Genetic Environment of *cry1* Genes Indicates Their Common Origin

Krzysztof Fiedoruk^{1,*}, Tamara Daniluk¹, Jacques Mahillon², Katarzyna Leszczynska¹, and Izabela Swiecicka^{3,4}

¹Department of Microbiology, Medical University of Bialystok, Poland

²Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

³Department of Microbiology, University of Bialystok, Poland

⁴Laboratory of Applied Microbiology, University of Bialystok, Poland

*Corresponding author: E-mail: krzysztof.fiedoruk@umb.edu.pl.

Accepted: August 22, 2017

Abstract

Although in *Bacillus thuringiensis* the *cry* genes coding for the insecticidal crystal proteins are plasmid-borne and are usually associated with mobile genetic elements, several aspects related to their genomic organization, diversification, and transmission remain to be elucidated. Plasmids of *B. thuringiensis* and other members of the *Bacillus cereus* group (n = 364) deposited in GenBank were screened for the presence of *cry1* genes, and their genetic environment was analyzed using a comparative bioinformatic approach. The *cry1* genes were identified in 27 *B. thuringiensis* plasmids ranging from 64 to 761 kb, and were predominantly associated with the *ori44, ori60*, or double *orf156/orf157* and *pXO1-16/pXO1-14* replication systems. In general, the *cry1* genes occur individually or as a part of an insecticidal pathogenicity island (PAI), and are preceded by genes coding for an *N*-acetylmuramoyl-L-alanine amidase and a putative K⁺(Na⁺)/H⁺ antiporter. However, except in the case of the PAI, the latter gene is disrupted by the insertion of IS231B. Similarly, numerous mobile elements were recognized in the region downstream of *cry1*, except for *cry1* that follows *cry1A* in the PAI. Therefore, the cassette involving *cry1* and these two genes, flanked by transposable elements, named as the *cry1* genes carried by various plasmids strongly suggests a common origin, possibly from an insecticidal PAI carried by *B. thuringiensis* megaplasmids.

Key words: Bacillus thuringiensis, cry1 genes, IS231, IS232, pathogenicity island, insertion sequences.

Introduction

Bacillus thuringiensis is a Gram-positive, spore-forming bacterium, known for the production of parasporal crystal inclusions composed of insecticidal Cry proteins. These toxins create a heterogeneous family of 74 different types of proteins (Cry1–Cry74) (Crickmore et al. 2016) harmful for various insect genera, including Lepidoptera, Coleoptera, Diptera, Hemiptera, and even some nematodes and snails (Palma et al. 2014). Within these toxins, Cry1 represent the most abundant group, accounting for $\sim 17\%$ of all Cry toxins (Crickmore et al. 2016), and exhibit activity against pests causing the highest damages in crops and forests. For example, Cry1A are toxic to Lepidoptera, whereas Cry1B and Cry1I have dual activity against Lepidoptera and Coleoptera. The Cry-host specificity is partly a consequence of prerequisite conditions for the Cry activation. For instance, the Cry1A crystals must be first solubilized in the alkaline midgut of

Lepidoptera and subsequently processed into active forms by the proteolytic digestion of specific serine proteases (Palma et al. 2014). However, other factors associated with toxins processing or stability in the insects midgut, aside from the receptor binding, can influence Cry specificity and activity (reviewed by Jurat-Fuentes and Crickmore 2017).

In general, most *cry* genes are plasmid-borne and are usually flanked by various mobile elements such as insertion sequences (IS231, IS232, IS240, ISBt1, and ISBt2) and transposons (Tn4430 or Tn5401) (Mahillon et al. 1994; Léonard et al. 1997; Mahillon and Chandler 1998; Schnepf et al. 1998). For example, *cry1A* genes are frequently found within a composite transposon structure flanked by IS232 (Menou et al. 1990; Murawska et al. 2014). In addition, the *cry* genes can be organized in operons and/or co-localized with other toxin genes, for example those of the vegetative insecticidal proteins (*vip*), forming insecticidal pathogenicity islands (PAI)

© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

(Aronson 1993; Zhu et al. 2015). This particular genetic environment of the *cry* genes is believed to be responsible for their amplification in bacterial cells, and to facilitate their recombination and exchange among plasmids, providing a source of novel specificities in crystal-producing strains (Aronson 1993; Léonard et al. 1997; Schnepf et al. 1998; Palma et al. 2014). However, the actual transfer mechanisms and the role of the transposable elements in the evolution of *cry*-carrying plasmids remain to be elucidated. Similarly, little attention has been paid to non-toxin genes located in the immediate *cry* genetic environment, while, as a part of insecticidal PAIs, they may contribute to the virulence or be implicated with certain *B. thuringiensis* specific traits, for example activation of spore germination in an alkaline pH (Abdoarrahem et al. 2009).

The aim of the study was to investigate the genetic and genomic environments of the *cry1* genes. To this end, a comparative analysis of the *cry1* loci was performed using the various *B. thuringiensis* plasmids deposited in GenBank.

Materials and Methods

In total, a set of 406 complete plasmids from *Bacillus thuringiensis* and other *Bacillus cereus* group members deposited in GenBank were screened for the presence of *cry1* genes using the *B. thuringiensis* Toxin_scanner (Ye et al. 2012) (supplementary table S1, Supplementary Material online). A genetic environment of *cry1* was visualized with Easyfig tool (Sullivan et al. 2011). In addition, ISfinder (Siguier et al. 2006) and PHASTER (Arndt et al. 2016) website tools were used in order to identify mobile elements and prophage regions, respectively. DNA sequence alignment and analysis were performed with CLC Genomic Workbench software (CLC Bio), and Blast2GO software was used for functional annotation of proteins (Conesa et al. 2005).

Results

Strains and Plasmids Characteristics

The *cry*1-carrying plasmids were detected in 15 *B. thuringiensis* strains (table 1). However, it should be noted that in the case of *B. thuringiensis* serovar (sv.) *kurstaki* strains HD-1 and YBT-1520 the same plasmids from different sequencing projects were included into analyses, since notable discrepancies were observed in their sequences (see below).

Eight *B. thuringiensis* strains have only one *cry1* bearing plasmid, whereas two or even three plasmids with *cry1* were noted in three (CT-43, HD-12, ATCC 10792) and four (HD-1, HD-29, YBT-1520, and IS5056) strains, respectively (table 1 and fig. 1). In total, we identified 14 plasmids carrying only a single *cry1* gene, *cry1A* (n = 9), *cry1B* (n = 4), or *cry1F* (n = 1), and 12 plasmids with more than one *cry1* or other *cry* genes (table 1). The latter group involved six megaplasmids carrying the PAI, as described by Zhu et al. (2015), which

contains the *cry1Aa*, *cry1Aa*, *cry2Aa*, *cry2Ab*, and *vip3Aa* genes (hereinafter referred to as the "insecticidal PAI"), and additional seven megaplasmids containing its variants or derivatives (supplementary fig. S1, Supplementary Material online).

Replication System and Size of *B. thuringiensis* Plasmids Harbouring *cry1*

As shown in table 1, the majority of plasmids with a single *cry1A* gene possess the replication systems *ori44* (n = 5), *ori60* (n = 5), *ori43* (n = 1), or both *ori43/ori60* (n = 1) (Baum and Gilbert 1991) and are of a size below 100 kb, except for plasmids pBMB126 (126 kb and two *ori43/ori60* replication systems) and pHD120161 (161 kb and *repA* replication type). Similarly, plasmids (n = 4) with a single *cry1B* have the *ori60* replication system and size of 107 kb (plS56–107), 109 kb (pBMB0558), 113 kb (poh2), and 127 kb (pCT127 and another replication system, *repA_N*). In contrast, plasmids with several *cry* genes are larger (from 250 to 761 kb) and are characterized by double *orf156/orf157* and *pXO1-16/pXO1-14* replication systems (Tang et al. 2007; Pomerantsev et al. 2009; Zheng et al. 2013).

