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Abstract: Neuronal insulin resistance is a significant feature of Alzheimer’s disease (AD). Accumulated
evidence has revealed the possible neuroprotective mechanisms of antidiabetic drugs in AD.
Liraglutide, a glucagon-like peptide-1 (GLP-1) analog and an antidiabetic agent, has a benefit
in improving a peripheral insulin resistance. However, the neuronal effect of liraglutide on the model
of neuronal insulin resistance with Alzheimer’s formation has not been thoroughly investigated.
The present study discovered that liraglutide alleviated neuronal insulin resistance and reduced
beta-amyloid formation and tau hyperphosphorylation in a human neuroblostoma cell line, SH-SY5Y.
Liraglutide could effectively reverse deleterious effects of insulin overstimulation. In particular,
the drug reversed the phosphorylation status of insulin receptors and its major downstream signaling
molecules including insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and glycogen
synthase kinase 3 beta (GSK-3β). Moreover, liraglutide reduced the activity of beta secretase 1
(BACE-1) enzyme, which then decreased the formation of beta-amyloid in insulin-resistant cells.
This indicated that liraglutide can reverse the defect of phosphorylation status of insulin signal
transduction but also inhibit the formation of pathogenic Alzheimer’s proteins like Aβ in neuronal
cells. We herein provided the possibility that the liraglutide-based therapy may be able to reduce
such deleterious effects caused by insulin resistance. In view of the beneficial effects of liraglutide
administration, these findings suggest that the use of liraglutide may be a promising therapy for AD
with insulin-resistant condition.
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1. Introduction

Insulin resistance is defined as an inefficient response of tissue to normal plasma insulin levels [1].
Previous studies have shown that insulin plays an important role in several brain functions, including
neuronal synaptic plasticity and cognitive function [2,3]. Accumulated evidence has revealed that
an impaired insulin sensitivity is positively correlated with a development of Alzheimer’s disease
(AD)-related pathology [4–11]. For example, (1) insulin receptors (IRs) in the brain have been shown to
be downregulated in AD models [8]; (2) the impairment of insulin signaling has been documented in the
brain from both postmortem analysis of AD patients and in animal models of AD [6–9]; and (3) the deficit
of memory function in AD patients has been shown to be associated with altered levels of circulating
insulin, insulin levels in the brain, and defects in peripheral insulin signaling pathways [4,5,10]. It is
well known that insulin signaling is associated with the regulation of tau protein, and deregulation of
brain insulin signaling is linked to AD [12]. For example, systemic insulin resistance results in tau
hyperphosphorylation detected in cerebrospinal fluid [13]. Hyperphosphorylated tau can eventually
lead to neurofibrillary tangle formation [14,15]. It has been reported that insulin signaling accelerates
amyloid-beta trafficking from the trans-Golgi network to the plasma membrane and reduces the
intracellular accumulation of beta-amyloid [16]. Therefore, a defect in insulin pathway results in Aβ

accumulation. This statement is supported by a study reporting that induction of insulin resistance
in Tg2576 mice reduced the amount and activity of insulin-degrading enzyme (IDE), contributing
to an increase in Aβ levels in the hippocampus and cerebral cortex [17]. The defined mechanism of
tau phosphorylation has been reported to be due to the glycogen synthase kinase 3 beta (GSK-3β),
a Tau kinase regulated by insulin via the protein kinase B (AKT) pathway [18]. Furthermore, the newly
identified category of AD as type 3 diabetes [11] has encouraged researchers to focus on antidiabetic
drugs as a new strategy for treating AD associated with insulin resistance.

