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Tumor malignancies involve cancer cell growth, issue invasion, metastasis and often

drug resistance. A great deal of effort has been placed on searching for unique

molecule(s) overexpressed in cancer cells that correlate(s) with tumor cell-specific

behaviors. Hyaluronan (HA), one of the major ECM (extracellular matrix) components

have been identified as a physiological ligand for surface CD44 isoforms which are

frequently overexpressed in malignant tumor cells during cancer progression. The

binding interaction between HA and CD44 isoforms often stimulates aberrant cellular

signaling processes and appears to be responsible for the induction of multiple

oncogenic events required for cancer-specific phenotypes and behaviors. In recent

years, both microRNAs (miRNAs) (with ∼20–25 nucleotides) and long non-coding RNAs

(lncRNAs) (with ∼200 nucleotides) have been found to be abnormally expressed in

cancer cells and actively participate in numerous oncogenic signaling events needed

for tumor cell-specific functions. In this review, I plan to place a special emphasis

on HA/CD44-induced signaling pathways and the presence of several novel miRNAs

(e.g., miR-10b/miR-302/miR-21) and lncRNAs (e.g., UCA1) together with their target

functions (e.g., tumor cell migration, invasion, and chemoresistance) during cancer

development and progression. I believe that important information can be obtained

from these studies on HA/CD44-activated miRNAs and lncRNA that may be very

valuable for the future development of innovative therapeutic drugs for the treatment

of matrix HA/CD44-mediated cancers.
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INTRODUCTION

Cancer cells are known to display dysregulated signaling pathways which are responsible for
abnormal cellular functions (1–3). Myriad studies have attempted to understand the cellular
and molecular mechanisms involved in the onset of tumor cell-specific behaviors (e.g., tumor
cell migration, invasion, survival, and chemoresistance). Interactions between matrix hyaluronan
(HA), the major glycosaminoglycan component of extracellular matrix (ECM), and variant
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isoforms of CD44 (HA receptor) have been shown to be tightly
linked to the development of aberrant signaling events in a
variety of cancers (4, 5, 5–30). It is known that HA binding to
certain isoforms of CD44 selectively activates multiple oncogenic
signaling pathways leading to tumor cell-specific phenotypes
(4, 5, 5–30). HA is also present in different sizes (e.g., large
vs. small sizes) (4, 5, 5–28). The binding interaction between
large size HA-CD44 and small size HA-CD44 may cause selective
activation of downstream effector functions in cancer stem cells
(31–35). Furthermore, recent studies indicate that HA-CD44
interaction stimulates the expression of specific microRNAs
(miRNAs) and coordinates downstream, intracellular signaling
pathways that influence multiple tumor cell-specific functions
(31–35). This review focuses first on matrix HA interaction
with CD44 in regulating cancer cell signaling pathways, and
then describes downstream target functions of these signaling
events that contribute to tumor initiation, migration, invasion,
chemoresistance, and tumor progression. We believe that this
new information could establish the ground work for developing
novel therapeutic agents that would effectively target HA/CD44-
activated signaling events and specific downstream target
molecules/functions in tumor cells-thus providing important
new cancer therapies.

MATRIX HYALURONAN (HA) IN CANCERS

It has been well accepted fact that unique oncogenesis-induced
migration, invasion and metastasis of tumor cells play key
roles in causing morbidity in patients (1–3). Many studies
have searched for unique molecules which are frequently
expressed by cancer cells which correlate with tumor-specific
properties. Matrix hyaluronan (HA) known to consist of both
D-glucuronic acid and N-acetyl-D-glucosamine in a form of
repeating disaccharide units in the extracellular matrix (ECM)
(4–7) has been recognized as one of the important contributors in
causing tumor development and progression (5, 8–11). It is well-
documented that HA is first made by two precursor molecules,
uridine diphosphate-glucuronic acid (UDP-GlcA) and uridine
diphosphate N-acetylglucosamine (UDP-GlcNAc) through the
regulation of HAS1, HAS2, and HAS3 (also known as HA
synthase enzymes) inside of the cells and then becomes secreted
into the external environment (outside of the cells) as one of
the major ECM components in both normal and malignant cells
(Figure 1). Generation of large sizes of HA polymers (>2–3
× 106 Daltons) often requires HAS1 and HAS2, whereas the
production of smaller-size of HA (<1–2 × 105 Daltons) appears
to rely on HAS3 (8–10). A few oncogenic signaling events have
been shown to be involved in the unusual activities of HAS1,
HAS2, and HAS3 and cause aberrant synthesis and production of
HA which then promotes changes of cellular functions and onset
of malignant transformation and cancer development (8–10).
Large sizes of HA often can be degraded into many biologically
active mid-sized and/or small-sized fragments by hyaluronidases
such as Hyal-1, Hyal-2, or PH20/Spam1 (11). Most importantly,
the level of HA appears to be elevated at the contact region
between cancer cells and extracellular matrix (ECM) which

FIGURE 1 | Illustration of matrix hyaluronan (HA) structure regulated by HA

synthases (HAS1, HAS2, and HAS3). Green lines represent matrix HA which is

made by HAS1, HAS2, and HAS3 followed by being secreted into the external

region of the cells.

may be responsible for the induction of cancer cell-associated
properties (5). Thus, over production of HA may be used as a
predictor of cancer development.