Distribution and Variation of the cry1 Genes

The cry1 genes were represented by 12 types (A–J, M, and Nlike) (fig. 1). The cry1A (Aa, Ab, Ac, and Ae) genes constitute the largest group among cry1 (49%) and are present either in the insecticidal PAIs or separately. In addition, all cry1A located in the insecticidal PAI (fig. 2 and supplementary fig. S1, Supplementary Material online) of plasmids with the double orf156/orf157 and pXO1-16/pXO1-14 replication systems, belong to cry1Aa subtype, whereas cry1Ac and cry1Aa-c subtypes are associated with plasmids of the ori60 and ori44 replication systems, respectively (figs. 1 and 2). In contrast, cry1la or cry1ld, which represent 21% of the cry1 genes, were found only within the insecticidal PAI, where they are located downstream of cry1A and cry1E (cry1Ia) or cry1D (cry11d). The cry1N-like, cry1C, cry1E, cry1F, cry1G, cry1H, cry1J, and cry1M genes occur only in individual plasmids, mostly as a part of the insecticidal PAI variants (supplementary fig. S1, Supplementary Material online).

Genetic Environment of the cry1 Genes

In general, in the insecticidal PAI *cry1A* is followed by *cry11* (fig. 3 and supplementary fig. S1, Supplementary Material online). In contrast, various mobile elements were found downstream of the *cry1* genes located outside the PAI or in the remaining plasmids, namely (i) IS231C followed by Tn4430 (pIS56–63, pBMB65, and p03), (ii) IS232 (pHT73, pBMB95 from strain HD1, pBMB126, and pYC1), (iii) a putative transposon (Tn3 family) followed by Tn4652 (pBMB95 from strain YBT-1520) and Tn4430 (pBMB69), (iv) an IS110 family member