A previous study in mouse neuroblastoma cells showed that chronic hyperinsulinemic conditions
induced neuronal insulin resistance as well as the development of molecular markers of AD, including
amyloid-β and tau hyperphosphorylation [19]. The study demonstrated that a widely used antidiabetic
drug, metformin, ameliorated neuronal insulin resistance and those AD markers [19]. Although
metformin usually has minimal adverse effects, its rare but serious side effect of lactic acidosis is
a safety concern in some cases [20]. Besides metformin, which is a standard drug for diabetes
mellitus type 2 (T2DM), there has been an attempt to explore the efficacy of some natural-derived
compounds. For example, silybin a compound shown to exert a protective effect against diabetes
and its complication [21], has been recently demonstrated to possess crucial anti-AD properties [22].
Incretin-based therapy, and newly developed insulin sensitizers, including glucagon-like peptide
1(GLP-1) agonists, are widely used to treat T2DM [23–25]. Those sensitizers have many favorable
metabolic profiles, including weight loss, and reduce the risk for hypoglycemia. Moreover, recent studies
of GLP-1 receptor agonist therapy in T2DM have been shown to improve cognitive function, including
learning and memory [26–29]. However, effects of GLP-1 receptor agonists, particularly liraglutide,
on neuronal insulin resistance., as well as AD-associated neuropathological characteristics in human
neuroblastoma cell lines, have not yet been clearly investigated. The present study aimed to characterize
the molecular signaling underlying neuronal insulin-resistance-induced Alzheimer-like changes on
hyperinsulinemic human neuroblostoma cell line, SH-SY5Y, as well as to determine the therapeutic
effect of liraglutide on those pathological conditions. Here we reported that liraglutide could be able to
significantly ameliorate the development of Alzheimer-like changes in the insulin-resistant-SH-SY5Y.

2. Results

2.1. Hyperinsulinemic Condition Induced Neuronal Insulin Resistance in a Human Neuroblastoma
Cell Line, SH-SY5Y

The physiological concentration of human plasma insulin is approximately 1 nM [30]. In the present
study, a high concentration of insulin (100 nM) was used to induce neuronal insulin resistance without



Int. J. Mol. Sci. 2020, 21, 1725 3 of 13

exerted cytotoxicity to the cells (Supplementary Figure S1) [31]. Following a 48 h hyperinsulinemic
condition, neuronal insulin signaling molecules, including insulin receptor (IR), insulin receptor
substrate 1 (IRS-1), AKT/PKB, and GSK-3β and their phosphorylation status were observed (Figure 1).
The control cells showed a normal response to insulin stimulation observed by the phosphorylations
of IR (Tyr1162/1163), pIRS-1(Tyr)/IRS-1, and AKT/PKB (Ser473), while the insulin resistant-cells
significantly decreased those of phosphorylations (Figure 2A–C compared C+/C to I+/I). Moreover,
the GSK-3β activity, which is thought to be inactivated by phosphorylation at serine 9, was increased
in the insulin-resistant cells (Figure 2D, comparing C+/C to I+/I). These findings indicated that 48 h
treatment of 100 nM insulin administration was enough to induce neuronal insulin resistance.

Figure 1. Schematic diagram of the experiment. Human neuroblostoma cells, SH-SY5Y, were incubated
with normal medium or medium with 100 nM insulin for 48 h to induce insulin resistance. After 48 h,
the cells without insulin induction were further treated with normal medium (C) or 500 nM liraglutide
(L), while the insulin-resistant cells were further treated with 100 nM insulin (I) or 500 nM liraglutide
(IL) for 24 h. Before harvesting cells, each group was subdivided into 2 groups (stimulated with 10 nM
insulin or left unstimulated for 30 min). D0, D1, D2, and D3 represent the experimental days as day0,
day1, day2, and day3, respectively, after cell seeding.

Figure 2. Effects of hyperinsulinemic conditions on insulin signaling pathway. The normal cells (C) and
insulin-resistant cells (I) were subdivided and stimulated with 10 nM insulin (C+, I+) or without (C, I) for
30 min before harvesting. Western blotting bands and bar graphs represent densitometric values of each lane
after normalizing with total protein expression; phosphorylated insulin receptor (pIR) (Tyr1162/1163)/IRβ
(A) pAKT(Ser473)/AKT (C), pGSK-3β(Ser9)/GSK-3β (D). The bands and bar graphs of immunoprecipitated
insulin receptor substrate 1 (IRS-1) followed by pTyr Western blotting of pIRS-1(Tyr)/IRS-1 representing
densitometric values of each lane are shown in (B). Values are mean ± SEM, * p < 0.05, ** p < 0.01 compared
with those of normal cells. All experiments shown were from n = 3.
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2.2. Hyperinsulinemic Condition Increased the Expression of Apoptotic Protein Markers and the Formation
of Alzheimer’s Markers in Neuronal Cells

