (2020)].

Retromer-Mediated Cargo Recognition
Following identification as a multiprotein trafficking complex
in budding yeast, mammalian retromer has been implicated in
sorting hundreds of transmembrane cargoes either to the TGN
or to the cell surface by re-routing away from degradation in
lysosomes (Cullen and Steinberg, 2018). Retromer recycles many
important transmembrane cargoes from the endosome to the
TGN, including sortilin (Mari et al., 2008), SorLA (Fjorback et al.,
2012), and SorCS1 (Lane et al., 2010). However, in metazoans,
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FIGURE 1 | Overview of SNX27/retromer pathway in metazoan cells. Metazoan retromer is implicated in three distinct endosomal pathways through direct
interactions with SNX proteins to form elongated tubules. The SNX27/retromer pathway is specific to metazoans and mediates cargo recycling from endosomes to
the plasma membrane. In this pathway, cargoes including β2 adrenergic and glutamate receptors contain PDZ binding motifs recognized by SNX27. In addition, the
SNX27 FERM domain binds NPxY motifs found in transmembrane cargoes. SNX-BAR/retromer and SNX3/retromer pathways occur in both yeast and metazoans.
SNX-BAR/retromer retrieves cargoes from endosomes to the TGN, while SNX3/retromer is implicated in sorting receptors like Wntless (WLS) from endosomes to the
TGN.

retromer was later found to sort hundreds of transmembrane
proteins from endosomes to the plasma membrane via an
interaction with SNX27, which has become an emerging player
implicated in recycling of solute carriers, glutamate receptors,
and potassium channels (Lunn et al., 2007; Lauffer et al., 2010;
Steinberg et al., 2013; Clairfeuille et al., 2016; Yang et al., 2018).
In recent years, the role of retromer in the endosome-to-plasma
membrane recycling pathway has emerged as critical to cellular
and human health.

SNX27
The sorting nexin, SNX27, contains an N-terminal post-synaptic
density 95/discs large/zonula occludens-1 (PDZ) domain; central
PX domain; and C-terminal band 4.1/ezrin/radixin/moesin
(FERM) domain (Figure 2). SNX27 is predominantly expressed
in brain and was first studied at the protein level using
proteomics, which revealed it interacts with the G-protein-
coupled receptor (GPCR) called 5-hydroxytryptamine type 4
receptor (5-HT4(a)R) (Joubert et al., 2004). 5-HT4(a)R possesses
a class I PDZ binding motif (PDZbm) at its C-terminus with
the consensus sequence motif X-S/T–X–8, where 8 represents
any hydrophobic residue. Truncation studies concluded 5-
HT4(a)R associates with SNX27 in a PDZ dependent manner.
Subsequent work demonstrated SNX27 recognizes specific
receptors containing PDZ motifs via its PDZ domain; these

cargoes include GPCRs, ion channels, and neuronal proteins
(Lunn et al., 2007; Rincon et al., 2007; Lauffer et al., 2010; Cai
et al., 2011; Valdes et al., 2011; Hayashi et al., 2012; Munoz and
Slesinger, 2014). SNX27 has now been shown to engage many
protein and lipid partners; a summary is shown in Figure 3, and
we discuss key partners below.

SNX27 Membrane and Cargo Binding
Several studies have shown SNX27 must be directed to
endosomes in order to ensure trafficking of protein cargoes
(Stockinger et al., 2002; Joubert et al., 2004; van Kerkhof et al.,
2005; Czubayko et al., 2006; Lunn et al., 2007; Rincon et al.,
2007; Simonetti et al., 2017). SNX27 demonstrates absolute
specificity for PI3P headgroup association (micromolar binding
affinities), and its PX domain drives localization to PI3P enriched
membranes (Stockinger et al., 2002; Joubert et al., 2004; Knauth
et al., 2005; van Kerkhof et al., 2005; Rincon et al., 2007; Lee
et al., 2008; Donoso et al., 2009). Structure-based mutagenesis
established the dependency of the PX-PI3P interaction for
membrane recruitment (Misra et al., 2001; Chandra et al., 2019).
However, synergistic binding of other modules (PDZ and FERM)
to membrane anchored cargo proteins promotes cooperativity
for membrane localization (Lauffer et al., 2010; Rincon et al.,
2011; Ghai et al., 2013, 2015). This process is referred to as
“coincidence detection” and is established as a fundamental
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FIGURE 2 | Sorting nexin 27 (SNX27) domain architecture. SNX27 contains a modular architecture with three established domains: the N-terminal PDZ domain (light
blue), middle PX domain (gray), and C-terminal FERM domain (purple), which is divided into F1, F2, and F3 sub-domains. Key interactions in the SNX27/retromer
pathway are indicated. VPS26 (dark blue) binds the PDZ domain. Ras binds the F1 sub-domain, and FAM21 engages both the SNX27 F3 sub-domain and retromer
VPS35 subunit. All three SNX27 domains directly engage protein partners embedded in membranes enriched for PI3P.

physical requirement for the highly specific assembly of transport
machineries at different organelles. The SNX27 PDZ domain
binds both transmembrane and cytosolic proteins using type-
I PDZ binding motifs (consensus sequence: X-S/T–X–8, where
8 represents any hydrophobic residue) (Joubert et al., 2004;
Lunn et al., 2007; MacNeil et al., 2007; Rincon et al., 2007;
Lauffer et al., 2010). Structural studies (Figure 4) have elucidated
the molecular basis for PDZbm cargo recognition. The PDZbm
sequences are often found in the protein C-terminus, and they
possess acidic side chains at the −3 and −5 positions that
form an “electrostatic clamp” with a conserved arginine on
the SNX27 surface and thereby enhance affinity (Figure 4A;
Clairfeuille et al., 2016). Many SNX27 PDZbms, including
those found in NMDARs and β2 adrenergic receptor (β2AR),
lack these upstream acidic side residues; instead, they possess
conserved phosphorylation sites on serine and threonine residues
(Clairfeuille et al., 2016). Crystal structures of SNX27 PDZ
domain bound to different phosphorylated peptides showed
how Ser/Thr phosphorylation functions to “mimic” the acidic
side chains required for high affinity binding (Figures 4B,C;
Clairfeuille et al., 2016).