Control<	B. thuringiensis		Isolation		ST ^a				Plasmid			
Kurnaki YET-TS0 China 190 Sull Pendlessis Cortiki No Crytik No Crytik No kurnaki YET-TS0 Inited States 197 Sol Crotiki 29,31,4 No Crytik No kurnaki HD-1 United States 197 Rectingpilia 9,601 Sol Crotik No Crytika Critik No kurnaki HD-1 United States 198 Rectingpilia Sol Sol Sol No Crytika Critik No kurnaki HD-1 United States 198 Rectingpilia Sol Sol Sol Sol No Crytika Critik No fundation 2015 Sol 2013 Sol 203 Sol No Crytika Critik No	serovar and suain	Country	Year	Source		Name	Accession Number	Size (bp)	Replication type	Insecticidal PAI ^b	cry1 gene ^{c,d}	Other insecticidal toxin genes
Number is a state of the sector of	kurstaki YBT-1520	China	1990	Soil	∞	pBMB69	CP007613	69,416	ori44	No	cry1Ac	No
http://titue pional pional <thp< td=""><td></td><td></td><td></td><td></td><td></td><td>pBMB293^e</td><td>CP004861</td><td>293,574</td><td>orf156/orf157</td><td>Yes</td><td>(cry1Aa, cry1Ia)^c</td><td>cry2Ab, cry2Aa,</td></thp<>						pBMB293 ^e	CP004861	293,574	orf156/orf157	Yes	(cry1Aa, cry1Ia) ^c	cry2Ab, cry2Aa,
Interster in the interster interster interster in the interster interster interster in the interster inters									pX01-16/pX01-14			vip3Aa
kratkir(H)1 Inited States 195 $ethologon 8 94586 060 100 0714 No kratkir(H)1 inited States 195 ethologon 8 94583 55,933 660 100 6714.4 No kratkir(H)1 inited States 2005 501 671560/157 Yes 7714.4 7014.6 7024.6$						pBMB95	CP007614	94,637	ori60	No	cry1Ac	No
kurstki (HD1) Unied States 195 Perimations 8 BIMB5 CP04873 55,933 oridity No Or)AL43 No pstypelia Perimations E004875 55,933 65,913 oridity No Or)AL43 No pstypelia Perimations E004875 55,933 65,913 oridits Yes Or)AL433 No pstypeliaries E004370 Salit Oridits Yes Or)AL433 No Or)AL434 Or)AL434 Or)AL434 Or)AL434 Or)AL434 Or)AL434 No chinerois CT-43 China No ¹ No ¹ Salit Oridits Yes Or)AL434 Or)AL434 Or)AL434 Or)AL434 Or)AL434 No Or)AL434 Or)AL434 No Or)AL434 Or)Al43						pBMB94	CP004868	94,568	ori60	No	cry1Ac	No
Homework Couper's 5533 Origital No. Cry143 No. Cry143 No. thrininglenesis ISSOS6 Paled C00003 63317 origital No. Cry143 P324b, G724a P324b, G724b, G724b	kurstaki HD-1	United States	1967	Pectinophora	∞	pBMB95	CP004875	95,983	ori60	No	cry1Ac	No
Intronue internet Control Contro Control Control				gossypiella					:	:		:
Interface Control Color						pBMB65	CP004873	65,873	ori44	No	cry1Ab3	No
Introduction Condition Condition <thcondition< th=""> <thcondition< th=""> <</thcondition<></thcondition<>						unnamed6	CP010003	69,317	ori44	No	cry1Ab3	No
http://displaying/provision px/or/sig/s/0.14 px/or/sig/s/0.14 px/or/sig/s/0.14 px/or/sig/s/0.14 px/or/sig/s/0.14 px/or/sig/s/0.14 px/or/sig/s/0.14 pr/or/sig/s/0.14 pr/or						pBMB299	CP004876	299,843	orf156/orf157	Yes	(cry1Aa, cry1Ia) ^c	cry2Ab, cry2Aa,
Intringiensis ISSOG Polation Control (C)									pX01-16lpX01-14			vip3Aa
thringlensis ISSOS Index 2005 Solit Index ROD116 CO7166 CO1166 CO1166 No CO71A27 No No chinensis ISSOS Final No Final 63,864 66,431 63,864 67,431 No C071A32 No No chinensis CT-43 China ND ¹ ND ¹ ND ¹ CO1130 285,439 676,6775 Yes C071A3 7924b, 073A3 No chinensis CT-43 Unita 197 Co12010 281,311 Yes C071A3 7924b, 073A3 No No No 7924b, 073A3 No No No 7924b, 073A3 No No No 2074b, 073A3 No No 2024b, 073A3 No No No 2074b, 073A3 No						unnamed2	CP009999	317,336	orf156/orf157	Yes	cry1Ac, (cry1Aa,	cry2Ab, cry2Aa,
thuringiensis ISSO56 Poland 2005 Soil 10 P055-507 C004131 G384 or40 No Cy1Ab21 No chinersis ISSO56 Poland No P055-507 C004134 20,43 25,459 or60 No Cy1Ab27 No chinersis CT-43 Uni No ¹ No ¹ No ¹ C00130 28,549 or60 No Cy1Aa, Cy1B4 No Or2Ab, Cy2Aa chinersis CT-43 Uni No ¹ No ¹ C00130 281,231 Condition No Cy1Aa, Cy1B4 No chinersis CT-43 Uni No ¹ P0 P010100 281,331 Yo CinA1A, Cy1B4 Yo									pX01-16lpX01-14		cry11a) ^c	vip3Aa
And the constraint of th	thuringiensis IS5056	Poland	2005	Soil	10	pIS56-63	CP004131	63,864	ori44	No	cry1Ab21	No
drinensi CT-43 Unit ND ¹						plS56-107	CP004134	107,431	ori60	No	cry1Ba	No
think ND ¹ <t< td=""><td></td><td></td><td></td><td></td><td></td><td>plS56-285</td><td>CP004136</td><td>285,459</td><td>orf156/orf157</td><td>Yes</td><td>(cry1Aa, cry1la)^c</td><td>cry2Ab, cry2Aa,</td></t<>						plS56-285	CP004136	285,459	orf156/orf157	Yes	(cry1Aa, cry1la) ^c	cry2Ab, cry2Aa,
chinensis CT-33 Chia ND [†]									pX01-16lpX01-14			vip3Aa
Image: black	chinensis CT-43	China	ND ^f	ND ^f	10	pCT127	CP001908	127,885	ori60, repA_N	No	cry1Ba	No
galleriae HD-29Czechoslovakia1970Dendrolimus15pBMB267CP01091267,359 $\alphar/156\rhox/174$ Yes $(r/1Aa, cr/1a)^{1/6}$ $(r/2Aa, r/2a)^{1/6}$ HD-12 $sibericus$ $pBMB126$ CP01090426,289 $\alphar/156\rhor/157$ Yes $(cr/1Aa, cr/1a)^{1/6}$ $(r/2a)^{1/6}$ YoHD-12United States2012Soll23PHD120345CP010902126,898 $\alphar/60, or/43$ No $(cr/1Aa, cr/1a)^{1/6}$ YoHD-12United States2012Soll23PHD120345CP014853345,196 $\alphar/1660r/1577$ Yes $(cr/1Ab, cr/1a)^{1/6}$ YoYoHD-12United States2013Soll216,0433345,196 $\alphar/1660r/1577$ Yes $(cr/1Ab, cr/1a)^{1/6}$ YoYoHD-12United States2010Soll23PHD120345CP014853345,196 $\alphar/1660r/1577$ Yes $(cr/1Ab, cr/1a)^{1/6}$ YoYoHD-12United States2010Soll201RO1-16pX01-14Yes $(cr/1Ab, cr/1a)^{1/6}$ YoYoYoYC-10United States2010Nicotiana taba-8RPHD120161PHD1201						pCT281	CP001910	281,231	orf156/orf157	Yes	(cry1Aa, cry1Ia) ^c	cry2Ab, cry2Aa,
galleriae HD-29 Caechoslovakia 1970 Dendrolinus 15 BIMB26 CP010001 Z67,359 orf156orf157 Yes (Cr/14, cr/16) Ya2Ab, vip34a HD-12 sibericus pBMB126 CP010000 426,329 orf156orf157-like Yes (Cr/14, cr/16) No HD-12 united States 2012 Sol pBMB126 CP010020 126,889 orf156orf157 Yes (Cr/16, cr/16) No HD-12 united States 2012 Sol PBMB126 CP01033 345,196 orf156orf157 Yes (Cr/16, cr/18) No HD-12 United States 2012 Sol PD120345 CP014853 345,196 orf156orf157 Yes (Cr/16, cr/18) Yes									pX01-16lpX01-14			vip3Aa
$HD-12 \qquad \mbox{HD}-12 \qquad \mbox{HD}-12 \qquad \mbox{HD}-12 \qquad \mbox{HD}-12 \qquad \mbox{HD}-12 \qquad \mbox{HD}-14 \qquad \mbox{HD}-16 \qquad \mbox{HD}-14 \qquad \mbox{HD}-16 \qquad \mbox{HD}-14 \qquad \mbox{HD}-14 \qquad \mbox{HD}-16 \qquad \mbox{HD}-16 \qquad \mbox{HD}-16 \qquad \mbox{HD}-16 \qquad \mbox{HD}-14 \qquad \mbox{HD}-16 \qquad \mbox{HD}-14 \qquad \mbox{HD}-16 \qquad \mbox{HD}-1$	galleriae HD-29	Czechoslovakia	1970	Dendrolimus	15	pBMB267	CP010091	267,359	orf156/orf157	Yes	(cry1Aa, cry1Ia) ^c	cry2Ab, vip3Aa
$ H0-12 \qquad United States 2012 Soil 2013 Soil 2013 Soil 2014 \\ H0-12 \qquad United States 2012 Soil 2013 Soil 2014 \\ H0-12 \qquad United States 2012 Soil 2013 Soil 2014 \\ H0-12 \qquad United States 2012 Soil 2014 Solution 2014 \\ H0-12 \qquad United States 2012 Soil 2014 \\ H0-12 \qquad H0-12014 \\ H0-12016 \\ H0-1201 \\ H0-12016 \\ H0-12016 \\ H0-1201 \\ H0-12016 \\ H0-1201 \\ H0-12016 \\ H0-12016 \\ H0-12016 \\ H0-12016 \\ H0-12016 \\ H0-12016 \\ H0-1201 \\ H0-120 \\ H0-12$				sibericus					pX01-16lpX01-14			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						pBMB426	CP010090	426,282	orf156/orf157-like	Yes	(cry1Ca, cryDa) ^c	No
HD-12 United States 2012 Soil 23 PHD120345 CP010092 126,898 orifo, ori43 No Cry1Hb, cry1Bb, No Cry1Hb, cry1Bb, Cry2dd, vip2dr, HD-12 United States 2012 Soil 23 PHD120345 CP014853 345,196 orif56/orf157 Yes (cry1Hb, cry1Bb, cry2dd, vip2dr, PC01 E PC01-16/PC01-14 PC01-16/PC01-14 Cry1Ab, cry1Ba, Vip1Ba-1ike PC10 China 2010 Nicotiana taba- 8 PVC1 CP014852 161,353 repA No Cry1Ab, cry1Ba, Vip1Ba-1ike YC-10 China 2010 Nicotiana taba- 8 PVC1 CP01350 Yes Cry1Aa, Cry1Ba, Cry1Aa, Cry1Aa, Cry1Aa, Cry2Aa, Yaba, Vip2Aa,									pX01-16lpX01-14			
HD-12 United States 2012 Soil 23 pHD120345 CP014853 345,196 orf156/orf157 Yes (cy1Hb, cy1Bb, cy24d, vip24f, vip24f, vip24f, vip24f, vip24f, vip24d, vip24f, vip24f, vip24f, vip24g, vip24d, vip24g,						pBMB126	CP010092	126,898	ori60, ori43	No	cry1Ac	No
PX01-16/pX01-14 cy1Ab24, cy11- vipTda, vip24, cy11- vip1da, vip10, vip1	HD-12	United States	2012	Soil	23	pHD120345	CP014853	345,196	orf156/orf157	Yes	(cry1Hb, cry1Bb,	cry2Ad, vip2Af,
VC-10 China 2010 Nicotiana taba- 8 PVC1 FeA No No Cy11d2, cy11a, cy11a, cy11a, cy11a, cy11d2, cy11a, cy11d2, cy11a, cy11d2, cy11a, cy11b, cy11a, cy11b, cy11b, cy11b, cy11a, cy11b, cy11a, cy11b, cy11a, cy11a, cy11a, cy11a, cy11a, cy11a, cy12a, cy12a, cy12a, cy11a, cy11a, cy11a, cy11a, cy11a, cy11a, cy12a, cy12a, cy11a, cy11a, cy12a, cy12a, cy11a, cy11a, cy11a, cy12a, cy11a, cy11a, cy12a, cy11a, cy11a, cy12a, cy12a, cy11a, cy11a, cy12a, cy12a, cy11a, cy11a, cy12a, cy12a, cy11a, cy11a, cy12a, cy11a, cy11a, cy12a, cy11a, cy11a, cy12a, cy12a, cy11a, cy11a, cy11a, cy12a, cy11a, cy11a, cy11a, cy11a, cy11a, cy11a, cy11a, cy11a, cy11a, cy12a, cy11a, cy11a, cy11a, cy11a, cy11a, cy12a, cy11a,									pX01-16lpX01-14		cry1Ab24, cry1I-	vip1Ca, vip2Ac,
CryIId2, cy1Id2, C10 DHD120161 CP014852 161,353 repA No cy1Fb No YC-10 China 2010 Nicotiana taba- 8 PYC1 CP01350 761,374 No cry1As, cry1As, cry1As, cry2Aa, cry2Ab35, YWC2-8 China 2007 Soil 8 pYWC2-8-1 CP013056 250,706 orf156/orf157 Yes cry1As/ cry2Aa, cry2Ab35, YWC2-8 China 2007 Soil 8 pYWC2-8-1 CP013056 250,706 orf156/orf157 Yes (cry1Ac) ^c cry2Aa, cry2Ab35, YWC2-8 China 2007 Soil 8 pYWC2-8-1 CP013056 250,706 orf156/orf157 Yes (cry1Ac) ^c cry2Aa YMC2-8 pXO1-16/pXO1-14 pXO1-16/pXO1-14 pXO1-16/pXO1-14 pry2Aa											like, cry1Ja,	vip1Ba-like
Cry1Da3/ PHD120161 CP014852 161,353 repA No Cry1Fb No YC-10 China 2010 Nicotiana taba- 8 PYC1 CP011350 761,374 orf156/orf157 Yes cry1Aa, cry2Aa, cry2Ab35, YWC2-8 China 2007 Soil 8 PYWC2-8-1 CP013056 250,706 orf156/orf157 Yes cry1Aa/s cry1Aa/s cry2Aa, cry2Aa, cry2Ab35, YWC2-8 China 2007 Soil 8 PYWC2-8-1 CP013056 250,706 orf156/orf157 Yes (cry1Aa/s cry2Aa YWC2-8 China 2007 Soil 8 PYWC2-8-1 CP013056 250,706 orf156/orf157 Yes (cry1Ac) ^c cry2Aa											cry11d2,	
PHD120161 CP014852 161,353 repA No cry1fb No YC-10 China 2010 Nicotiana taba- 8 pYC1 CP011350 761,374 orf156/orf157 Yes cry1Aa, cry2Aa, cry2Ab35, XC-10 China 2010 Nicotiana taba- 8 pYC1 CP011350 761,374 orf156/orf157 Yes cry1Aa, cry2Aa, cry2Ab35, XWC2-8 China 2007 Soil 8 pYWC2-8-1 CP013056 250,706 orf156/orf157 Yes (cry1Ac) ^c cry2Aa YWC2-8 China 2007 Soil 8 pYWC2-8-1 CP013056 250,706 orf156/orf157 Yes (cry1Ac) ^c cry2Aa											cry1Da3) ^c	
YC-10 China 2010 Nicotiana taba- 8 pYC1 CP011350 761,374 orf156/orf157 Yes cry1Ac, (cry1Aa, cry2Ab35, cry2Ab35, cry2Ab35, cry2Ab35, cry3Aa cry1a36 ^r vip3Aa vyWC2-8 China 2007 Soil 8 pYWC2-8-1 CP013056 250,706 orf156/orf157 Yes (cry1Ac) ^c cry2Aa vy2Aa vyWC2-8 vy2Aa vy2Aa vy2Aa vy2Aa vy2Aa vy2Aa vy2Aa vy2Aa vyWC2-8 vy2Aa v						pHD120161	CP014852	161,353	repA	No	cry1Fb	No
cum roots pX01-16/pX01-14 cry1a36) ^c vip3Aa YWC2-8 China 2007 Soil 8 pYWC2-8-1 CP013056 250,706 orf156/orf157 Yes (cry1Ac) ^c cry2Aa pX01-16/pX01-14	YC-10	China	2010	Nicotiana taba-	∞	pYC1	CP011350	761,374	orf156/orf157	Yes	cry1Ac, (cry1Aa,	cry2Aa, cry2Ab35,
YWC2-8 China 2007 Soil 8 pYWC2-8-1 CP013056 250,706 <i>orf156/orf157</i> Yes (cry1Ac) ^c cry2Aa pXO1-16/pXO1-14				cum roots					pX01-16lpX01-14		cry11a36) ^c	vip3Aa
pXO1-16pXO1-14	YWC2-8	China	2007	Soil	∞	pYWC2-8-1	CP013056	250,706	orf156/orf157	Yes	(cry1Ac) ^c	cry2Aa
									pX01-16lpX01-14			