It has been well documented that HA promotes a variety of
oncogenic signaling pathways and causes abnormal physiological
changes in cancer cells. For example, HA activates PI3K-AKT
signaling pathway which is known to be responsible for tumor
cell proliferation, glucose metabolism, cytokine production,
angiogenesis and survival (36, 37). Overproduction of HA often
induces certain metabolic changes such as accelerating the
hexosamine biosynthetic pathway and glycolysis process in breast
cancer cells (38). There is also growing evidence that treatment
of cancer cells with HA upregulates the expression of the
multidrug transporter, MDR1 (P-glycoprotein), and ABC drug
transporters (ABCB3, ABCC1, ABCC2, and ABCC3) leading
to aberrant drug fluxes and chemoresistance in breast and
ovarian cancer cells (39, 40). Most importantly, HA activates
cytoskeleton regulators such as RhoGTPases (e.g., Rho, Rac,
and Cdc42) which are known to regulate tumor cell migration,
and invasion (41). Additionally, HA is capable of upregulating
Rho-kinase activities which in turn stimulates 1,4,5-triphosphate
(IP3)-mediated Ca2+ fluxes and endothelial cell migration-a
required step for angiogenesis (42, 43). Moreover, certain sizes of
lowmolecular weight hyaluronan appears to induce angiogenesis
involving Cdc42 signaling (44). Thus, these findings suggest that
abnormal HA-mediated signaling processes may play a critical
role in regulating tumor cell-specific properties. To further
dissect the cellular and molecular mechanisms involved in HA-
mediated oncogenesis, we decided to focus on the interaction
betweenHA and its binding receptor, CD44, in a variety of cancer
cells as described below.

CD44 IN CANCERS

HA binding receptor, CD44 is a transmembrane glycoprotein
and has been detected in both normal and tumor cells (12–16).
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Importantly, upregulation of CD44 is often closely associated
with abnormal tumor cell behaviors (e.g., proliferation, survival,
migration/invasion, and chemoresistance) (13–15). Based on the
results from nucleotide sequence analyses, CD44 appears to be
encoded by a single gene with 19 exons and exhibits in many
different isoforms (16, 17). For example, CD44s (so-called CD44
standard form), contains exons 1–5 at the N-terminal region
(with HA binding sites), exons 15–16 at the membrane proximal
area and exon 17 at the transmembrane region, as well as exons
18–19 at C-terminal region (with signaling regulation capacity)
(Figure 2). CD44 is also known to undergo alternative spicing
processes (16, 17). Potentially, the alternative splicing events can
occur at 12 exons (out of the 19 exons). Frequently, it has been
observed that different exons become inserted at the external
region near the membrane proximal domain (between exon 6-
14 or v1-v10) of CD44 (16, 17) (Figure 2). For example, exons 12
(v8), 13 (v9), and 14 (v10) are inserted into the CD44s transcripts
in epithelial cells (18, 19). Additional exon 7-14 (v3-v10) and
exon 14 (v10) have been found to be inserted into the CD44s
transcript in keratinocytes and endothelial cells, respectively
(20, 21) and these isoforms have been designated as CD44v10
and CD44v3-10 (20, 21) (Figure 2). Most of these CD44 variant
(CD44v) isoforms share similar HA binding capacity at the
N-terminal region of CD44 (exon 1-5) and a transmembrane
domain (exon 17) as well as a signaling interactive region at the
cytoplasmic site (exon 18–19). The differences of CD44v isoforms
appear to occur at the membrane proximal region (exon 6–14)
of the CD44 molecules. A variety of unique CD44 isoforms have
been detected in cancer cells and tumor samples (18, 22–28).
Thus, selective expression of CD44v isoforms may be considered
as a useful bio-marker for the detection of a variety of cancers
(18, 22–28).

CD44 isoforms have also been detected in cancer stem
cells (CSCs) which appear to display unique ability to initiate
tumor cell-specific properties (29–33). For example, tumor cells
with high expression of CD44 (but not cells with low CD44
expression) have been shown to induce the formation of tumors
in animals with a small numbers of tumor cell injection (29, 30).
In head and neck cancer, tumors also contain a cell subpopulation
characterized by a high level of CD44v3 expression (29, 30).
Furthermore, injection of cells with a high level of CD44v3
expression into immunodeficient mice has been shown to
induce multiple types of phenotypically distinct cells, resulting
in heterogeneous tumors (31–33). Thus, CD44 isoforms may
be used as an important tumor marker for the detection of
CSCs. Most importantly, HA-CD44 interaction stimulates CSC
downstream signaling processes leading to cancer cell properties
and tumor progression (14, 15, 19, 31–33, 35, 36).

A previous study found that CD44 is frequently located
in specialized microdomains in the plasma membrane, so-
called lipid rafts of cancer cells (45). The binding of HA
to CD44 recruits Na+-H+ exchanger (NHE1) and Hyal-2
into CD44-containing lipid rafts, leading to both intracellular
and extracellular acidification, HA modification, cathepsin B
activation, and breast tumor cell invasion (i). In endothelial
cells CD44v10 also interacts with the membrane-associated
cytoskeletal protein, ankyrin and an intracellular calcium channel

FIGURE 2 | Illustration of CD44 gene, CD44s (the standard form) and

alternative spliced variants (CD44E, CD44v3-10, CD44v10, CD44v6, and

CD44v3 isoforms). The HA binding domain is located at the external

(N-terminal exon 1–5) region of all CD44 isoforms and the signaling protein

binding sites are located at the cytoplasmic domain (exon 18–19) of CD44

isoforms. All isoforms contain a transmembrane domain (TM) (exon 17).

IP3 receptor in the lipid raft (43). These events result in
endothelial cell adhesion and proliferation (43). Another study
indicated that HA binding to CD44 promotes recruitment of
adaptor and/or linker molecules with CD44 in cancer cells.
For example, HA induces CD44v3-Vav2 (a guanine nucleotide
exchange factor) and Grb2-p185(HER2) complex formation
which then causes the co-activation of both Rac1 and Ras
signaling leading to the concomitant onset of tumor cell growth
and migration required for ovarian tumor progression (46).
In addition, HA induces CD44 interaction with a RhoA-
specific guanine nucleotide exchange factor (leukemia-associated
RhoGEF (LARG) in human head and neck squamous carcinoma
cells (47). This event results in Rho/Ras co-activation leading
to PLC epsilon-Ca2+ signaling, and Raf/ERK up-regulation
required for CaMKII-mediated cytoskeleton function in head
and neck squamous cell carcinoma progression (47). Moreover,
HA stimulates CD44 interaction with the transforming growth
factor beta (TGF-beta) receptors (a family of serine/threonine
kinase membrane receptors) in human metastatic breast tumor
cells (MDA-MB-231 cell line). This interaction promotes
activation of multiple signaling pathways leading to membrane-
cytoskeleton interaction, tumor cell migration, and important
oncogenic events (e.g., Smad2/Smad3 phosphor and PTH-
rP production) during HA and TGF-beta-mediated metastatic
breast tumor progression (48). Additionally, it has been observed
that HA induces CD44 interaction with RHAMM (receptor of
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HA-mediated motility) and causes cell motility, increased wound
healing, and modification of signal transduction of the Ras
signaling cascade (49–51). Furthermore, there is a report showing
lowmolecular weight HA induces CD44 interaction with toll-like
receptors. This signaling event then promotes the actin filament-
associated protein 110-actin binding andMyD88-NFκB signaling
resulting in proinflammatory cytokine/chemokine production
and breast tumor invasion (52). Together these findings strongly
suggest that the interaction between HA/CD44 and a variety of
different membrane proteins and/or regulatory molecules plays a
pivotal role in regulating solid tumor cancer progression.