Previous evidence has shown that the impairment of brain insulin signaling is associated with
progressive neurodegenerative diseases such as AD and neuronal death [8,32,33]. Despite the
fact that insulin signaling is considered as an important pathway to promote neuronal survival,
the hyperinsulinemic condition might lead to an increase in the expression of a pro-apoptotic protein,
Bax (Figure 3A, comparing C to I). However, a hyperinsulinemic condition in our study was not
strong enough to observe a decrease of an anti-apoptotic protein, Bcl-2 (Figure 3A compared C to I).
Interestingly, pathological proteins associated with AD, including Aβ and hyperphosphorylation of tau
protein, were significantly increased under the hyperinsulinemic condition (Figure 3B,C, comparing C
to I). To confirm the formation of Aβ plaques or neurofibrillary tangles in hyperinsulinemic condition,
extracellular proteinaceous insoluble plaques were stained using Thioflavin-S dye in order to detect
the fibrillary β-sheet-rich proteins such as Aβ plaques or neurofibrillary tangles. The results showed
that a chronic hyperinsulinemic condition significantly increased an extracellular plaque formation
when compared with the control group (Figure 3D, comparing C to I).

Figure 3. Effects of hyperinsulinemic conditions on apoptotic signals, Aβ and tau proteins. The normal
cells (C) and insulin-resistant cells (I) were used to determine protein expression, including apoptotic
signal proteins Bax and Bcl-2 (A), Aβ (B) and pTau (Ser396) (C). The Western blotting bands and bar
graphs represent densitometric values of each lane after normalizing with total protein actin, amyloid
precursor protein (APP), and tau protein, respectively. Values are mean ± SEM; * p < 0.05, ** p < 0.01
compared with normal cells (C). Thioflavin-S staining of neuritic plaques was done in SH-SY5Y cells (D).
C and I represent the control and insulin-resistant groups, respectively. The stained cells were visualized
by fluorescent microscope at 40X magnification. Red arrows indicate Thioflavin-S stained neuritic
plaques. Scale bar, 25 µm. All experiments shown were from n = 3.

2.3. Liraglutide Restored Neuronal Insulin Sensitivity in Hyperinsulinemic Conditions

Liraglutide at 500 nM, the optimal concentration which exerted no toxicity to neuron was used to
determine the rescue effect on a neuronal insulin-resistant condition (Figure S2). The 24 h liraglutide
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treatment after the hyperinsulinemic induction significantly restored neuronal insulin sensitivity by
improving the phosphorylation status of IR, IRS-1, AKT/PKB, and GSK-3β, when compared with the
insulin-resistant group (Figure 4A–D, comparing I+/I and IL+/IL).

The combination effects of aging and insulin resistance were found to be associated with a lack of
glucose transportation and its metabolism [34]. We therefore tested whether liraglutide can restore
glucose uptake in neuronal insulin-resistant cells. Under hyperinsulinemic condition, glucose uptake
was clearly decreased compared to the control (Figure 4E, comparing C to I). However, liraglutide
treatment could not restore the glucose uptake in insulin-resistant cells even if the insulin signaling
was improved (Figure 4E, comparing C to I).

Figure 4. Effects of liraglutide on insulin signaling, glucose uptake, and BACE-1 activity. Western
blots were performed for pIR(Tyr1162/1163), IR, pAKT(Ser473), AKT, pGSK-3β(Ser9), and GSK-3β.
The bands and bar graphs represent densitometric values of each lane after normalizing with total protein
expression; pIR(Tyr1162/1163)/IRβ (A), pAKT(Ser473)/AKT (C), pGSK-3β(Ser9)/GSK-3β (D). The bands
and bar graphs of immunoprecipitated IRS-1 followed by pTyr Western blotting of pIRS-1(Tyr)/IRS-1
representing densitometric values of each lane are shown in (B). The effect of liraglutide treatment on
glucose uptake is shown in (E). The BACE-1 activity is shown in (F). Values are mean ± SEM, * p < 0.05
** p < 0.01 compared with neuronal insulin-resistant cells. All experiments shown were from n = 3.