2267

B. thuringlensis		Isolation		ST ^a				Plasmid			
serovar and strain	Country	Year	Source	1	Name	Accession	Size (bp)	Replication	Insecticidal	cry1 gene ^{c,d}	Other insecticidal
	•					Number		type	PAI ^b	1	toxin genes
HD-771	ND⁺	ND ^f	ND ^f	12	p03	CP003755	69,876	ori44	No	cry1Aa	No
kurstaki HD-73	ND ^f	ND ^f	ND ^f	∞	pHT73	CP004070	77,351	ori44	No	cry1Ac1	No
alesti BGSC 4C1	Czechoslovakia	1987	Bombyx mori	12	pBMB267	CP015177	267,609	pX01-16/pX01-14	Yes	(cry1Ae, cry1Ae ^d ,	cry2Ab, vip3Aa
										cry1Gb ^d , cry1Ma ^d) ^c	
tolworthi Pasteur	ND⁺	ND ^f	ND [†]		pKK2	NZ_AP014866		orf156/orf157		(cry1Ea, cry11a ^d) ^c	cry2Aa
Institute Standard								pX01-16/pX01-14			
CT-43	ND [↑]	ND ^f	ND ^f	NDţ	pBMB0558	NC_014937	109,464	ori60	No	cry1Ba ^d	No
L-7601	China	2015	ND ^f	197	unnamed3	CP020005	408,071	orf156/orf157	Yes	(cry1Ab, cry1la,	vip3Ah
								pX01-16/pX01-14		cry1Ab ^d ,	
										cry1la ^d , cry1Bd) ^c	
berliner ATCC 10792	Israel	ND ^f	Ephestia kuhniella	10	poh4	CP021065	86,488	ori43	No	cry1Ab	No
					poh2	CP021063	113,294	ori60	No	cry1Ba	No

^ccry1 genes in brackets are located in the insecticidal PAI as showed in supplementary fig. 51, Supplementary Material online. ^dPseudogene. ^eIdentical plasmid sequence is deposited in GenBank under Acc. number CP007615. ^fND, not determined.