HA-CD44 INTERACTION IN PROMOTING
MICRORNA SIGNALING AND TUMOR
PROGRESSION

A class of 21–25 nucleotide length small RNAs, so called
microRNAs (or miRNAs) have been shown to be involved in
gene regulation (53). Overall, the impact of miRNA-regulated
gene expression appears to be significant since specific miRNAs
may influence the downstream effector gene expression and
functions (53). For example, at least four miRNA clusters, such
as let-7a-d, let-7i, miR-15b-16-2, and miR-106b-25, have been
identified as being involved in G1-S transition (54) during cell
cycle progression and tumor progression (55, 56). Moreover,
dysregulation of certain miRNAs appears to be associated with
a variety of cancers (57, 58). For example, miR-21 was first
discovered as an oncomiRNA due to its universal overexpression
in a variety of cancers (57, 58). Aberrant biosynthetic process of
miRNAs (e.g., miR-21) has also been shown to be involved in the
production of oncomiRNAs (58, 59). In addition, miRNA genes
are frequently subjected to epigenetic changes in cancer leading
to tumor progression (56). Furthermore, using a systematic
miRNA inhibitor treatment technique on cancer cells, Ma et
al discovered miR-10b overexpression which is required for
tumor migration and invasion in metastatic breast cancer cells
(60). Interestingly, unique miRNA such as miR-302 appears to
play a key role in the maintenance of stemness properties in
normal stem cells and in cancer stem cells (61). Aside from the
abnormal biosynthetic processes and epigenetic modifications
of miRNA genes, it has become apparent recently that tight
interactions between certain miRNAs and transcription factor-
mediated regulatory circuits may also influence important
biological outcomes and drives cellular transformation (57, 58).
Nevertheless, the abnormal signaling pathways responsible for
the onset of oncogenic miRNAs during cancer development
and progression remains poorly understood. In this review
article, I plan to focus on several HA-CD44 interaction-induced
oncogenic signaling pathways that regulate several miRNAs and
downstream effector functions in a variety of cancer cells during
tumor progression.

Regulation of miR-21 Signaling by
HA-CD44 Interaction in Cancers
Upregulation of miR-21 has been detected in tumors and to a
lesser extent in normal tissues (58, 59). In recent years, miR-21

has received a great of attention due to the discovery of its
specific targets and functional involvement in cancer progression
(62, 63). For example, the gene expression of program cell death
(PDCD4, a tumor suppressor protein) can be blocked by miR-21
(62, 63). This miR-21-medited downregulation of PDCD4 results
in tumor progression (62–64). Therefore, miR-21 can be viewed
as a cancer cell activator. During HA/CD44 signaling, miR-21 has
also been suggested to regulate tumor cell proliferation, invasion,
survival, chemoresistance and tumor progression (19, 62–67).
The oncogenic signaling pathways involved in the regulation of
miR-21 and its function by HA-CD44 interaction in solid tumor
cancers are described below:

The Expression of miR-21 and Nanog-DROSHA-p68

Signaling
Several reports showed that the interaction between RNase
III DROSHA/RNA helicase p68 (DROSHA/p68) and other
regulatory molecules plays an important role in regulating the
biogenesis of miRNAs (68). It has been shown that p53 and the
DROSHA form complexes with the RNA helicases (p68/p72)
during miRNA production in HCT116 cells (68). It is also
documented that TGFβ-mediated SMAD-2 signaling promotes
miR-21 expression (69). Specifically, DROSHA-p68 complex
promotes the biogenesis of miR-21 by converting pri-miR-21 into
pre-miR-21 during TGFβ-specific SMAD signaling events (69).
Thus, it is apparent that the production of miR-21 is closely
regulated by the DROSHA/p68 microprocessor complex during
cellular signaling.

HA/CD44 activated stem cell marker (Nanog) signaling
pathways are also involved in regulating miR-21 expression in
both breast and head and neck cancer cell lines (19, 65–67).
For example, HA binding to CD44 promotes Nanog association
with DROSHA/p68 microprocessor complex resulting in the
upregulation of miR-21 and downregulation of PDCD4 (a
tumor suppressor protein) in cancer cells. Consequently, several
inhibitors of apoptosis proteins (IAPs) (e.g., c-IAP-1, cIAP-2,
and XIAP) are also upregulated resulting in anti-apoptosis and
chemotherapy resistance (Figure 3A). The knowledge obtained
from this biogenesis study of miR-21 regulated by Nanog-
DROSHA-p68 complexes may provide useful foundation for
designing new drug target to downregulate miR-21 and increase
tumor cell death and enhance chemosensitivity for the treatment
of HA/CD44-mediated cancer.