2.4. Liraglutide Decreased the Formation of Alzheimer’s Markers and Plaque

As noted, 48 h insulin application resulted in an increased Bax and decreased Bcl-2 expression
(Figures 3A and 5A, compare C and I). However, by 24 h of liraglutide administration, the dysregulation
of Bax and Bcl-2 in a hyperinsulinemic condition was not enough to rescue (Figure 5A, compare I
and IL). When we look through the expression of AD markers such as β-amyloid proteins and tau
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phosphorylation, the restoration was markedly observed in insulin-resistant cells after 24 h liraglutide
treatment (Figure 5B,C, compare I and IL). Moreover, liraglutide efficiently reduced plaque formation
observed by the bright green fluorescent signals of thioflavin-S fluorescent staining (Figure 5D, compare
I and IL). These findings suggest that liraglutide plays an important role in the reduction of amyloid
plaque in hyperinsulinemic condition, although the 24 h treatment period was not enough to induce
the expression of anti-apoptotic protein or to reduce the pro-apoptotic protein.

Figure 5. Effects of liraglutide on the formation of Alzheimer’s markers, plaque formation, and neuronal
apoptosis. The normal cells (C) and insulin-resistant cells (I) insulin-resistant cells without liraglutide
(L) or with liraglutide (IL) were used to determine protein expression including apoptotic signal
proteins Bax and Bcl-2 (A), Aβ (B) and tau protein (C). The immunoreactive bands and bar graphs
represent densitometric values of each lane after normalizing with total protein actin, amyloid precursor
protein (APP), and tau protein, respectively. Values are mean ± SEM * p < 0.05, ** p < 0.01 compared
with insulin-resistant cells. Thioflavin-S staining of neuritic plaques was done in SH-SY5Y cells (D).
The normal cells without liraglutide (C) or with liraglutide (L), together with insulin-resistant cells
without liraglutide (L) or with liraglutide (IL) treatment, were visualized by fluorescent microscope
at 40× magnification. Red arrows indicate Thioflavin-S stained neuritic plaques. Scale bar 25 µm.
All experiments shown were from n = 3.
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2.5. Liraglutide Inhibited Beta Secretase 1 (BACE-1) Activity in Insulin-Induced Insulin Resistance
in Neuronal Cells

Due to the fact that liraglutide treatment in the hyperinsulinemic condition showed rescue
insulin signaling defects together with an improvement in the AD markers, the mechanism of
improvement might be speculated as (1) the AD markers were reduced mainly because of the rescue
in insulin signaling pathway, or (2) it may also be caused by other insulin signaling-independent
mechanisms. As we know, there are several enzymes participating in the toxic amyloid-beta generation:
the β-secretase, also known as β-site amyloid precursor protein cleaving enzyme or BACE-1, initiates
cleaving an extracellular domain of amyloid precursor protein 1 (APP1); then, the APP1 is cleaved by
the γ-secretase to generate Aβ peptides. The BACE-1 enzyme is especially well-documented as having
a crucial role in AD pathogenesis [35]. Therefore, we would like to know whether the BACE-1 activity
is deprived under a hyperinsulinemic condition and whether the liraglutide can improve it. To test the
hypothesis, the activity of BACE-1 was performed by the specific BACE-1 assay. The results showed
that during a hyperinsulinemic condition, the BACE-1 activity was prominently increased and it turned
to be normal after liraglutide treatment (Figure 4F). Cumulatively, the AD marker ameliorations in our
study were possibly mediated by both insulin signaling as well as BACE-1 activity improvement.