GBE

cry1 type	Plasmid	Accession no.	Replication system	PAI ^a	B. thuringiensis strains
cry1 type cry1Ab3 cry1Ab3 cry1Ab3 cry1Ab2 cry1Ab21 cry1Ab21 cry1Ab2 cry1Ab cry1Ab cry1Ab cry1Aa cry	Plasmid pBMB65 [°] unnamed6 [°] poh4 plS56-63 pHD120345 unnamed3 unnamed3 pBMB267 p03 pBMB290 [°] unnamed2 [°] pYC1 plS56-285 pBMB293 [°] pBMB293 [°] pBMB287 pCT281 pYWC2-8-11 unnamed2 [°] pYC1 pBMB95 [°] pBMB267 pCT28-11 unnamed2 [°] pYC1 pBMB95 [°] pBMB267 pBMB267 pCT28-11 unnamed2 [°] pYC1 pBMB95 [°] pBMB267 p	Accession no. CP004873 CP011003 CP021065 CP004131 CP014853 CP020005 CP020005 CP015177 CP003755 CP009399 CP015177 CP003755 CP004876 CP009999 CP011350 CP001810 CP001810 CP0192 CP0192 CP01	Replication system ori44 ori44 ori43 ori44 ori43 ori44 ori55(ori157, pX01-16/pX01-14 ori156(ori157, pX01-16/pX01-14 ori150(ori43	PAI ² no no no yes yes yes yes yes yes yes yes yes yes	E. TRUITINGIENSIS STRAINS kurstaki HD-1 kurstaki HD-1 berliner ATCC 10792 thuringiensis IS5056 HD-12 L-7601 L-7601 alesti BGSC 4C1 alesti BGSC 4C1 alesti BGSC 4C1 HD-771 kurstaki HD-1 kurstaki HD-1 thuringiensis IS5056 kurstaki YBT-1520 galleriae HD-29 chinensis CT-43 YWC2-8 kurstaki HD-1 YC-10 kurstaki HD-1 galleriae HD-29 chinensis CT-43 YWC2-8 kurstaki HD-1 YC-10 kurstaki HD-1 galleriae HD-29 chinensis CT-43 YWC2-8 kurstaki HD-1 YC-10 kurstaki HD-1 galleriae HD-29 chinensis CT-43 YWC2-8 kurstaki HD-1 galleriae HD-29 chinensis CT-43 YWC2-8 kurstaki HD-1 YC-10 kurstaki HD-1 galleriae HD-29 chinensis CT-43 YWC2-8 kurstaki HD-1 YC-10 Kurstaki HD-1 galleriae HD-29 chinensis CT-43 YWC2-8 Kurstaki HD-1 YC-10 Kurstaki HD-1 Kurstaki HD-1 Kurstaki HD-1 YC-10 Kurstaki HD-1 Kurstaki HD-1 YC-10 Kurstaki HD-1 Kurstaki HD-1 YC-10 Kurstaki HD-1 YC-10 Kurstaki HD-1 Kurstaki HD-1 Kurstaki HD-1 YC-10 Kurstaki HD-1 Kurstaki HD-1 YC-10 Kurstaki HD-1 Kurstaki HD-1 YC-10 Kurstaki HD-1
cry1Ac1 cry1Ac cry1Ac cry1Ac cry1Ac cry1Ca cry1Ca cry1Ca cry1Da cry1Da cry1J cry1J cry1Ja cry1Ja cry1Hb	pHT73 pBMB69 pBMB94 ⁶ pBMB95 ⁶ pKK2 pBMB267 pBMB426 pBMB426 pHD120345 pHD120345 pHD120345 pHD120345	CP004070 CP007613 CP007613 CP007614 NZ_AP014866 CP015177 CP010090 CP010090 CP014853 CP014853 CP014853 CP014853	ori44 ori44 ori60 ori60 ori56(ori157, pX01-16/pX01-14 ori156(ori157, pX01-16/pX01-14 ori156(ori157, pX01-16/pX01-14 ori156(ori157, pX01-16/pX01-14 repA ori156(ori157, pX01-16/pX01-14 ori156(ori157, pX01-16/pX01-14	no no no yes yes yes yes yes yes yes yes	kurstaki HD-73 kurstaki YBT-1520 kurstaki YBT-1520 kurstaki YBT-1520 tolvorthi Pasteur Institute Standard alesti BGSC 4C1 galleriae HD-29 galleriae HD-29 HD-12 HD-12 HD-12 HD-12
cry1Ba cry1Ba cry1Ba cry1Ba cry1Ba cry1Bd cry1Bd cry1Bd	pCT127 pI556-107 poh2 pBMB0558 pHD120345 unnamed3 pBM2057	CP014853 CP001908 CP004134 CP021063 NC_014937 CP014853 CP020005	ori60, repA_N ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60 ori60, repA_N	no no no yes yes	HD-12 chinensis CT-43 thuringiensis IS5056 berliner ATCC 10792 CT-43 HD-12 L-7601
cry1la cry1la cry1la cry1la cry1la cry1la cry1la cry1la cry1la cry1la cry1la cry1la cry1la cry1la cry1la	pBMB267 pHD120345 unnamed3 unnamed3 pKK2 pYC1 pS56-285 unnamed2 ⁶ pBMB293 pBMB299 ⁶ pCT281 pBMB267	CP015177 CP014853 CP020005 CP020005 NZ_AP014866 CP011350 CP004136 CP009999 CP004861 CP004976 CP004876 CP001910 CP01910	on r3eeon157, pX01-16/pX01-14 on1156/on157, pX01-16/pX01-14	yes yes yes yes yes yes yes yes yes yes	alesti BGSC 4C1 HD-12 L-7601 L-7601 tolworthi Pasteur Institute Standard YC-10 thuringiensis IS5056 kurstaki HD-1 kurstaki YBT-1520 kurstaki HD-1 chinensis CT-43 galleriae HD-29

^einsecticidal pathogenicity island (PAI), all variants as showed in supplementary fig. S1 (Supplementary Material online) ^bpseudogene

^cplasmids from the same strains depostited by different sequencing projects

Fig. 1.—Comparison of the *cry1* genes from *B. thuringiensis* plasmids using UPGMA clustering. The *cry1* genes located in the insecticidal PAI, as showed in supplementary fig. S1, Supplementary Material online, are highlighted as grey boxes.

(pHD120161) (fig. 3 and supplementary fig. S2, Supplementary Material online). Overall, the mobile elements in the direct or more distal *cry1* environment include insertion sequences, transposons, and elements associated with DNA integration/recombination (integrases, resolvases) as well as group II intron reverse transcriptase/maturase genes (supplementary fig. S2, Supplementary Material online). More specifically, ISs are represented by four families: (i) IS4 (IS231B, IS231C, IS232S, and ISBth4), (ii) IS21 (IS232), (iii) IS110 (ISBth166), and (iv) IS200/IS605 (ISBth16), while all the Tn transposase genes belong to the Tn3 family. An accumulation of various transposable elements in *cry1* proximity is particularly apparent in the *ori44*-replication plasmids, where they represent up to 46% of the plasmid size (supplementary fig. S2, Supplementary Material online).

Within the downstream *cry1* sequence (except for *cry1la*) we noted the inverted repeat motif described by Wong and Chang (1986) as a positive retroregulator that stabilizes *cry1*

mRNA. Interestingly, beside the original motif 5'-AAAACGGACATCACCTCC(N₈)GGAGTGATGTCCGTTTT-3', variants characterized by different secondary mRNA structures were also observed (fig. 4 and supplementary fig. S3, Supplementary Material online). In addition, 45 bp downstream of the retroregulator sequence and 127 bp upstream of the *cry1la* promoter sequence, a second inverted repeat structure, 5'-AAGCAGAGATATTTTCA (N₈)TGAAAATATCTCTGCTT-3' was also noted (supplementary fig. S4, Supplementary Material online).