The Expression of miR-21 and Nanog-Stat-3

Signaling
Abnormal Stat-3 signaling are well-known to play important
roles in oncogenesis (70). Constitutively activated Stat-3 has
been closely associated with human malignancies (46). It has
been shown that Nanog and Stat-3 are functionally coupled in
many cancer cells (39) (Figure 3A). For example, HA binding to
CD44 induces a physical association between Nanog and Stat-
3 in head and neck cancer cells leading to miRNA-21 gene
expression and production (66). Most importantly, treatments
of cancer cells with several signaling perturbation agents such
as Nanog siRNA or Stat-3siRNA or an anti-miR-21 inhibitor
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FIGURE 3 | A proposed model for HA-CD44-mediated signaling activation in the regulation of miRNA-21, miR-302, and miR-10b production and oncogenesis in

tumor cells. (A) The binding of HA to CD44 promotes JNK activity which, in turn, causes phosphorylation of c-Jun. Phosphorylated c-Jun then binds to the miR-21

promoter and induces miR-21 expression. HA binding to CD44 also causes Nanog interaction with Stat-3 and the microprocessor complex containing the RNase III

(DROSHA) and the RNA helicase (p68). These Nanog-associated signaling complexes (containing Stat-3 and/or DROSHA and p68) then bind to miR-21 promoter

region, resulting in miR-21 production leading to upregulation of IAP protein expression, tumor cell survival, and chemoresistance. (B) HA-CD44 interaction promotes

miRNA-302 expression and chemoresistance: HA binding to CD44 promotes an association between CD44v3 and OCT4/SOX2/Nanog. Subsequently,

OCT4/SOX2/Nanog complexes interact with the promoter region (containing OCT4-, SOX2-, and Nanog-binding sites) of the miR-302 cluster resulting in miR-302

cluster gene expression and mature miR-302 production. The resultant miR-302 then functions to induce IAP (cIAP-1, cIAP-2, and XIAP) expression, tumor cell

growth, self-renewal, clone formation, tumor cell survival, and chemoresistance in tumor cells. (C) HA-CD44 interaction promotes miRNA-10b expression and tumor

migration/invasion: HA binding to CD44 promotes c-Src phosphorylation (kinase activation), which, in turn, causes phosphorylation of Twist. Phosphorylated Twist

then interacts with the E-box elements of mR-10b promoter, resulting in miR-10b gene expression, and mature miR-10b production. The binding of HA to CD44 also

enhances DOT1L upregulation and DOT1L/H3K79 methylation-mediated epigenetic changes, resulting in methyl-H3K79 binding to miR-10b promoter, and miR-10b

gene expression/production. The expressed miR-10b then promotes upregulation of RhoGTPase-mediated cytoskeleton activation leading to tumor cell migration

and invasion. Red dot represents DOT1L/H3K79-mediated histone modifications (via epigenetic changes).

result in downregulation of survival proteins (e.g., cIAP-1, cIAP-
2, and XIAP) and upregulation of PDCD4 leading to tumor cell
apoptosis/death and chemosensitivity in head and neck cancer
(19, 65–67). Thus, this newly-discovered Nanog-Stat-3-regulated
miR-21 signaling pathways during HA-CD44 interaction may be
considered as another new drug target to treat cancers.

The Expression of miR-21 and JNK/c-Jun Signaling
Induction of oncogenic signaling frequently involves abnormal
JNK-regulated c-Jun activities (71, 72). The transcription factor,
c-Jun belongs to the AP-1 family which has been shown to
play an important role in regulating cell transformation (73).
Specifically, c-Jun has been shown to regulate the expression
of p53 and cyclin D1 (73, 74) and has also been shown to
accelerate leukemogenesis by activating cell cycle-related genes

in cancer cells (73). JNK-regulated c-Jun often functions as a
“bodyguard” which prevents certain gene modification(s) during
cancer-related process (73–76). A previous study showed that
c-Jun involves transcriptional activation of miR-21 at the miR-
21 promoter region located at AP-binding sites (76). HA-CD44
binding has also been shown to cause miR-21 production
in a JNK/c-Jun-dependent manner in breast tumor cells (67)
(Figure 3A). We have found that inhibition of JNK/c-Jun-
induced miR-21 signaling by various signaling perturbation
agents such as JNK inhibitor or c-Jun siRNA or anti-miR-21
inhibitor effectively downregulates the expression of survival
proteins such as Bcl2 and IAP family of proteins leading
to apoptosis/cell death and chemosensitivity. These findings
strongly suggest that JNK/c-Jun-regulated miR-21 activated by
HA-CD44 interaction plays a pivotal role in tumorigenesis and
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drug resistance. Consequently, it is possible to design therapeutic
drugs to target JNK/c-Jun-regulated miR-21 for the treatment of
HA/CD44-mediated cancer.

HA-CD44-Mediated miR-10b Signaling in
the Regulation of Tumor Cell Migration and
Invasion
Tumor-specific phenotypes (e.g., tumor cell migration, invasion
and metastasis) are often regulated by oncogenic signaling
processed and/or cytoskeleton functions (1). Overexpression
of miRNA-10b has been shown to be closely associated with
upregulation of RhoC during glioma invasion and migration
(77). In addition, the expression of a zinc finger protein, KLF4
(Kruppel-like factor 4) was found to be regulated by miR-10b in
certain cancer cell lines (78). Moreover, it has been reported that
miR-10b is responsible for activating both tumor cell invasion
and metastasis (79). HA appears to interact with CD44 and
induces miR-10b expression in head and neck cancer cells (32,
33). Interestingly, 200 kDa-HA fragments (to a lesser extent 5
kDa, 20 kDa, or 700 kDa) appears to preferentially enhances
miR-10b expression in CSCs from head and neck cancer cells
(32). The level of miR-10b expression is significantly higher
(at least 5–10-fold increase) than other miRNAs (e.g., miR-
373, 27b,181-miRNA, miR-34b, and miR-145) detected in 200
kDa-HA-treated head and neck cancer cells (32). Here, several
HA/CD44-mediated miR-10b signaling events and functions in
various cancers will be described below:

c-Src and Twist Signaling in the Regulation of

miR-10b Expression
Src kinase family members (e.g., Lck, Yes, and Fyn) have
been shown to participate in CD44-mediated cellular signaling
processes (80–82). For example, during T-cell activation Lck
is found to be tightly linked to CD44 (80). Both Lck and
Fyn have also been shown to be closely complexed with
CD44 in a specialized plasma membrane domain enriched in
glycosphingolipid in lymphoid cells (81). Moreover, CD44 has
been shown to form a tight association with other Src kinase
family of proteins (e.g., c-Src, Yes, and Fyn) during abnormal
prostate cancer cell proliferation and growing processes (82).
These findings strongly support the notion that CD44 and
certain c-Src kinases family members are physically linked and
functionally coupled.