3. Discussion

Since neuronal insulin resistance and hyperinsulinemia are considered as the important risk factors
in cognitive impairment as well as AD, several antidiabetic drugs like insulin sensitizers have been
currently investigated for the treatment of this disease [36,37]. Recently, a novel GLP-1 analog called
liraglutide showed a promising result in a preventive declination of brain glucose metabolism [38].
So far, a suitable model to study the effect of liraglutide in insulin-resistant and hyperinsulinemic
conditions in neuronal cells has not been clearly developed. We therefore developed the feasible
model of neuronal insulin resistance under a hyperinsulinemic condition by using the SH-SY5Y,
a well-documented cell line which is widely used to study the pathology of AD and its effective
drugs. In this study, we tested the effect of liraglutide in an in vitro neuronal insulin resistance model.
The major findings are: (1) the 48 h of hyperinsulinemic condition is enough to induce neuronal insulin
resistance, increase neuronal apoptotic protein markers and AD markers, and augment the formation
of extracellular plaques; (2) the 24 h liraglutide treatment restores neuronal insulin sensitivity and
decreases the formation of AD markers and plaque formation, but is not enough to affect any changes in
neuronal apoptotic markers and glucose uptake in the hyperinsulinemic condition; and (3) liraglutide
suppresses BACE-1 activity which is accelerated under a hyperinsulinemic condition.

Several studies have revealed the important roles of insulin signaling in the normal brain.
Its defects could be harmful to neurons and finally lead to the development of neurodegenerative
disorders [19,39]. The present study provides evidence supporting the idea that hyperinsulinemic
condition causes neuronal insulin resistance as indicated by the decreased phosphorylation of insulin
receptors and their downstream signaling molecules, including IRS-1, AKT/PKB, and GSK-3β. AKT
usually acts as an inhibitor of GSK by inducing the phosphorylation on N-terminal serine 21 of
GSK-3α and serine 9 of GSK-3β, thus diminishing prime-substrate phosphorylation by GSK-3 [19,40].
GSK-3β, a major tau kinase, has been shown to induce an abnormal tau hyperphosphorylation [40–42].
Tau hyperphosphorylation results in an instability of microtubules, which causes the formation of
neurofibrillary tangles (NFTs), one of the histopathological hallmarks of AD [14,15,43]. The present
study demonstrated that tau kinase activity was increased via decreased phosphorylation of GSK-3β
at serine 9 residue. Consistently, Gupta and colleagues also demonstrated an increase of tau
hyperphosphorylation by GSK-3β in the mouse N2A cell line with a hyperinsulinemic condition [19].
An increase in GSK-3β phosphorylation following hyperinsulinemic conditions might impair Aβ

clearance, and it could be one of the reasons to increase Aβ formation in our study. The production
of Aβ is generated by BACE-1 or β-secretase, which cleaves an extracellular domain of APP [44].
The previous study revealed that GSK-3β inhibition could reduce BACE-1-mediated cleavage of APP
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via NF-κB signaling-dependent pathway [45]. Currently, β-secretase inhibition is being considered
as one of the strategies to decrease Aβ concentrations, which might in turn prevent or treat AD.
In the present study, the hyperinsulinemic condition enhanced the activity of BACE-1 which reflected
an accumulation of Aβ protein. Interestingly, liraglutide drastically reduced Aβ production via
an improvement of insulin signaling pathway as well as a decrease of BACE-1 activity. The cumulative
results indicated that liraglutide has a potential to lower amyloid aggregation and may improve
Alzheimer’s symptoms via insulin signaling as well as BACE-1. However, further study is needed to
explore the underlying mechanism of how liraglutide affects BACE-1 activity.

The present study also demonstrated that hyperinsulinemic condition or neuronal insulin-resistant
condition correlated with an increase expression of a pro-apoptotic protein, Bax, and a decreased
expression of an anti-apoptotic protein, Bcl-2. Unfortunately, the 24 h liraglutide was not enough to
rescue Bax and Bcl-2 dysregulation in the neuronal insulin-resistant condition. In this case, time and
duration of drug administration should be taken into consideration in further study. For instance,
the previous study revealed benefits of a pretreatment strategy in cells with an exposure of methylglyoxal
stress. Liraglutide applied before the stress exposure showed a decrease in Bax expression [46], while
our study used the post-treatment of liraglutide after the appearance of neuronal insulin resistance,
which could reveal an importance of time to administration.