In contrast, an upstream region of cry1 is occupied by a gene (or its fragment in the case of cry1B) encoding for an *N*-acetylmuramoyl-L-alanine amidase, that is preceded, except for cry1B, by gene(s) encoding component(s) of a putative K⁺(Na⁺)/H⁺ antiporter (fig. 3). However, in virtually all cases (but not in the PAI), the latter gene is disrupted by the insertion of IS231B and is usually followed by IS232. Therefore, the gene cassette involving cry1 and these two genes or their

Fig. 2.—Distribution and variability of the cry1 cassette in B. thuringiensis plasmids.

fragments (hereinafter named as the *cry1* cassette) is the smallest *cry1*-carrying (*cry1A*, *cry1F*, or *cry1B*) genetic unit recognized in different plasmids that possibly originated from the PAI (fig. 2). Interestingly, plasmids pYC1 (strain YC-10) and unnamed 2 (strain *kurstaki* HD-1) both carry the PAI and the *cry1* cassette (fig. 3).

Relatedness of *cry1*-Carrying Plasmids to Other *B. cereus* Group Plasmids

For all *cry1*-carrying plasmids, variants missing the *cry1* cassette (supplementary figs. S5–S8, Supplementary Material online) were identified. For instance, plasmids pKK2 (54 kb) and pBMB55 (55 kb) are in fact ~10 kb smaller *cry1*-negative variants of the *ori44*-type *cry1*-carrying plasmids plS56-63, pBMB65, pHT73, pBMB69, and p03 (supplementary fig. S5, Supplementary Material online). Similarly, the lack of the *cry1* cassette is the only substantial difference between 7 plasmids (72–90 kb) and 12 plasmids (59–89 kb) displaying, respectively, the *ori60* or the *ori43* replication type, as compared with the *cry1A*- or *cry1B*-positive ones (supplementary figs. S6 and S7, Supplementary Material online). Finally, the lack of the large fragment (~120 kb) containing the insecticidal PAI differentiates pBTBC2 (171 kb) from the PAI-positive megaplasmids pBMB293, plS56-285, pCT281, or pBMB299 (supplementary fig. S8, Supplementary Material online). Such *cry1*-negative plasmids were found exclusively in *B. thuringiensis* strains, except for the plasmid pH308197_73 from the emetic *B. cereus* strain H3081.97 (supplementary fig. S6, Supplementary Material online). However, it must be stated that certain inconsistencies for the presence of *cry1* genes in the same plasmids from different sequencing projects were noted (supplementary fig. S9, Supplementary Material online). For example, the *cry1Ac* cassette from the 95 kb plasmid pBMB95 (CP004875) of *B. thuringiensis* sv. *kurstaki* HD-1 is present in the 317 kb unnamed plasmid (CP009999).

Discussion

The occurrence of various *cry1* genes in the proximity of an *N*-acetylmuramoyl-L-alanine amidase gene (or its fragment), along with $K^+(Na^+)/H^+$ antiporter pseudogene (i.e., disrupted by IS231B), strongly suggests their common origin. The insecticidal PAI where both genes are complete and where *cry1A* is adjacent to *cry1I* instead of a mobile genetic element, seems

GBE

Fig. 3.—The cry1 gene cassette and its genetic environment in *B. thuringiensis* plasmids. The insecticidal PAI was used as reference. The entirely annotated version is detailed in supplementary fig. S2, Supplementary Material online.

43bp

38bp

Fig. 4.—(a) Prediction of the lowest free energy (ΔG in kcal/mol) structure for mRNA of various variants (I, IIa, and IIb) of the cry1 positive retroregulator; the analysis was done using RNAstructure web server (http://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html, last accessed July 20, 2017). (b) Alignment of the I, IIa, and IIb positive retroregulator mRNA variants.

to be the natural candidate for such ancestor (fig. 2 and supplementary fig. S1, Supplementary Material online). Following this idea, we suggest two independent genetic events that "released" the cry1 cassette from the PAI, (i) a disruption of $K^+(Na^+)/H^+$ antiporter operon by IS231B, and subsequently (ii) the insertion of an IS or a transposon into the cry1 downstream region. The former event is visible in pKK2, where cry11 is preserved (supplementary fig. S1, Supplementary Material online). In fact, disruption of various genes by IS231 elements is not an unusual phenomenon in *B. thuringiensis* (Qiu et al. 2010). However, it will be interesting to examine whether the presence of ISs downstream of the cry1 genes is related to the presence of two types of inverted repeat sequences, including one acting as positive retroregulators of the cry1 mRNA (Wong and Chang 1986), since such DNA motifs are common targets for ISs (Tobes and Pareja 2006). Interestingly, the second motif (supplementary fig. S4, Supplementary Material online) is not present in the cry1 cassettes associated with ISs belonging to IS4 family, namely IS231C and ISBth4 (fig. 2), which are flanked by the same direct repeat (5'-TGGCGGTACCC-3'). Further accumulation of numerous transposable elements in this region could be attributed to either homologous recombination or insertion of one transposable element into another. For example,

Mahillon et al. (1987) revealed that IS231 transposed into the IR of Tn4430 without affecting the transposon structural integrity. Thus, the formation of such transposon-like structures (Menou et al. 1990; Mahillon et al. 1994) may be an important mechanism for the cry1 cassette transposition among various plasmids. This mobility is supported by the observation of cry1-negative plasmids that are otherwise identical to those containing the cry1 cassette (supplementary figs. S5-S7, Supplementary Material online). Therefore, duplication of the cry1 cassette followed by further sequence divergence, may have led to small-scale diversification of Crv1 toxins active against the same insect targets, and explain the presence of different members of the same Cry toxin family in individual bacterial isolates (e.g., Cry1Aa, Cry1Ab, and Cry1Ac in B. thuringiensis sv. kurstaki HD1 or Cry1Aa and Cry1Ab in B. thuringiensis IS5056) (Murawska et al. 2013; Palma et al. 2014). In addition, diversification of the crv1 genes also involves their positive retroregulator sequence that improves the cry1 mRNA stability, which may be associated with insecticidal efficacy of certain B. thuringiensis strains (fig. 4). Furthermore, the presence of cry1 cassettes, predominantly located in a limited number of plasmid types (i.e., ori44 and ori60), lends further support to the mobilization of crycarrying plasmids between B. thuringiensis strains as the mechanism which explains why identical copies of cry genes are distributed among geographically separated isolates (Palma et al. 2014). This is the case for B. thuringiensis strain Na205-3 isolated in Spain (Palma et al. 2014a) and B. thuringiensis strain CT-43 isolated in China (He et al. 2011) that share some, but not all, cry-carrying plasmids with B. thuringiensis strain IS5056 from Poland (Swiecicka et al. 2008; Murawska et al. 2013) (table 1). In addition, cry11, cry1M, and cry1N-like encoding smaller toxins, that is, devoid of Cterminal part responsible for crystallization, appeared to be associated with a gene encoding a "XerS" tyrosine recombinase and limited to plasmids with the PAI (supplementary fig. S6. Supplementary Material online). Although, those proteins are technically naturally truncated versions (65-70 kDa) of the 130-140 kDa toxins, we did not observe genetic events that might support their evolution neither by (i) a fragmentation or disruption of the most related cry1B genes nor (ii) in a manner characteristic for cry10A, cry39A, and cry40A, where ORFs encoding N-terminal and C-terminal parts of toxin are separated by short non-coding region (de Maagd et al. 2003). Nevertheless, the presence of xerS also in proximity of genes encoding Cry3A, toxic for Coleoptera, might be connected with dual Lepidoptera/ Coleoptera activity of Cry1I, that is, as the result of domain swapping, since domains I and II of those toxins are phylogenetically related (de Maagd et al. 2001).