The FERM domain comprises three sub-domains called F1,
F2, and F3 (Figures 2, 4E). This domain has been proposed to
regulate interactions with endosomal cargos and/or to serve as
a scaffold for signaling complexes (Ghai and Collins, 2011; Ghai
et al., 2011). The F1 subdomain contains a predicted ubiquitin-
like fold. The F3 subdomain is predicted to have a structure
similar to the pleckstrin homology (PH) and phosphotyrosine

binding (PTB) domains based on sequence predictions (Stolt
et al., 2003, 2005). The F1 and F3 modules are somehow
oriented by the central F2 subdomain that contains four
α-helices. The sequence identity of SNX27 FERM compared
with the “canonical” FERM domain from SNX17 and SNX31
is low, and F2 is much smaller than its equivalents (Ghai
et al., 2011). The SNX27 FERM domain can bind Ras GTPases
via the F1 module (Ghai and Collins, 2011), while the F3
subdomain binds cargo receptors using short NPxY motifs
present in the cytosolic tails of activated signaling receptors (Ghai
et al., 2011). The ability of both the PDZ and FERM domains
to bind cargo motifs significantly extends the repertoire of
potential cargo molecules. SNX27 also binds negatively charged
phosphoinositides via the F3 module, which contains a binding
site with high affinity for specific phosphoinositide head groups
(Mani et al., 2011; Ghai et al., 2015) enriched at the PM and
within late endosomal compartments. This suggests a potential
mechanism for activation-dependent redistribution of SNX27
to the plasma membrane. The role of SNX27 at the plasma
membrane remains uncharacterized, but its recruitment to the
contact zone between T cells and the APC (antigen presenting
cell) may be important for maintaining the immunological
synapse (IS) by controlling endocytic sorting and signaling down-
regulation of receptors, such as Disabled homology 1 (Dab1) in
reelin signaling (Stolt et al., 2003, 2005; Ghai et al., 2015). Overall,
the distinct endosomal and PM localization of SNX27 may be
partly explained by the presence of both phosphoinositide and
cargo binding modules in its C-terminal FERM domain.
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FIGURE 3 | Sorting nexin 27 (SNX27) interaction partners. Summary of reported binding partners for SNX27 structural domains.

SNX27/Retromer
In metazoans, SNX27/retromer has been established as a coat
that recycles specific cargoes from endosomes to the plasma
membrane. SNX27/retromer cargo recycling is thought to occur
on Rab4-positive early endosomes and requires the SNX-BAR
complex (Cullen and Korswagen, 2011; Temkin et al., 2011;
Steinberg et al., 2013). SNX27 acts as a major trafficking regulator
through binding PDZ cargo in mammalian cells (Cao et al.,
1999; Lauffer et al., 2010; Temkin et al., 2011; Steinberg et al.,
2013; Gallon et al., 2014). In this pathway (Figure 1), SNX27
must first be recruited to endosomes when its the PX domain
binds PI3P, perhaps with an additional contribution from the
FERM domain (Ghai et al., 2015); data indicate disrupting
the FERM/PI3P interaction reduces SNX27 association with
endosomal recycling compartments (Ghai et al., 2015). Structural
studies have demonstrated a direct interaction between VPS26
and the SNX27 PDZ domain (Gallon et al., 2014). An X-ray
crystal structure revealed an exposed β-hairpin on the PDZ
domain that binds a conserved groove on the VPS26 surface
(Figure 5). Association between the SNX27 PDZ domain and

VPS26 increases affinity for PDZ binding motifs, which hints how
cargo sorting may be allosterically regulated by SNX27/retromer
complex formation (Gallon et al., 2014).

SNX27 Binding Partners
Overall, SNX27 has been primarily linked to membrane
trafficking of cargo proteins via binding to either PDZbm
or NPxY motifs. However, SNX27 has been demonstrated
to bind other molecules and perhaps influence their mode
of action; understanding these additional protein-protein
interactions remains important (Teasdale and Collins,
2012), especially since we lack molecular details for many
binding partners.

Another established interaction partner for SNX27 is a
protein from the WASH complex called FAM21 (or WASHC2)
(Temkin et al., 2011; Freeman et al., 2014; Kvainickas et al.,
2017). The WASH complex contains five proteins: WASH1;
WASHC2 (FAM21); WASHC3 (formerly KIAA1033); WASHC4
(or strumpellin); and WASHC5 (formerly CCDC53) (Derivery
et al., 2009). Unlike retromer, the WASH complex is not
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FIGURE 4 | Current structural overview of SNX27. (A–C) The SNX27 PDZ domain (purple ribbons) bound to PDZ binding motifs (green cylinders). These motifs can
take three different forms: unphosphorylated (PDB ID: 4Z8J) shown in panel (A); phosphorylated at the –3 position (PDB ID: 5EMB) shown in panel (B); and
phosphorylated at the –5 position (PDB ID: 5EM9) shown in panel (C). Phosphorylation state is a further way to module binding through increased affinity. (D) SNX27
PX domain shown in gray ribbons (PDB ID: 4HAS). (E) The SNX27 FERM domain model was generated from the X-ray crystal structure of SNX17 FERM domain
bound to the NPxY motif found in P-selectin (PDB ID: 4GXB); the F1, F2, and F3 sub-domains are labeled.

conserved across evolution and is absent in multiple organisms
including yeast. The WASH complex mediates F-actin filament
formation on endosomal membranes and is required for
endosome-to-cell surface recycling (Seaman et al., 2013). FAM21
has been reported to prevent retrieval of the glucose transporter,
GLUT1, to the Golgi and direct it into SNX27/retromer recycling
pathway (Lee et al., 2016). In mammals, WASH complex is
recruited to endosomes through a direct interaction between
FAM21 and VPS35 (Harbour et al., 2012; Jia et al., 2012;
Helfer et al., 2013). The interaction between SNX27 and FAM21
may thus be important in the context of SNX27/retromer coat
assembly or regulation, but molecular details describing how
SNX27 engages FAM21 are currently unknown.