Twist (one of c-Src substrates) has been shown to promote
a variety of tumor cell-specific functions (e.g., EMT transition,
invasion and drug resistance) (83–85). Twist is also considered
as a putative oncogene for its role in regulating CD44-
expressing breast cancer stem cells (CSCs) (86). Several Twist-
regulated oncogenic events have been reported to be regulated
by the binding of Twist to the promoters (containing the E-
boxes) of specific genes (e.g., E-cadherin) required for tumor
cell survival and invasiveness (87) as well as transcriptionally
repression of E-cadherin gene expression in breast cancer (88).
Previous studies showed that c-Src-activated Twist promotes
miR-10b expression in breast tumor cells (79, 89). During
HA/CD44-mediated signaling process, Twist phosphorylated

by c-Src is also able to interact with miR-10 promoter (with
E-box domain) and activates the onset of miR-10b gene
expression/production and tumor cell-specific activities in cancer
cells (89). Treatment of cancer cells with c-Src inhibitor, PP2, or
Twist siRNA significantly blocks the production of HA/CD44-
mediated miR-10 expression and downstream RhoGTPase
(RhoC)-ROK effector functions (89). These observations strongly
suggest that HA-CD44 interaction promotes miR-10b expression
required for tumor cell-specific functions (e.g., cytoskeleton-
associated metastasis, invasion, and metastasis) in a c-Src/Twist-
dependent manner.

Role of Epigenetic Modifications in Regulating

miR-10b Expression
Epigenetic regulation via histone methylation participates in
modifying chromatin organization together with reprogramming
gene expression during cancer progression (90). The histone
methyltransferase, DOT1 is known to be solely responsible for
catalyzing methylation of histone at lysine 79 residues in three
different ways such as H3K79me1/H3K79me2/ H3K79me3 in
budding yeast, Saccharomyces cerevisiae (91, 92). Mammalian
DOT1 (so-called DOT1L) has also been documented to display
an ability to conduct histone methylation at lysine 79 residues as
methyltransferases involved in modifications of gene expression
(93). Both histone methyltransferases play an important role
in H3K79 methylation involved in transcriptional regulation
for the DNA damage checkpoint, meiotic checkpoint and cell
cycle progression (94). Abnormal DOT1L-mediated H3K79
methylation has also been detected in mixed lineage leukemia
(MLL) (95). In addition, suppression of DOT1L expression
causes a reduction of tumor cell growth (96). These findings
all indicate that histone methyltransferase (e.g., DOT1L) is
closely involved in the development of cancer. DOT1L-mediated
methylation of histone H3 at lysine 79 (H3K79) is also involved
in the development of embryonic stem (ES) cells (97). Recent
studies indicate that the activity of histone methyltransferase
(e.g., DOT1L) can be detected in HA-activated head and neck
cancer stem cells (CSCs) (89). Specifically, HA promotes DOT1L-
regulated H3K79 methylation of miR-10b promoter binding sites
leading to miR-10 production resulting in CSC-specific functions
in head and neck cancer (Figure 3C). Silencing of DOT1L
with DOT1LsiRNA and/or miR-10b with antagomirs (an anti-
miR-10 inhibitor) significantly decreases the amount of miR-
10b production resulting in downregulation of RhoC expression
and tumor cell migration/invasion (66, 74). These findings may
provide ground work for the development of new therapeutic
drugs to target either DOT1L or miR-10 for the treatment of
HA/CD44-activated cancer.

Nanog/Oct4/Sox2 Signaling in Regulating
miR-302 Expression and Cancer Stem Cell
(CSC) Activation and Chemotherapy
Resistance
ThemiR-302 family which encodes a cluster of eight miRNAs has
been shown to be important in the “stemness” properties of either
normal and abnormal stem cells (98–100). These observations
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strongly suggest that there is a close involvement of miR-302 in
the regulation of pluripotency of stem cells. The transcription
factors such as Nanog, Oct4, and Sox2 often interact with each
other during transcriptional events (61, 100, 101). Oct4, Sox2,
and Nanog have also been detected to co-occupy the promoter
sites of miR-302 for the activation of target genes required
for development and oncogenesis (61, 100, 101). In addition,
miR-302 family plays key roles in regulating cell proliferation
and cell fate determination during differentiation at the post-
translational level (61, 100, 101). A previous study showed that
HA binding to CD44 promotes the expression of miR-302 in a
Nanog/Oct4/Sox2-dependent manner in head and neck cancer
stem cells (CSCs) (31) (Figure 3B).

Several miR-302 downstream targets such as AOF1 and AOF2
known as lysine-specific histone demethylases have been shown
to play a role in demethylating H3K4 and inhibiting transcription
of genes (31, 102, 103). Suppression of AOF1 and AOF2 is known
to induce DNA (cytosine-5)-methyltransferase 1 (e.g., DNMT1)
degradation and global demethylation leading to reprogramming
of somatic cells into induced pluripotent stem cells (31). HA-
CD44-activated miR-302 has also been shown to cause DNMT1
reduction and DNA demethylation in CD44v3-expressing cancer
stem cells (CSCs) (31). Moreover, this DNA demethylation
process regulated by HA-CD44-activated miR-302 can activate
the expression of several Inhibitor of Apoptosis Protein (IAP)
family of proteins such as c-IAP1, c-IAP2, and XIAP which

appear to be closely linked to several important activities unique
for cancer stem cells (CSCs) isolated from head and neck caner
(31) (Figure 3B). Most importantly, treatments of CSCs with
anti-miR-302 inhibitors readily upregulate lysine-specific histone
demethylases and reduces DNA global demethylation as well as
impairs HA/CD44-activated CSC functions (79). It is likely that
miR-302 signaling pathway regulated by stem cell markers such
as Nanog/Oct4/Sox2 during HA-CD44 interaction may be used
as a novel therapeutic drug target to downregulate cancer stem
cell (CSC) functions and to overcome chemotherapy resistance
in cancer cells.