Several antidiabetic drugs have been reported to improve insulin sensitivity so far [33,47,48].
GLP-1 agonists are a promising therapy for treating insulin resistance in both peripheral and central
compartments [49,50]. GLP-1 has been shown to induce neurite outgrowth and to prevent oxidative
injury and cell death [51,52], as well as to improve insulin sensitivity in both T2DM models and AD
models [53]. The present study demonstrated the benefits of liraglutide in ameliorating neuronal
insulin resistance and AD markers. These findings are also supported by previous studies [53].
For example, (1) Yang and colleagues have shown that liraglutide reversed the impairment of AKT
and GSK-3β phosphorylation and also ameliorated tau hyperphosphorylation in type 2 DM rats [53];
and (2) McLean and colleagues also demonstrated that liraglutide reduced Aβ plaque deposition with
improving cognitive function in early-stage APP/PS1 mice with AD [54] and in late-stage AD mice [55].

We herein provide evidence that liraglutide could rescue tau hyperphosphorylation and the
formation of Aβ plaque deposition which occurred under hyperinsulinemic and insulin-resistant
conditions by resensitization of a neuronal insulin signaling as well as halting of overactivity
of BACE-1, suggesting that liraglutide might exert a beneficial effect for AD subjects with
an insulin-resistant condition.

4. Materials and Methods

4.1. Cell Culture

The human neuroblastoma cell line SH-SY5Y used in this study was obtained from American Type
Culture Collection (ATCC No. CRL-2266) and maintained in DMEM/Ham F12 medium (Sigma-Aldrich,
St. Louis, MO, USA), supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL
penicillin, and 100 µg/mL streptomycin in a 5% CO2 atmosphere at 37 ◦C. Cells at 80% confluence were
subcultured every 3 days. For the experiments, cells were grown at a density of 1 × 105 in 6 well plates
which were approximately 50–60% confluence on the next day. The medium was changed every 24 h.
The experimental protocol of the present study was shown in Figure 1.

4.2. Neuronal Insulin-Resistant Induction and Liraglutide Treatment

SH-SY5Y cells were incubated with high concentration (100 nM) of insulin for 2 days to induce
neuronal insulin-resistant condition. The medium was changed every 24 h. Liraglutide (Victoza®,
Novo Nordisk, Bagsvaerd, Denmark) 500 nM, either with or without insulin 100 nM, was added to cells
on day 2 after inducing neuronal insulin resistance. For study protocol (as shown in Figure 1), those cells
were used either to study insulin signaling, apoptotic protein expression, and Alzheimer’s markers.
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Experiment groups were identified as (1) control group (C), which was incubated in normal medium
for 72 h; (2) liraglutide-treated group, which was incubated in normal medium for 48 h and then in
medium containing 500 nM of liraglutide for further 24 h; (3) insulin resistant-group (I), which was
incubated in medium containing 100 nM insulin for 72 h; and (4) liraglutide treated on insulin-resistant
group (IL), in which 500 nM liraglutide was added for 24 h after the 48 h insulin-resistant induction.
All groups were incubated in controlled temperature and humidity. For detecting the insulin signaling,
cells were either left untreated or stimulated with 10 nM insulin for 30 min at 37 ◦C before harvesting.
Cells were then washed with ice-cold phosphate buffer saline (PBS) and lysed with cell lysis buffer
(20 mM Tris-HCl, 1 mM Na3VO4, a protease inhibitor cocktail (completeTM Mini, 11836170001 Roche,
Basel, Switzerland), and 5 mM NaF 1% NP40. Cell lysates were spun at 10,000× g for 30 min.
Then, supernatants of cell lysates were collected and kept at −20 ◦C until used for immunoprecipitation
and Western blot analysis.