Sorting nexin 27 also interacts with the monomeric small
GTPase, Ras (Ghai and Collins, 2011; Ghai et al., 2011), which
is associated with multiple signaling pathways implicated in
oncogenic signaling (Herrero et al., 2016). The Ras interaction
occurs through the FERM F1 subdomain, which is also
implicated in binding NPxY cargo proteins (Burden et al., 2004;

Ghai and Collins, 2011; Ghai et al., 2011). These data may suggest
other FERM domain proteins possess similar binding activity.
Krit1 has been identified as an effector for Rap1, another Ras
family protein; Krit1 interacts with Rap1 through its FERM
domain and stabilizes epithelial junctions (Serebriiskii et al.,
1997; Wohlgemuth et al., 2005; Glading et al., 2007; Francalanci
et al., 2009). The GIRK (G-protein regulated inward rectifying
potassium) class of potassium channels regulates neuronal
excitability, and they also depend on the SNX27 FERM domain
for localization and trafficking (Balana et al., 2013). In cells
expressing dominant negative Ras, SNX27 cannot effectively
regulate cell surface levels of GIRK potassium channels (Balana
et al., 2013), which suggests a link between Ras regulation and
cargo sorting by SNX27.

Finally, the deubiquitinating enzyme (DUB) called OTULIN
has recently been shown to interact with SNX27 (Stangl et al.,
2019). OTULIN specifically hydrolyzes Met1-linked ubiquitin
chains. OTULIN binds two separate surfaces on the SNX27 PDZ
domain (Figure 5) with high affinity; it is thought to compete
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FIGURE 5 | Sorting nexin 27 (SNX27) binding to retromer and OTULIN. The SNX27 PDZ domain (light purple ribbons; PDB: 4Z8J) with a PDZbm (green cylinders) is
shown with both VPS26 (dark blue ribbons; PDB ID: 4P2A) and OTULIN (yellow ribbons; PDB ID: 6SAK). Structural data suggest the interaction of SNX27 PDZ with
retromer/cargo or OTULIN is mutually exclusive. OTULIN engages both the PDZbm site using a class I PDZbm and the β-hairpin required for interacting with VPS26.

non-catalytically for cargo and retromer binding (Stangl et al.,
2019). OTULIN contains a conserved class I PDZbm (sequence:
ETSL) essential for binding SNX27. An X-ray crystal structure of
OTULIN-SNX27 PDZ revealed a second interface in addition to
the canonical PDZ-PDZbm interaction. In the second interface,
part of the OTULIN catalytic domain (residues 67–79 containing
an exposed β3–β4 hairpin loop) is located in close proximity to
the SNX27 PDZ domain, which also engages VPS26A. Compared
to the PDZbm alone, OTULIN catalytic domain affinity for
SNX27 PDZ is increased over 30-fold (∼30 nM). This represents
the tightest interaction ever reported for a PDZ interactor. It
appears SNX27 cannot undertake simultaneous binding to both
VPS26A and OTULIN (Figure 5), because OTULIN and VPS26A
use a partially overlapping binding site located in the SNX27 β3–
β4 hairpin loop and would experience clashes between atoms.
The existence of other secondary interfaces could modulate the
affinity, and thus the selectivity, of SNX27 PDZ interactors; it will
be interesting to see if others are identified in future work.

Open Questions in Cell Biology
Sorting nexin 27 has been linked to endosomal trafficking
through a direct interaction with retromer. There is good
evidence for describing SNX27 as a retromer “cargo adaptor.”

But multiple important questions remain, and further work
must be undertaken to understand functional links between the
SNX27/retromer complex and Ras. For instance, does SNX27
associate with Ras, retromer, and/or WASH simultaneously?
Biochemical experiments and biophysical assays could address
this question in the context of artificial membranes to more
closely mimic cellular conditions. Is SNX27 endosomal cargo
binding affected or regulated by its interaction with Ras?
Or might SNX27 somehow regulate Ras function in different
signaling pathways? Overall, the ability of SNX27 to associate
with and sort transmembrane receptors, and its potential for
interacting with small GTPases on endosomal membranes,
implicates SNX27 as a potential hub where both endosomal
trafficking and integrated signaling processes meet.

It is also important to note how other evidence suggests
SNX27 can operate at least somewhat independently of retromer.
For example, siRNA-mediated knockdown of SNX27 does not
seem to affect VPS35 steady state protein levels, and vice
versa. Knockdown experiments indicate SNX27 and retromer
only partially overlap in their cargo repertoires (Cullen and
Korswagen, 2011; Simonetti et al., 2017; Yong et al., 2020), which
further suggests SNX27 can function independently of retromer.
Finally, data have suggested a role for SNX27 in internalization
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from the cell surface, as opposed to the recycling role revealed
by studies on β2AR (Lunn et al., 2007; Lauffer et al., 2010;
Temkin et al., 2011; Hayashi et al., 2012). The role of SNX27 in
the intracellular transport of GPCRs, ion channels, and kinases,
suggests a possible role in attenuation or propagation of signal
transduction, but how SNX27 fulfills both roles remains an
important open question.