Considering the above observations, the genetic environment of *cry1* should be perceived from the perspective of the insecticidal PAI, where the N-acetylmuramoyl-L-alanine amidase and $K^+(Na^+)/H^+$ antiporter genes are preceded by an ORF encoding for a putative methyl-accepting chemotaxis protein (MCP). Consequently, this genetic context gualifies those genes as potential virulence factors or at least as part of B. thuringiensis adaptation machinery to its pathogenic lifestyle (Jensen et al. 2003; Raymond et al. 2010). However, an ad hoc explanation of this thesis is challenging, since these companion genes are associated with fundamental physiological processes, such as cell wall maintenance, ion transport and chemotaxis. Their contribution to the development of B. thuringiensis under the alkaline pH of insect midgut, may nevertheless be connected to potassium transport and net accumulation of K₂CO₃ (Dow 1984). For instance, the involvement of K^+/H^+ antiporter in alkaline pH homeostasis has been reported in several bacteria, and the presence of the proper antiporter is sufficient to enable a non-alkaliphilic bacterium to grow at extremely high pH (Padan et al. 2005). In addition, certain ion antiporters participate to spore germination in Bacillus spp. This is the case for B. cereus for which GerT significantly contributes to spore outgrowth from the germinated state during alkaline or Na⁺ stress (Senior and Moir 2008). Similarly, it has been demonstrated that loss of the K⁺ or NH4⁺ transporter may affect endospore formation and germination in an alkaliphilic Bacillus pseudofirmus (Wei et al. 2003). A stimulation of spore germination in *B. thuringiensis* by an alkaline pH has also been reported in several studies (Benoit et al. 1995; Du and Nickerson 1996; Bhattacharya 1999; Abdoarrahem et al. 2009), and could be considered as an adaptation that enable to germinate at the appropriate time in the insect guts (Du and Nickerson 1996; Jensen et al. 2003).

The PAI K⁺(Na⁺)/H⁺ antiporter proteins showed 80 and 62% identity with the YhaU and YhaT from *Bacillus subtilis*, respectively (Fujisawa et al. 2004). Interestingly, *yhaU* is strongly induced by alkaline pH and salt-induced stress and this antiporter may extrude K⁺ and NH₄⁺. Similarly, one MCP has been recognized as necessary for optimal pH homeostasis and for normal chemotaxis responses in the alkaliphilic *B. pseudofirmus* OF4 (Fujinami et al. 2007). However, it should be noted that the K⁺(Na⁺)/H⁺ antiporter and MCP from the PAI are not plasmid-specific proteins, and that homologs are present in the *B. thurin-giensis* chromosome (supplementary figs. S11 and S12, Supplementary Material online).

Certain *N*-acetylmuramoyl-L-alanine amidases have been shown as important enzymes for germination in *Bacillus* spp. (Makino and Moriyama 2002; Wu et al. 2015). It has also been revealed that the peptidoglycan hydrolases of *B. thuringiensis* are more active at high pH (Raddadi et al. 2004). These enzymes may contribute to *B. thuringiensis* virulence as an "evasin" which would ensure successful colonization of *B. thuringiensis* in the insect hemocoel before the host develops an immunological response, as it has been proposed for the AmiA amidase of *Bacillus anthracis* (Mesnage and Fouet 2002).

The N-acetylmuramoyl-L-alanine amidase from the insecticidal PAI has putatively bacteriophage origin, since it shows similarity with the amidase XlyA encoded by the defective prophage PBSX from B. subtilis (Krogh et al. 1998), and because its closest homolog on *B. thuringiensis* chromosome was identified in a prophage region (supplementary fig. S13, Supplementary Material online). A relationship of the PAI with prophages is also visible in the non-cry genes located between cry11 and cry2Aa. They code for an ADP-ribose 1phosphate phosphatase and a potential ADP-ribosylase (protein family: pfam14487) (supplementary fig. S1. Supplementary Material online), that share homology with putative gene products of a Geobacillus subterraneus prophage (supplementary fig. S14, Supplementary Material online). Since ADP-ribosylation is used by various bacterial toxins, including the B. thuringiensis Vip1/Vip2 (Palma et al. 2014), they might also represent virulence attributes in this bacterium. As a whole, the insecticidal PAI appears to be a conglomerate of various genetic determinants of chromosomal and prophage origin, intermingled with insecticidal genes. In addition, the PAI might also be a part of a larger (\sim 120 kb) genomic unit (supplementary fig. S8, Supplementary Material online), containing among others a novel haemolysin operon (Zhu et al. 2015) and an operon encoding spore delaying

proteins whose homologs where shown to contribute to cannibalism behaviour in *B. subtilis* (González-Pastor 2011) (supplementary table S2, Supplementary Material online).

In conclusion, the similarity of genetic environment of various *cry1* genes implies their common origin, likely the insecticidal PAI located in ~300 kb *B. thuringiensis* megaplasmids. We suggest that two independent insertion events "released" *cry1* from the PAI in the form of a *cry1* cassette, involving *N*acetylmuramoyl-L-alanine amidase and fragment of K⁺(Na⁺)/ H⁺ antiporter genes. Hence, *cry1* sequences divergence and/ or homologous recombination between *cry1* genes, including their positive retroregulator, occurring in this shared genetic environment appear to play a central role in the evolution and spread of the *cry1* genes.

Supplementary Material

Supplementary data are available at *Genome Biology and Evolution* online.

Funding

This study was supported by grant No. N N302 656640 of Ministry of Science and Higher Education of Poland (I. Swiecicka), and by project numbers N/ST/ZB/16/001/1122 (K. Fiedoruk) and N/ST/ZB/16/004/1122 (T. Daniluk) from the Medical University of Bialystok.

Literature Cited

- Abdoarrahem MM, Gammon K, Dancer BN, Berry C. 2009. Genetic basis for alkaline activation of germination in *Bacillus thuringiensis* subsp. *israelensis*. Appl Environ Microbiol. 75(19):6410–6413.
- Arndt D, et al. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44(W1):W16–W21.
- Aronson AI. 1993. The two faces of *Bacillus thuringiensis*: insecticidal proteins and post-exponential survival. Mol Microbiol. 7(4):489–496.
- Baum JA, Gilbert MP. 1991. Characterization and comparative sequence analysis of replication origins from three large *Bacillus thuringiensis* plasmids. J Bacteriol. 173:5280–5289.
- Benoit TG, Newnam KA, Wilson GR. 1995. Correlation between alkaline activation of *Bacillus thuringiensis* var. *kurstaki* spores and crystal production. Curr Microbiol. 31(5):301–303.
- Bhattacharya PR. 1999. Activation and germination of spores of *Bacillus thuringiensis* var. *israelensis* by alkaline pH and larval (*Aedes aegypti*) gut fluid. Southeast Asian J Trop Med Public Health 30(2):338–342.
- Conesa A, et al. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676.
- Crickmore N, et al. 2016. *Bacillus thuringiensis* toxin nomenclature. Availabe from http://www.btnomenclature.info/. Cited 2017 Apr 3.
- de Maagd RA, Bravo A, Crickmore N. 2001. How *Bacillus thuringiensis* has evolved specific toxins to colonize the insect world. Trends Genet. 17:193–199.
- de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE. 2003. Structure, diversity, and evolution of protein toxins from sporeforming entomopathogenic bacteria. Annu Rev Genet. 37:409–433.
- Dow JA. 1984. Extremely high pH in biological systems: a model for carbonate transport. Am J Physiol. 246:R633–R636.