HA-CD44 INTERACTION IN STIMULATING
LNCRNA (UCA1) SIGNALING AND TUMOR
PROGRESSION

The evolutionarily conserved long non-coding RNAs (so-
called lncRNAs >200 nucleotides) are now recognized as a
major component of the human transcriptome (104, 105).
Most of these molecules remain to be functionally unknown
(104, 105). Dysregulation of lncRNAs frequently involves
alterations of transcriptional and post-transcriptional activities
of gene regulation in many cancers (106–111). For example,
downregulation of PTCSC3 was detected in thyroid cancers
(112). Malfunction of HULC and XIST is also reported in

FIGURE 4 | HA-CD44-mediated LncRNA UCA1 expression in tumor cells. (A-1) Detection of C/EBPα phosphorylation in CD44v3high HSC-3 cells treated with no

HA, (lane 1); or with HA (lane 2); or with anti-CD44 antibody with no HA (lane 3); or with anti-CD44 antibody + HA (lane 4). (A-2) Detection of C/EBPα phosphorylation

in CD44v3high HSC-3 cells treated with no HA, (lane 1); or with HA (lane 2); or with PI3K inhibitor (GDC-0941) plus HA, (lane 3); or with AKT inhibitor (GSK795) plus

HA (lane 4). (B) ChIP assay of p-C/EBPα binding to lncRNA UCA1 promoter in CD44v3high HSC-3 cells treated with no HA (lane 1) or with HA (lane 2) or with PI3K

inhibitor (GDC-0941) plus HA (lane 3) or with AKT inhibitor (GSK795) plus HA (lane 4) using anti-p-C/EBPα or IgG control. Co-immunoprecipitated DNA was amplified

by PCR with primers specific for the lncRNA UCA1 promoter. (C) The expression of lncRNA UCA1 by qRT-PCR in CD44v3high head and neck cancer cells (HSC-3

cells) treated with no HA (bar 1) or with HA (bar 2) or with anti-CD44 antibody plus HA (lane 3) or with PI3K inhibitor (GDC-0941) plus HA (bar 4) or with AKT inhibitor

(GSK795) plus HA (bar 5) using lncRNA UCA1-specific primers and Q-PCR assay.
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various cancers (113–118). Furthermore, both GAPLINC and
MALAT1 have been used as unfavorable predictors for a few
solid tumor cancers (119–123). Overexpression of HOTAIR
is linked to metastasis in colorectal, liver, pancreatic, breast
and gastric cancers (124–131) whereas ANRIL and PRNCR1
upregulation is detected in prostate cancer (132, 133). High
levels of KCNQ1OT1 and H19 expression were also detected
in colorectal cancer (132) and hepatocellular carcinoma (133),
respectively. Therefore, aberrant expression of certain lncRNAs
appears to be closely linked to various tumor progression.

Another important member of lncRNA family, urothelial
carcinoma associated 1 (lncRNA UCA1) has been shown to
be correlated with tumor growth, progression and recurrence
(108–111). Several studies focusing on the transcriptional
regulation of lncRNA UCA1 show that many transcription
factors (e.g., C/EBPα, Ets-2, TAZ/YAP/TEAD, HIF-1α, SATB1,
CAPERα/TBX3, etc.) may participate in the regulation of lncRNA
UCA1 by binding to the promoter sites of lncRNA UCA1
(134–139). A specific example for the regulation of lncRNA
UCA1 expression by certain transcription factor during HA-
CD44 interaction in head and neck cancer cells is described
as follows:

Role of C/EBPα in Regulating
HA-CD44-mediated lncRNA UCA1
Expression
Many transcription factors have been shown to be involved in
the regulation of lncRNA UCA1 expression (135). For example,
the interaction between the transcription factor, C/EBPα and
the promoter of lncRNA UCA1 often promotes an upregulation
of lncRNA UCA1 production leading to anti-cell death and
cell survival (135). Recent study indicates that a cross-talk
between PI3K-AKT pathway and lncRNA UCA1 expression
also occurs during breast cancer cell invasion (140). We have
found that HA induces C/EBPα phosphorylation in CD44v3high
head and neck cancer cells (HSC-3 cells) in a CD44-dependent

FIGURE 5 | Detection of LncRNA UCA1 effect on HA/CD44-induced survival

protein expression in cancer cells (HSC-3 cells) with no HA or with HA or

treated with lncRNA UCA1 si with no HA or with HA.

manner (Figure 4A-1). Downregulation of AKT by treating
CD44v3high HSC-3 cells with AKT inhibitor (GSK795) or
PI3K inhibitor (GDC-0941) blocks HA-mediated C/EBPα

phosphorylation (Figure 4A-2). These findings suggest that
C/EBPα phosphorylation is PI3K-AKT signaling-dependent in
HA-treated CD44v3high head and neck cancer cells (HSC-3
cells) (Figures 4A-1, 2). To examine whether phosphorylated
C/EBPα (induced by HA-mediated CD44v3-mediated PI3K-
AKT activation) directly interacts with the promoter region of
lncRNA UCA1, chromatin immunoprecipitation (ChIP) assays
were performed in head and neck cancer cells with HA (or
without HA). Preliminary data indicate that phosphorylated
C/EBPa is directly recruited into the promoter region of lncRNA
UCA1 in HA-treated CD44v3high head and neck cancer
cells, resulting in lncRNA UCA1 expression (Figure 4B–1).
However, HA-mediated recruitment of phosphorylated C/EBPa
into LncRNA UCA1 promoter sites appears to be blocked
in cells treated with anti-CD44 antibody (Figure 4B-1).
Consequently, lncRNA UCA1 expression is also inhibited
(Figure 4C). Downregulation of PI3K or AKT by treating
cells with either PI3K inhibitor (GDC-0941) or AKT inhibitor
(GSK795) effectively inhibits the complex formation between
phospho-C/EBPa and the promoter region of lncRNA UCA1 in
HA-treated CD44v3high head and neck cancer cells, as well as
lncRNA UCA1 production (Figure 4B-2 and Figure 4C). These
findings suggest that the binding of phosphorylated C/EBPa to
the lncRNA UCA1 promoter and lncRNA UCA1 expression is
CD44/PI3/AKT-dependent and GDC-0941/GSK795-sensitive in
HA-treated CD44v3high head and neck cancer cells. Therefore,
we believe that the regulation of lncRNA UCA1 expression in
head and neck cancer cells is HA-dependent and CD44-specific.