TOWARD A MOLECULAR
UNDERSTANDING OF
SNX27/RETROMER

SNX27 Structural Studies
The molecular basis of SNX27 binding to PDZ motifs has been
established using X-ray crystallography (Figures 4A–C) and
biophysical assays (Clairfeuille et al., 2016). Many important
cargoes contain PDZ motifs. Examples include GPCRs such
as β2AR (Lauffer et al., 2010; Choy et al., 2014; Clairfeuille
et al., 2016) and parathyroid hormone receptor (PTHR) (Chan
et al., 2016; Clairfeuille et al., 2016); ion channels (Lunn et al.,
2007; Balana et al., 2011; Clairfeuille et al., 2016); critical
neuronal proteins, including α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs) (Hussain et al.,
2014; Loo et al., 2014; Clairfeuille et al., 2016), NMDA receptors
(NMDARs) (Wang et al., 2013; Clairfeuille et al., 2016), and
5-hydroxytryptamine 4a receptors (5-HT4(a)Rs) (Joubert et al.,
2004; Clairfeuille et al., 2016) and others (Steinberg et al., 2013;
Clairfeuille et al., 2016; Lee et al., 2016). These PDZbm sequences
contain the established C-terminal consensus motif (X-S/T–X–
8) with specific acidic side chains known to interact with a
conserved arginine on SNX27 to enhance affinity (Figure 4A).
Ser or Thr phosphorylation at the −3 or −5 positions further
enhances PDZ motif binding by SNX27 (Clairfeuille et al., 2016;
Figures 4B,C) to proteins such as the NMDA receptors.

The SNX27 PDZ domain also directly interacts with the
retromer VPS26 subunit (Figure 5; Steinberg et al., 2013; Gallon
et al., 2014; Clairfeuille et al., 2016). A β−hairpin located on
the SNX27 PDZ domain binds between the two β−sandwich
sub−domains of the VPS26 arrestin fold; this binding site is
located next to the PDZbm site, but they do not overlap. The
interaction with PDZ cargo does not require a “dual recognition
surface,” but PDZ cargo binding affinity is enhanced when SNX27
binds retromer. Therefore, cargo sorting can be synergistically
coordinated by a specific SNX27/retromer interaction.

Structurally, the SNX27 PX domain (Figure 4D) adopts a
globular fold containing three anti-parallel β-strands followed
by three α-helices (Seet and Hong, 2006; Chandra and Collins,
2019; Chandra et al., 2019; Li et al., 2019). Sequence alignments
of SNX27 PX domain with other PX family members (Seet and
Hong, 2006) indicate multiple conserved regions. This includes
specific basic residues, as well as the so-called “PPK loop”
located between helices α1 and α2, which contains the consensus
sequence defined as 9PxxPxK (9 : large aliphatic amino acids
V, I, L, and M) (Seet and Hong, 2006; Chandra and Collins,
2019; Chandra et al., 2019). The structure of SNX27 PX domain

revealed a shallow and positively charged surface pocket in a
location generally considered to be the binding site for negatively
charged headgroups (Seet and Hong, 2006; Chandra and Collins,
2019; Chandra et al., 2019; Li et al., 2019), although this structure
did not explicitly contain the head group.

In contrast to its N-terminus, we lack experimental structural
information about the SNX27 C-terminus. SNX27 belongs to the
same PX subfamily as SNX17, and there are two X-ray crystal
structures of SNX17 FERM domain bound to NPxY motifs (P-
selectin, PDB: 4GXB; and KRIT1, PDB: 4TKN) (Knauth et al.,
2005; Francalanci et al., 2009; Ghai and Collins, 2011; Ghai
et al., 2013). However, the sequence identity between SNX27 and
SNX17 FERM domains is around 25%, so it will be useful to
obtain structural information on the SNX27 FERM domain in
the presence of its multiple ligands, including NPxY cargo motifs,
Ras, and FAM21. Such information would provide key insights
into how SNX27 uses its multi-domain architecture to organize a
range of binding partners on membranes.

Retromer Coats
New and emerging structural studies have been invaluable
for understanding how retromer assembles into coats on
tubules. Recently, multiple new structures of retromer have
been published. Thermophilic yeast SNX-BAR/retromer (Kovtun
et al., 2018) and both fungal and metazoan SNX3/retromer
(Leneva et al., 2020) coats have been reconstituted and visualized
using cryo-electron tomography (cryoET). Different oligomers of
murine retromer heterotrimer have been observed using single
particle cryoEM (Kendall et al., 2020). We will focus discussion
here on implications from the newly determined SNX3/retromer
structures because a recent review (Chandra et al., 2020) covered
other new structures.

Until recently, SNX-BAR proteins were believed to generate
the curvature required for tubulation, and there are no
reports of retromer alone driving tubulation. SNX-BARs contain
amphipathic helices which can insert into lipid bilayers to
robustly drive proteins to membranes and to induce membrane
curvature (Pylypenko et al., 2007; Bhatia et al., 2009; van Weering
et al., 2012b). Tubule extension is promoted by BAR dimerization
to form higher-order tubular lattices composed of SNX-BAR
complexes (Frost et al., 2008; Mim et al., 2012). The ability of
retromer to transport many different cargo proteins has been
explained by its ability to bind different adaptors, including
sorting nexin proteins that lack membrane-deforming BAR
domains; examples include SNX3, SNX12, and SNX27. SNX-
BAR/retromer coats exhibit less regularity than do tubules coated
with BAR dimers alone (Wassmer et al., 2009; Kovtun et al., 2018;
Sun et al., 2020).