- Du C, Nickerson KW. 1996. *Bacillus thuringiensis* HD-73 spores have surface-localized Cry1Ac toxin: physiological and pathogenic consequences. Appl Environ Microbiol. 62(10):3722–3726.
- Fujisawa M, Wada Y, Ito M. 2004. Modulation of the K+ efflux activity of Bacillus subtilis YhaU by YhaT and the C-terminal region of YhaS. FEMS Microbiol Lett. 231(2):211–217.
- Fujinami S, et al. 2007. The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic *Bacillus pseudofirmus* OF4. Microbiology 153(Pt 12):4027–4038.
- González-Pastor JE. 2011. Cannibalism: a social behavior in sporulating *Bacillus subtilis*. FEMS Microbiol Rev. 35(3):415–424.
- He J, et al. 2011. Complete genome sequence of *Bacillus thuringiensis* subsp. *chinensis* strain CT-43. J Bacteriol. 193(13):3407–3408.
- Jensen GB, Hansen BM, Eilenberg J, Mahillon J. 2003. The hidden lifestyles of *Bacillus cereus* and relatives. Environ Microbiol. 5(8):631–640.
- Jurat-Fuentes JL, Crickmore N. 2017. Specificity determinants for Cry insecticidal proteins: insights from their mode of action. J Invertebr Pathol. 142:5–10.
- Krogh S, Jørgensen ST, Devine KM. 1998. Lysis genes of the Bacillus subtilis defective prophage PBSX. J Bacteriol. 180(8):2110–2117.
- Léonard C, Chen Y, Mahillon J. 1997. Diversity and differential distribution of IS231, IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. Microbiology 143(8):2537–2547.
- Mahillon J, Seurinck J, Delcour J, Zabeau M. 1987. Cloning and nucleotide sequence of different iso-IS231 elements and their structural association with the Tn4430 transposon in *Bacillus thuringiensis*. Gene 51(2–3):187–196.
- Mahillon J, Rezsöhazy R, Hallet B, Delcour J. 1994. IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica 93(1–3):13–26.
- Mahillon J, Chandler M. 1998. Insertion sequences. Microbiol Mol Biol Rev. 62(3):725–774.
- Makino S, Moriyama R. 2002. Hydrolysis of cortex peptidoglycan during bacterial spore germination. Med Sci Monit. 8(6):RA119–RA127.
- Menou G, Mahillon J, Lecadet MM, Lereclus D. 1990. Structural and genetic organization of IS232, a new insertion sequence of *Bacillus thuringiensis*. J Bacteriol. 172(12):6689–6696.
- Mesnage S, Fouet A. 2002. Plasmid-encoded autolysin in *Bacillus anthracis*: modular structure and catalytic properties. J Bacteriol. 184(1):331–334.
- Murawska E, Fiedoruk K, Bideshi DK, Swiecicka I. 2013. Complete genome sequence of *Bacillus thuringiensis* subsp. *thuringiensis* strain IS5056, an isolate highly toxic to *Trichoplusia ni*. Genome Announc. 1(2):e00108–13.
- Murawska E, Fiedoruk K, Swiecicka I. 2014. Modular genetic architecture of the toxigenic plasmid pIS56-63 harboring *cry1Ab21* in *Bacillus thuringiensis* subsp. *thuringiensis* strain IS5056. Pol J Microbiol. 63:147–156.
- Padan E, Bibi E, Ito M, Krulwich TA. 2005. Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717(2):67–88.
- Palma L, Muñoz D, Berry C, Murillo J, Caballero P. 2014. *Bacillus thuringiensis* toxins: an overview of their biocidal activity. Toxins (Basel) 6(12):3296–3325.
- Palma L, Muñoz D, Murillo J, Caballero P. 2014a. Draft Genome Sequence of *Bacillus thuringiensis* serovar *tolworthi* strain Na205-3, an isolate toxic for *Helicoverpa armigera*. Genome Announc. 2:e00187–e00114.
- Pomerantsev AP, Camp A, Leppla SH. 2009. A new minimal replicon of *Bacillus anthracis* plasmid pXO1. J Bacteriol. 191(16):5134–5146.
- Qiu N, et al. 2010. Prevalence and diversity of insertion sequences in the genome of *Bacillus thuringiensis* YBT-1520 and comparison with other *Bacillus cereus* group members. FEMS Microbiol Lett. 310(1):9–16.
- Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N. 2010. *Bacillus thuringiensis*: an impotent pathogen? Trends Microbiol. 18(5):189–194.
- Raddadi N, et al. 2004. The autolytic phenotype of *Bacillus thuringiensis*. J Appl Microbiol. 97(1):158–168.

- Schnepf E, et al. 1998. *Bacillus thuringiensis* and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 62:775–806.
- Senior A, Moir A. 2008. The *Bacillus cereus* GerN and GerT protein homologs have distinct roles in spore germination and outgrowth, respectively. J Bacteriol. 190(18):6148–6152.
- Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34(90001):D32–D36.
- Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010.
- Swiecicka I, Bideshi DK, Federici BA. 2008. Novel isolate of *Bacillus thur-ingiensis* subsp. *thuringiensis* that produces a quasicuboidal crystal of Cry1Ab21 toxic to larvae of *Trichoplusia ni*. Appl Environ Microbiol. 74(4):923–930.
- Tang M, Bideshi DK, Park H-W, Federici BA. 2007. Iteron-binding ORF157 and FtsZ-like ORF156 proteins encoded by pBtoxis play a role in its replication in *Bacillus thuringiensis* subsp. *israelensis*. J Bacteriol. 189(22):8053–8058.
- Tobes R, Pareja E. 2006. Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements. BMC Genomics 7:62.

- Wei Y, et al. 2003. Mutational loss of a K+ and NH4+ transporter affects the growth and endospore formation of alkaliphilic *Bacillus pseudofirmus* OF4. J Bacteriol. 185(17):5133–5147.
- Wong HC, Chang S. 1986. Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc Natl Acad Sci U S A. 83(10):3233–3237.
- Wu X, et al. 2015. Characterization of the activity of the spore cortex lytic enzyme CwlJ1. Biotechnol Bioeng. 112(7):1365–1375.
- Ye W, et al. 2012. Mining new crystal protein genes from *Bacillus thuringiensis* on the basis of mixed plasmid-enriched genome sequencing and a computational pipeline. Appl Environ Microbiol. 78(14):4795–4801.
- Zheng J, Peng D, Ruan L, Sun M. 2013. Evolution and dynamics of megaplasmids with genome sizes larger than 100 kb in the *Bacillus cereus* group. BMC Evol Biol. 13:262.
- Zhu L, et al. 2015. Genomic and transcriptomic insights into the efficient entomopathogenicity of *Bacillus thuringiensis*. Sci Rep. 5:14129.

Associate editor: Bill Martin