Role of lncRNA UCA1 in Regulating Tumor
Cell Survival and Chemoresistance
Several regulatory small and long non-coding RNAs have
been well-documented in many cancers resistant to therapeutic
drug (e.g., cisplatin) treatment (141–144). The ability of
cisplatin to induce tumor cell death is often counteracted
by the presence of anti-apoptotic regulators and/or survival
proteins leading to chemoresistance (142–144). The IAP family
(e.g., cIAP-2 and XIAP) is well-documented to play critical
roles in promoting tumorigenesis through the action of both
anti-apoptosis and anti-cell death (145). These proteins also

TABLE 1 | Chemosensitivity assay treatment.

Chemosensitivity assay treatment Growth inhibition IC50 (µM)*

No HA (Control) 1.00 ± 0.05

+HA 2.69 ± 0.11

LncRNA UCA1si-treated cells (+HA) 0.50 ± 0.07

cIAP-2 siRNA-treated cells (+HA) 0.42 ± 0.04

XIAP siRNA-treated cells (+HA) 0.45 ± 0.02

*The procedures for measuring cisplatin-induced tumor cell growth inhibition (IC 50) is the

same as described previously (31–33).
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FIGURE 6 | Detection of HA/CD44-mediated expression of lncRNA UCA1 (A), miR-145 (B), and ROCK (C) by qRT-PCR in CD44v3high head and neck cells (HSC-3

cells) treated with no HA (bar 1) or with HA (bar 2) or transfected with si lncRNA UCA1 plus HA (bar 3) or transfected with pcDNA 3.1 plus HA (bar 4) or transfected

with pcDNA 3.1-lncRNA UCA1 plus HA (bar 5).

participate in chemoresistance by reducing tumor cell death or
apoptosis caused by chemotherapeutic drugs (146). Although
several other survival proteins such as Bcl2 and BclxL are
known to play roles in regulating tumor cell survival and
chemoresistance in cancer cells during HA-CD44 binding (147),
the involvement of cIAP-1, cIAP-2, and XIAP in promoting
HA/CD44-mediated tumor cell survival and drug resistance has
only recently received some attentions.

LncRNA UCA1 has been reported to induce drug resistance
in bladder cancer and many other cancers (108, 109, 148–
163), thereby greatly reducing the efficacy of cancer therapy.
Recently, we found that the expression of both cIAP-2 and
XIAP appear to be downregulated in head and neck cancer
cells treated with anti-lncRNA UCA1 inhibitor (Figure 5). The
suppression of these survival proteins leads to tumor cell
death and effective chemotherapeutic drug treatment (Table 1).
The fact that reduction of anti-apoptosis proteins (cIAP-2 or
XIAP) by treating head and neck cancer cells with specific
inhibitory siRNAs (e.g., cIAP-2 siRNA or XIAP siRNA) during
HA/CD44 interaction appears to increase chemosensitivity
suggests that downregulation of lncRNA UCA1 together with
blockage of survival protein pathways may provide a new
therapeutic strategy in cancer therapy, especially dealing with
drug resistance.

The Role of lncRNA UCA1 in Regulating
miR-145-ROCK1 Pathway and Tumor Cell
Migration and Invasion
During the regulation of miRNA expression, lncRNA can
compete the common response elements of miRNAs (161).
LncRNAs can also bind DNAs, RNAs and proteins by acting
as decoy, guide or scaffold (161). LncRNA has been reported
to bind to many different miRNAs including miR-145 in a
variety of cancer cells resulting in carcinogenesis, tumor cell
migration, invasion or drug resistance (152, 153, 162–167,

167–169). Recent observations indicate that lncRNA UCA1
promotes migration and invasion in bladder cancer cells (164).
Accumulating evidence indicates that miR-145 known as a
tumor suppressor is frequently downregulated in various cancers
(170). It has been postulated that a signaling pathway may
be involved in the formation of a regulatory loop between
lncRNA UCA1 and miR-145 via a reciprocal repression process
required for tumor cell-specific activities (e.g., migration and/or
invasion) (164). There is evidence that upregulation of miR-145
impairs cancer cell motility by downregulating the expression
of its target genes including ROCK (a Rho-associated protein
kinase), a key regulator of actin cytoskeleton reorganization
required for cancer cell migration and invasion (164, 171).
Thus, both up- or down-regulation of miR-145 appear to
play important roles in cancer cell-related activities (e.g., cell
migration and invasion).

Furthermore, it has been reported that lncRNA UCA1
suppresses the tumor suppressor miR-145 for tumor cell
invasion/migration through the expression of miR-145 target
proteins such as ROCK1 in glioma cancer cells (109). These
findings are consistent with our observations showing that HA-
CD44v3 interaction stimulates lncRNA UCA1 expression in
CD44v3high tumor cells (Figure 6A). Moreover, upregulation
of lncRNA UCA1 (by transfecting cells with lncRNA UCA1
cDNA, but not vector control cDNA) significantly suppresses
miR-145 expression (Figure 6B) leading to an increase of miR-
145 target gene, ROCK1 expression (Figure 6C). Conversely,
when CD44v3high head and neck cancer cells (HSC-3 cells) were
transfected with lncRNA UCA RNAi inhibitor, the expression
level of miR-145 is significantly up-regulated (Figure 6B).
Consequently, ROCK1 (a miR-145 target) gene/protein is
downregulated (Figure 6C). These findings suggest that the miR-
145-ROCK1 pathway serves as a possible downstream functional
target for lncRNA UCA1 in CD44v3high head and neck cancer
cells. Furthermore, our recent data show that upregulation of
lncRNA UCA1 by HA-CD44v3 binding in CD44v3high head
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TABLE 2 | Cell migration and invasion treatments.