Recently, the first structures of mammalian SNX3/retromer
coats (Leneva et al., 2020) revealed formation of elongated
coated tubules. These data demonstrate SNX-BARs are not
required for in vitro tubulation. SNX3/retromer coats consist
of arch-like units formed by asymmetrical VPS35 homodimers
with VPS26 dimers and two SNX3 molecules located at the
membrane. SNX3 binds retromer at an interface located between
the VPS26 and VPS35 subunits, with its PI3P binding pocket
facing the membrane. SNX3 is also attached to the membrane
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FIGURE 6 | Modeling SNX27/retromer on membranes. Thermophilic yeast SNX-BAR/retromer (PDB ID: 6H7W) (A) and mammalian SNX3/retromer coats (B) (PDB:
not yet available) have been reconstituted in vitro. The view in panel (B) was generated using PDB: 5F0J, which approximates the reported SNX3/retromer
architecture. Both complexes drive tubulation, and reconstructions indicate retromer forms conserved asymmetrical V-shaped arches across eukaryotes. VPS35 is
shown as red ribbons, VPS26 as blue ribbons, VPS29 as green ribbons, Vps5 as yellow ribbons, and the SNX3 PX domain as gray ribbons. On each model,
potential locations for SNX27 domains are marked. In the SNX-BAR/retromer model (A), the SNX27 PX domain (gray ribbons) appears to be occluded by BAR
dimers, and the PDZ domain would likely be blocked from engaging membrane cargo by the BAR layer. In the SNX3/retromer model (B), the SNX27 PX (gray
ribbons) and PDZ (purple ribbons) domains are both located close to the membrane. There are currently no structural data regarding the overall architecture of
SNX27, either on its own or as part of a retromer coat, so the location of the FERM domain remains unknown. Both models assume the SNX27 PX occupies a
similar location to SNX3 PX.

using a membrane insertion loop (MIL), which is a feature
found in other membrane binding PX domains (Cheever et al.,
2006; Seet and Hong, 2006; Chandra and Collins, 2019). The
VPS35-mediated arches in SNX3/retromer coats lack two-fold
symmetry: one VPS35 monomer appears more curved, and
the two VPS35 subunits form an asymmetric dimer interface
using electrostatic residues that were proposed and tested in
previous structural and biochemical studies (Kendall et al., 2020).
Asymmetric assembly of arches in SNX3/retromer coats was
proposed to impose directionality and stoichiometry of adaptor
binding to coats. These newly observed SNX3/retromer coat
structures provide an important foundation for understanding
retromer assemblies with other SNX adaptors that lack BAR
domains, including SNX27, which may remodel membranes
using a similar mechanism. This hints toward a generalized
concept for retromer function in which retromer arches form a
scaffold that contributes to or helps support membrane bending
and can help propagate curvature and tubulation over long
distances by oligomerization.

Open Questions in Structural Biology
Sorting nexin 27 has been well-established as a binding
partner for retromer (Steinberg et al., 2013; Gallon et al.,
2014). A major outstanding experimental question is whether
SNX27 alone or together with retromer is sufficient to
generate tubular carriers in vitro. It will be interesting to
test directly whether SNX27/retromer forms tubules and if
or how SNX27 will generate curvature. SNX27 may use its
PX domain to orient itself on the membrane, in a manner

similar to SNX3 (Leneva et al., 2020). However, SNX3 contains
only one structured domain (PX domain), while SNX27 can
engage various membrane-embedded ligands through multiple
domains. SNX27 may therefore have additional constraints when
engaging retromer.

If SNX27/retromer forms coats, then what might these look
like? Modeling the SNX27 PDZ interaction with VPS26 in the
context of reconstituted arches provides some hints (Figure 6)
and raises important new questions. It does not appear SNX27
could bind assembled SNX-BAR/retromer (Figure 6A): the BAR
dimers adjacent to the membrane may block or occlude the PDZ
domain, which itself needs to bind cargo motifs embedded in the
membrane. However, SNX-BAR/retromer has been functionally
linked to formation of SNX27/retromer carriers (Steinberg et al.,
2013). Could SNX27/retromer somehow “hand off” cargoes
to SNX-BAR/retromer, or otherwise engage with SNX-BAR
proteins?

It is possible SNX27/retromer could assemble arches in a
manner reminiscent to SNX3/retromer, since the SNX27 PX
domain contains conserved residues that would allow it to
dip into membranes in a similar manner to SNX3. In this
scenario (Figure 6B), the SNX27 PX and PDZ domains appear
to be located close enough for their linkers to connect the
two domains. However, we currently lack information about
location and orientation of the FERM domain, so this remains
an open question. Alternatively, metazoan retromer has been
shown to form oligomers in vitro, including longer and flatter
chains (Chandra et al., 2020; Kendall et al., 2020) with different
and poorly resolved VPS26 links. It remains possible that
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SNX27/retromer may form a “flatter” coat (Simonetti and Cullen,
2018); superposition of the VPS26/SNX27 PDZ crystal structure
onto flat chains reveals the PDZ could in principle be located near
membranes, but this has not been observed in the presence of
membranes. Overall, reconstitution of SNX27/retromer on PI3P
membranes remains an important biochemical and structural
target. Reported reconstituted retromer coats appear to assemble
tubules with slightly different diameters (Figure 6; Leneva et al.,
2020), and this may reflect experimental conditions rather than
reality. Could retromer combine with different SNX adaptors to
form tubules having different dimensions? This would provide a
way for cells to physically direct or sequester cargoes to different
tubular carriers originating at the endosome. It will be interesting
to see if retromer retains the arches observed in the presence
of both SNX-BARs and SNX3; whether retromer can serve as a
more adaptable scaffold with the metazoan-specific SNX27; and
whether or how SNX-BAR/retromer may be linked structurally
to SNX27/retromer.

