

POSTER PRESENTATION

Open Access

Effects of pressure-support ventilation with different levels of positive end-expiratory in a mild model of acute respiratory distress syndrome

PAF Magalhães^{1,2*}, GDA Padilha¹, L Moraes¹, CL Santos¹, LB de Andrade², MGPdA Magalhães², MDCMB Duarte², PRM Rocco¹, PL Silva¹

From ESICM LIVES 2015 Berlin, Germany. 3-7 October 2015

Introduction

Pressure-support ventilation improves lung mechanics, blood gas exchange, hemodynamics, and work of breathing (WOB) in mild acute respiratory distress syndrome (ARDS) [1,2]. Nevertheless, those beneficial effects could be dependent of positive end-expiratory pressure (PEEP) applied during mechanical ventilation. So far, no study has compared pressure-support ventilation (PSV) with pressure controlled ventilation (PCV) in different PEEP levels.

Objective

To compare PSV and PCV target to protective tidal volume (V_T =6ml/kg) using two PEEP levels (2 and 5 cmH₂O) in a mild ARDS model.

Methods

Thirty-two male Wistar rats (310 \pm 19 g) were submitted to intratracheal *Escherichia coli* lipopolysaccharide (200 μ g in 200 μ l of saline) instillation. After 24 hours, animals were anesthetized, tracheotomized, and their lungs were mechanically ventilated in PSV to achieve V_T = 6 ml/kg. After baseline data collection, animals were randomly divided to four groups (n=8/group):

- 1) $PCV + PEEP = 2 cmH_2O (PCV-P2);$
- 2) $PCV + PEEP = 5 \text{ cmH}_2O \text{ (PCV-P5)};$
- 3) $PSV + PEEP = 2 cmH_2O (PSV-P2);$
- 4) $PSV + PEEP = 5 \text{ cmH}_2O \text{ (PSV-P5)}.$

Animals were ventilated for 2 hours. Mean arterial pressure (MAP), arterial blood gases, peak airway (Ppeak, RS) and peak transpulmonary (Ppeak, 1) pressures, and

pressure-time product (PTP), as a surrogate of WOB, were evaluated.

Results

All animals showed better oxygenation along time, regardless of ventilator strategy. Animals submitted to PCV, regardless of PEEP, received more colloids to keep MAP>70 mmHg. Ppeak,RS, and Ppeak,L were higher in animals submitted to PEEP = 5 cmH₂O than PEEP = 2 cmH₂O, independently of pressure-controlled, and pressure-support ventilator strategies. Nevertheless, at PEEP = 5 cmH₂O, but not at PEEP = 2 cmH₂O, animals submitted to PSV showed lower Ppeak,RS, and Ppeak,L compared to PCV animals (PSV-P5:11.2 \pm 1.9 cmH₂O vs PCV-P5:15.3 \pm 1.4 cmH₂O, p < 0.05). In accordance, PTP was lower in animals submitted to PEEP = 5 cmH₂O compared to PEEP = 2 cmH₂O during PSV (PSV-P5:0.08 \pm 0.03 cmH₂O.s vs PSV-P2:0.22 \pm 0.09 cmH₂O.s, p < 0.05).

Conclusion

In a mild ARDS model, pressure-support ventilation is associated to better hemodynamics, lung mechanics, and it seems to have a dependent effect of the adjusted PEEP level, as depicted by work of breathing.

Grant Acknowledgment

CNPq, FAPERJ, CAPES, PRONEX, MS-DECIT

Authors' details

¹Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. ²Professor Fernando Figueira Mother and Child Institute, Recife, Brazil.

¹Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Full list of author information is available at the end of the article

Published: 1 October 2015

References

- Guldner A, Pelosi P, Gama de Abreu M: Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr Opin Crit Care 2014, 20(1):69-76.
- Grinnan DC, Truwit JD: Clinical review: Respiratory mechanics in spontaneous and assisted ventilation. Crit Care 2005, 9(5):472-484.

doi:10.1186/2197-425X-3-S1-A573

Cite this article as: Magalhães *et al.*: Effects of pressure-support ventilation with different levels of positive end-expiratory in a mild model of acute respiratory distress syndrome. *Intensive Care Medicine Experimental* 2015 **3**(Suppl 1):A573.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com