Cell migration and invasion

treatments

Tumor cell migration

(% of control)

Tumor cell invasion

(% of control)

No HA (Control) 100 ± 2 100 ± 5

+HA 223 ± 12 245 ± 10

LncRNA UCA1 si-treated (+HA) 65 ± 3 63 ± 2

miR-145 mimic-treated cells (+HA) 65 ± 2 62 ± 2

ROCK inhibitor (Y-27632)-treated

cells (+HA)

60 ± 2 66 ± 3

The measurements of in vitro tumor cell migration and invasion were performed using

twenty-four transwell units as described previously (66, 131, 154).

and neck cancer cells significantly enhances ROCK-mediated
head and neck cancer cell migration and invasion (Table 2).
Treatment of cells with lncRNA UCA1 RNAi inhibitor or
miR-145 mimic or a ROCK inhibitor, Y-27632 significantly
reduces tumor cell invasion (Table 2). These observations suggest
that the miR-145-ROCK1 pathway serves as a new downstream
functional target for lncRNA UCA1 in regulating CD44v3high
head and neck cancer cell activities including cell migration
and invasion. The results of these studies strongly indicate that
lncRNA LncRNA UCA1 is one of the important regulatory
molecules in controlling miR-145-ROCK pathway and tumor cell
migration and invasion.

In summary, we would like to propose that HA binding
CD44 stimulates PI3K and AKT signaling which in turn
causes c/EBPα phosphorylation. Phosphorylated c/EBPα then
binds to the site of LncRNA UCA1 promoter and induces
transcription activity for the expression of LncRNA UCA1 which
then upregulates survival proteins (IAPs) and chemoresistance.
HA/CD44-activated lncRNA UCA1 also downregulates miR-
145 expression and stimulates ROCK expression required for
cytoskeletal activation and tumor cell motility (e.g., migration
and invasion) (Figure 7). Therefore, it is feasible to use either
LncRNA UCA1 si treatment and/or ROCK inhibitor to limit
tumor cell migration and invasion (Table 2) and to reduce
HA/CD44-induced tumor metastasis and progression.

CONCLUSION

The newly discovered signaling events regulated by HA-CD44
interaction may be very useful for a better understanding
of cancer cell-specific behaviors including transcriptional
activation, tumor cell growth, inflammatory cytokine/chemokine
production, migration/invasion and survival as well as
chemoresistance as summarized in Figure 8. Consequently,
targeting CD44 using anti-CD44 and/or CD44 variant-specific
antibody and/or anti-sense strategies to downregulate CD44
and/or CD44 variants may be a possible choice for the
development of new cancer cell-based therapies. Furthermore,
HA-based nanoparticles containing therapeutic drugs (e.g.,
cisplatin or doxorubicin) may be used to accurately deliver
therapeutic drugs into CD44v isoform-expressing cancer
cells to enhance chemo-sensitivity and downregulate CD44v

FIGURE 7 | A proposed model for HA-CD44-mediated signaling activation in

the regulation of LncRNA UCA1 production and oncogenesis in tumor cells.

The binding of HA to CD44 stimulates PI3K and AKT signaling which in turn

causes c/EBPα phosphorylation. Phosphorylated c/EBPα then binds to the

promoter of LncRNA UCA1 and induces transcriptional activation for LncRNA

UCA1 expression. The production of LncRNA UCA1 upregulates survival

proteins (IAPs) and chemoresistance. LncRNA UCA1 also

downregulatemiR-145 expression and stimulates ROCK expression and

cytoskeletal activation leading to tumor cell migration and invasion.

isoform-mediated oncogenic signaling. It is also feasible to
design signaling perturbation strategies to downregulate the
expression of HA/CD44-regulated Nanog/Oct4/Sox2 and c-
Jun as well as certain miRNAs (e.g., miR-21, miR-10b, and
miR-302) using specific inhibitors such as siRNA and shRNA
and anti-miRNA inhibitor approaches to simultaneously
suppress both oncogenic behaviors and cancer progression.
Since many LncRNAs have been shown to be closely associated
with tumor cell-specific properties including cell survival,
chemoresistance, tumor cell migration and invasion, it will
also be possible to develop novel signaling perturbation
techniques to simultaneously inhibit both oncogenic miRNAs
and LncRNA UCA1 using miRNA-21/miRNA-10b/miR-
302 RNAi inhibitor and/or lncRNA UCA1 RNAi inhibitor
treatments. These strategies could synergistically cause
apoptotic responses and chemosensitivity. These new
approaches could indicate that the impairment of specific
signaling pathways together with suppression of miRNAs
(miR-21/miR-10b/miR-302) and/or lncRNA UCA1 in HA-
CD44-activated cancer cells may be more effective than
chemotherapy alone. Novel therapeutic strategies described in
this review may offer helpful information for understanding
the initiation and development mechanisms of different cancers
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FIGURE 8 | An Illustration of HA-CD44 interaction-induced oncogenic signaling events in cancer. The binding of HA (large vs. small HA) to CD44v isoforms interaction

stimulates CD44-other receptor (HERB2, EGFR, TGFβR, RHAMM, NHE1, RhoGEF, and TLRs, etc.) complex formation and Ras/Cdc42/Rac1/RhoA/NFkB activation

for transcriptional activation and proinflammatory cytokine/chemokine production as well as tumor cell survival, growth, invasion and migration. HA-CD44 interaction

also promotes PI3K/AKT activation and LncRNA (UCA1) production resulting in ROK-mediated cytoskeleton function required for tumor cell migration and invasion.

Moreover, HA/CD44 activates transcriptional factor-induced miRNA (miR-10b/miRNA-21/miR-302) expression leading to CSC self-renewal, growth, survival and

chemoresistance. Furthermore, the induction of miR-21 by HA-CD44 interaction also stimulates RhoC upregulation and ROK-regulated tumor cell migration and

invasion. All these events contribute to HA-CD44 interaction-mediated tumor progression.

comprehensively and suggest new therapeutic targets for clinical
treatment of HA/CD44-activated cancer development and
tumor progression.
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