SNX27 AND RETROMER IN HUMAN
HEALTH AND DISEASE

Overview
Sorting nexin 27 has been shown to regulate selective endosomal
recycling and alter protein composition of cellular membranes
through its interaction with retromer. SNX27 is needed to
recycle many cargoes that perform essential cellular functions.
Therefore, SNX27 drives or influences numerous important
processes required for normal human physiology. Examples
include neuronal excitability (Balana et al., 2013); synaptic
plasticity (Hussain et al., 2014); neural tube development (Belotti
et al., 2013); psychostimulant responses (Fujiyama et al., 2003;
Joubert et al., 2004); T-cell activation at the IS (Ghai et al., 2015);
drug resistance (Hayashi et al., 2012); virion trafficking (Pim
et al., 2015); cell motility (Valdes et al., 2011); ion homeostasis
(Singh et al., 2015); Wnt signaling (Sun et al., 2016); and glucose
transporter recycling (Shinde and Maddika, 2017).

Mouse models revealed SNX27 is required for postnatal
growth and survival (Cai et al., 2011). SNX27−/− embryos
are viable and develop during embryonic stages, but they
show inhibited postnatal growth, including delayed weight gain,
reduced organ size, and early death prior to weaning (Cai et al.,
2011). The phenotype may arise from aberrant trafficking of
NR2C, an ion channel receptor with a C-terminal PDZ motif
that binds SNX27. Cai et al. (2011) report NR2C protein, but
not mRNA, levels are higher in SNX27−/− mice, and NR2C
is not robustly endocytosed in SNX27-deficient neurons. This
provides an important molecular link between SNX27 and a
key transmembrane protein cargo needed during development.
Disruption of SNX27/retromer-mediated endosomal sorting is
linked to multiple debilitating neurodegenerative disorders,
including Parkinson’s disease (PD) (Harterink et al., 2011;
Gallon et al., 2014), Alzheimer’s disease (AD) (Clairfeuille
et al., 2016), and Down’s syndrome (DS) (van Weering et al.,
2012a). Finally, identification of small molecules that stabilize
retromer expression (Mecozzi et al., 2014; Berman et al., 2015;

Muzio et al., 2020) underscores the importance of understanding
how retromer complexes undergo assembly and regulation. In
this section, we briefly highlight the range of cellular pathways
influenced by SNX27/retromer.

Signaling
Sorting nexin 27/retromer has been shown to recycle important
signaling receptors, including β2ARs (Lee et al., 2008) after
ligand-induced endocytosis. Retromer influences cyclic AMP
(cAMP) signaling when it recycles PTHR from the early
endosome after it dissociates from β-arrestin; this event switches
off the signaling pathway (Seaman, 2012; Teasdale and Collins,
2012). Specifically, PTHR has been shown to bind the SNX27
PDZ domain to ensure its recycling (Donoso et al., 2009).
SNX27/retromer also trafficks the interferon receptor 2 (IFNAR2)
subunit after its endocytosis, a process in which retromer appears
to regulate both JAK/STAT signaling termination and gene
transcription (Cullen and Korswagen, 2011). SNX27/retromer
reduces RANK (receptor activator of NF-κB) signaling in
osteoclasts by trafficking RANK in a retrograde pathway to the
Golgi (Mim et al., 2012). A study has reported retromer is
involved in nucleotide binding-leucine-rich repeat (NB-LRR)-
mediated signaling implicated in autophagy (Sun et al., 2020), but
it remains unclear how retromer functions in this pathway and
whether SNX27 is also involved.

Autophagy
Autophagy is the process by which cells degrade damaged
organelles, misfolded or damaged proteins, and pathogens
by enclosing them in a double membrane-bound structure
called autophagosomes; these molecules are then delivered to
lysosomes for degradation (Cheever et al., 2006). Autophagy
is highly conserved across eukaryotes, and cells require
autophagy to cope with stress tolerance and signaling induced
by nutrients (Simonetti and Cullen, 2018). The involvement
of SNX27/retromer in autophagic processes is emerging; it
remains unclear whether its role is indirect and whether
it is required for autophagy in certain cells (Belotti et al.,
2013). SNX27 knockout cells exhibit impaired mTOR complex
1 (mTORC1) activation, which leads to increased autophagy
(Yang et al., 2018). The WASH complex regulates trafficking
of an essential protein called Atg9 to forming autophagosomes,
where it is reported to undertake lipid scrambling and promote
autophagosome formation (Maeda et al., 2020); the VPS35
D620N mutation blocks its transport and inhibits autophagy
(Fujiyama et al., 2003). Retromer knockdown in Drosophila has
been shown to disrupt autophagy, when undigested cytoplasmic
and endosomal material builds up in autophagosomes (Pim et al.,
2015). Retromer has very recently been indirectly implicated in
regulation of mTORC1 (Hesketh et al., 2020). Future research
is required to understand how SNX27 and/or retromer function
alone or together to influence or regulate both autophagy and
nutrient sensing.

Neurodegeneration
Disruption of the endosomal system, and mutations in genes
encoding for proteins that play central roles in endosomal
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trafficking, contribute to pathologies associated with both AD
and Parkinson’s disease (PD) (Vilarino-Guell et al., 2011;
Wen et al., 2011; Siegenthaler and Rajendran, 2012; Follett
et al., 2014; Wang et al., 2014; Reitz, 2015; Small and
Petsko, 2015; Mohan and Mellick, 2017; Zhang et al., 2018;
Rahman and Morrison, 2019; Vagnozzi and Pratico, 2019; Arbo
et al., 2020). SNX27/retromer maintains homeostasis of cell
surface receptors, including AMPA and NMDA receptors (Cai
et al., 2011; Anggono and Huganir, 2012; Wang et al., 2013;
Choy et al., 2014; Hussain et al., 2014; Clairfeuille et al.,
2016), in neurons and thus is essential for normal synaptic
communication and brain function. Aberrant overactivation of
these receptors leads to neuronal hyperactivity and ultimately
to seizures commonly associated with epilepsy. In contrast,
neuronal hypoactivity can cause synaptic depression linked to
many neurodegenerative diseases like AD and PD, as well as
to neuropsychiatric disorders like schizophrenia. Collectively,
these diseases have an enormous socio-economic impact.
A great deal of evidence now supports a direct link between
aberrant endosomal trafficking and neurodegenerative disease
onset (Chandra et al., 2020). SNX27/retromer clearly plays a
critical role in receptor trafficking during synaptic transmission
and neuronal function, and thus these proteins have become
attractive putative drug targets for brain disorders. Homozygous
deletion of SNX27 leads to epilepsy and psychomotor defects;
patients typically die within 2 years of birth (Damseh et al.,
2015). Here we will highlight specific SNX27 links to DS
and AD, since other recent reviews (Wang et al., 2013,
2014; Small and Petsko, 2015; Chandra et al., 2020) have
focused on retromer.

In DS, chromosome 21 trisomy drives overexpression
of a negative regulator (miR-155) of SNX27, leading to
decreased SNX27 expression. SNX27 loss in turn leads to
NMDA and AMPA receptor dysfunction associated with DS.
Importantly, mouse models suggest that the synaptic and
cognitive phenotypes associated with DS can be rescued through
SNX27 overexpression (Wang et al., 2013).

Sorting nexin 27 is linked to amyloid precursor protein (APP)
trafficking (Steinberg et al., 2013; Wang et al., 2014; Huang
et al., 2016) based on proteomic studies of surface protein levels
following siRNA knockdown. The link to APP trafficking may
occur through another protein, because no direct interactions
have been detected between APP and SNX27 (Steinberg et al.,
2013). SNX27 has further been implicated in reducing Aβ

generation through interactions with PS1/γ-secretase (Wang
et al., 2013, 2014). SorLA/SorL1, an intracellular sorting receptor,
interacts with APP, and changes in SorLA expression or
function affects the cellular distribution and processing of APP.
There are now multiple links between SNX27, retromer, and
SorLA/SorL1. The retromer VPS26 subunit has been shown
to interact with SorLA in vivo (Fjorback et al., 2012), but
how retromer regulates APP trafficking and processing remains
largely unknown. Biochemically, the SNX27 PDZ domain has
been shown to bind SorLA with its cytosolic C-terminal
FANSHY motif (Nielsen et al., 2007; Huang et al., 2016;
Milne et al., 2019), but no structures have been reported.
Down-regulation of SNX27/retromer is strongly implicated in

AD through increased intracellular production of β-amyloid
peptides from endosomal APP breakdown (Nielsen et al.,
2007; Lane et al., 2010; Fjorback et al., 2012; Willnow and
Andersen, 2013; Huang et al., 2016; Milne et al., 2019).
Retrograde transport of APP from endosomes to the TGN
involves interaction of SorLA with retromer (Nielsen et al.,
2007; Fjorback et al., 2012; Willnow and Andersen, 2013). An
endosomal shunt mechanism (Nielsen et al., 2007; Huang et al.,
2016) has been proposed to explain how the SNX27/SorLA
interaction can shift endosomal APP trafficking toward non-
amyloidogenic processing at the cell surface, but molecular
details remain elusive. Neither retromer nor SNX27 have been
shown to interact with APP directly, and thus SorLA has
been proposed as the molecular link between SNX27/retromer
function and APP processing. Therefore, it remains critical
to obtain structural and molecular details surrounding the
crosstalk between SorLA, SNX27, and retromer in APP trafficking
and homeostasis.

Cancers
Sorting nexin 27 is increasingly linked to cancers by mediating
multiple protein–protein interactions important in trafficking,
protein sorting, and membrane remodeling (Clairfeuille et al.,
2016). The Cancer Genome Atlas database reveals SNX27 is
highly expressed in invasive breast cancer tissue (Zhang et al.,
2019; Bao et al., 2020; Sharma et al., 2020). Multiple studies
have suggested how SNX27 affects tumor growth both in vitro
and in vivo (Zhang et al., 2019; Sharma et al., 2020; Yang et al.,
2020). SNX27 increases expression of vimentin and claudin−5
proteins, both of which promote tumor growth, and SNX27 has
been proposed as a potential breast cancer biomarker (Zhang
et al., 2019; Sharma et al., 2020). In breast cancer cells, SNX27
knockdown results in reduced motility, lower proliferation, less
colony formation, and upregulated E−cadherin and β−catenin
expression levels (Zhang et al., 2019). Additional studies using
mouse models report decreased cell proliferation, tumor growth
inhibition, and longer survival times (Frost et al., 2008; Pim et al.,
2015). Finally, SNX27 may regulate matrix invasion by recycling
specific matrix proteins, such as MT1-MMP metalloprotease,
through a direct interaction (Bao et al., 2020; Sharma et al., 2020).

Understanding the underlying cell biology remains important
for uncovering specific mechanisms underlying the role of
SNX27 in breast cancer. SNX27 governs glucose transport
by an interaction with phosphatase and tensin homolog
deleted on chromosome 10 (PTEN); this prevents glucose
transporter type 1 (GLUT1) accumulation at the cell surface
(Steinberg et al., 2013) and suppresses cancer progression
(Shinde and Maddika, 2017; Zhang et al., 2019). SNX27
affects nutrient uptake in cancer cells through recycling of
different energy transport receptor proteins. Finally, SNX27
is involved in cellular uptake of specific amino acids like
glutamine, as well as mTORC1 activation (Yang et al.,
2018; Zhang et al., 2019), which may affect how cancer
cells proliferate.

Sorting nexin 27 is also implicated in progression of
acute myeloid leukemia (AML) with potential for therapeutic
treatment strategies (Wermke et al., 2015). An RNA interference
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(RNAi) screen in primary leukemia cells linked SNX27 loss
to impaired cellular growth and viability; this suggests SNX27
could be considered as a diagnostic target (Wermke et al., 2015).
However, the mechanisms by which SNX27 functions in different
cancers overall remain unclear. Future exploration should clarify
the underlying cellular functions of SNX27/retromer in the
context of specific cancer cells. Overall, SNX27 may serve as
an important target based on its established roles in promoting
tumorigenesis, cancer progression, and metastasis.

Viral Pathogenesis
Retromer is targeted by numerous pathogens, including bacterial
effectors and viral proteins. Viruses and their effectors have
evolved many different strategies to target retromer in cells. Viral
proteins can recruit retromer and cargo to replication sites to aid
infection; the NS5A protein made by hepatitis C virus (HCV)
interacts with VPS35 using this strategy (Yin et al., 2016; Elwell
and Engel, 2018). Recruiting retromer directly to replication sites
may redirect host factors that can be used to drive viral growth;
one example is Tip47 (Ploen et al., 2013a,b; Vogt et al., 2013;
Elwell and Engel, 2018), which has been reported to interact
with CI-MPR (Diaz and Pfeffer, 1998; Orsel et al., 2000). Other
viral proteins copy or mimic the motifs found in endogenous
retromer cargo proteins; this likely allows them to hijack an
important retrograde pathway in order to circumvent lysosomal
degradation or to access genetic material in the nucleus. Both
influenza virus M2 (Bhowmick et al., 2017) and HIV envelope
(Env) proteins adopt this strategy (Groppelli et al., 2014).
Another example is the HPV16 L2 major capsid protein that
harbors multiple motifs associated with retromer; this includes
8X (L/M), NPxY, and a non-canonical PDZ-binding motif.
Together, these three sequences permit L2 to engage retromer,
SNX17, and SNX27, respectively (Bergant Marusic et al., 2012;
Pim et al., 2015; Popa et al., 2015; Campos, 2017); engaging all
three proteins would substantially increase interaction affinity
and allow the viral protein to outcompete cellular cargo. It will
be interesting to determine biochemically whether most viral
proteins directly bind retromer or one of the sorting nexins now
proposed as cargo adaptors.

Some viral effectors instead change the activity or localization
of retromer. One example is tyrosine kinase-interacting protein
(Tip) from Herpesvirus saimiri; this protein redistributes VPS35
from early endosomal membranes to lysosomes (Kingston et al.,
2011). The Tip protein is not required for replication, but
retromer inhibition by Tip may contribute to transformation
observed in T cells (Duboise et al., 1998). Human papilloma virus
(HPV) E6 protein interacts with the SNX27 PDZ domain and
affects GLUT1 trafficking; this interaction drives substantially
increased glucose uptake and has been proposed to explain HPV
malignancy (Ganti et al., 2016). The non-essential Vaccinia virus
K7 protein interacts with both VPS26 and VPS35 (Li et al., 2017),
and this interaction has been suggested to affect virus transport
or uncoating (Benfield et al., 2013).

Recently, multiple groups used orthogonal methods including
CRISPR knockout, RNA interference, proteomics, and small-
molecule inhibitors, to show retromer and SNX27 may
be involved in SARS-CoV-2 viral life cycle and infection

(Daniloski et al., 2020; Zhu et al., 2020). One group identified
host genes required for SARS-CoV-2 infection in a human
A549 (lung adenocarcinoma) cell line that overexpresses
the ACE2 receptor (Papa et al., 2020). Another group
(Cattin-Ortolá et al., 2020) identified SNX27/retromer and
other trafficking coat complexes as important host factors
that influences spike (S) protein sorting in cells. Overall,
understanding the fundamental trafficking pathways and
mechanisms that govern SNX27/retromer assembly and
regulation are likely to provide key insights into how pathogens
hijack host cells.

PERSPECTIVE

Many important studies have now linked SNX27 to physiology
and disease. It is now vital for the field to move toward
integrating structural and biochemical data with experiments
in model systems to understand the molecular role of SNX27
in cellular pathways linked to human disease. The field needs
additional biochemical and structural information to judge the
suitability of SNX27 as a viable therapeutic target. Structural
data have demonstrated how SNX27 engages PDZ motifs, and
indirect evidence from a related protein (SNX17) suggests
how the FERM domain likely binds NPxY motifs. It is
difficult to envision targeting either of these binding pockets
with a small molecule, because SNX27 sorts many different
important cellular cargoes. Broad disruption of cargo binding,
especially for diseases requiring long term intervention, would
likely have undesirable physiological effects. Such an approach
may have merit for shorter treatments, such as inhibiting
pathogen binding. Furthermore, the field needs to determine
how SNX27 engages cargos in the context of binding both
retromer and membranes. This would allow us to understand
what conformation SNX27 adopts when bound to retromer,
cargo, and phospholipids. Such studies would also reveal whether
(or not) SNX27/retromer possesses interfaces distinct from
those found in SNX-BAR/retromer or SNX3/retromer coats.
If yes, might specific SNX27/retromer interfaces be stabilized
or destabilized by small molecules, depending on disease?
These are exciting and important questions to explore in
the coming years.
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