4.3. Cell Viability Assay

Cell viability assay was adapted from [56]. Briefly, SH-SY5Y cells were seeded on a 96-well plate
at a density of 1 × 104 cells/well and incubated overnight with DMEM supplemented with 10% FBS.
The medium was replaced by FBS-free medium, and cells were then treated with various concentrations
of insulin (1–100 nM) or liraglutide (1–106 nM) for 48 h and 24 h, respectively. Twenty microliters of
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT (0.5 mg/mL in PBS) was added
into the cells and incubated at 37 ◦C for 4 h. After incubation, the medium was removed and 200 µL of
DMSO was added an incubated for 10 min in the dark. The absorbance at 590 nm was measured using
a microplate reader (BioTek Instruments, Winooski, VT, USA). Cell viability was performed for three
times, and each assay was done in triplicate.

4.4. Glucose Uptake Assay

Fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose
(2-NBDG) (Invitrogen, Carlsbad, CA, USA, Cat No: N13195) was used to measure glucose uptake into
SH-SY5Y cells [57]. Cells were plated in 96-well plates at a density of 5 × 104 cells/well and underwent
the treatment as shown in Figure 1. On the experiment day (day3), cells were exposed to 80 mM
2-NBDG for 5 min in glucose-free DMEM. Cells were further washed with ice-cold HBSS containing
Ca2+ and Mg2+ (Invitrogen, Cat No: 14025-092) to remove residual 2-NBDG. Fluorescent signal was
detected using the microplate reader with excitation/emission of 465/540 nm.

4.5. Determination of Beta-Secretase (BACE-1) Activity

The BACE-1 activity was determined using a β-secretase (BACE-1) activity detection kit
(Fluorescent) (Sigma-Aldrich, St. Louis, MO, USA). Cells were plated in 6-well plate at a density
of 0.6 × 106 cells/well and underwent the treatment as shown in Figure 1. On the experiment day
(day 3), cells were lysed with cell lysis buffer (T-PER Tissue Protein Extraction Reagent, Thermo
Scientific, Waltham, MA, USA). The amount of protein in each sample was ensured by NanoDropTM

Lite spectophotometer, Thermo Scientific, USA). All reactions were performed using the 96-well
microplate reader and monitored at excitation wavelength of 320 nm and emission wavelength of 405
nm as suggested by manufacturer’s recommendations. The activity of BACE-1 was reported as fold
change compared to the control from three independent experiments.

4.6. Immunoprecipitation

Equality of the amount of protein in each sample was ensured by Bradford protein assay (Bio-Rad,
Hercules, CA, USA). To isolate IRS-1 protein, cell lysates were immunoprecipitated overnight at
4 ◦C with 1 µg of IRS-1 antibody (Cell Signaling Technology, Inc, Danvers, MA, USA or Japan) and
conjugated to protein A–agarose beads (company) for 24 h at 4 ◦C. After removing supernatant, bead
complexes were washed three times with lysis buffer. The protein–bead complexes were eluted with
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30 µL of 2× sample buffer (Glycerol 2 mL, SDS 6.0 g, Tris 1.4 g, with added double-distilled H2O
(ddH2O) to 100 mL), boiled at 95 ◦C for 5 min, and spun at maximal speed for 1 min. Supernatants
were subjected to Western blotting. An anti-Tyr antibody (Cell Signaling Technology, Inc) was used as
a primary antibody to detect the phosphorylation status of IRS-1 protein.

4.7. Western Blot Analysis

After equilibrating the amount of protein, 2× sample buffer was added to each sample. The sample
proteins were further separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and then transferred to polyvinylidene fluoride (PVDF) membranes (Immobilon-P;
Millipore, Bradford, MA, USA) for 1 h at 100 volts. The membranes were blocked with 5% nonfat
milk in Tris-buffered Saline (TBS; Tris 24.2 g, NaCl 80 g, added ddH2O to 1000 mL, pH 7.4) containing
0.1% tween 20 for 1 h at 25 ◦C. The membranes were incubated with primary antibodies against
phosphorylation of the insulin receptor Tyr 1162/1163, 1:1000 (Santa Cruz Biotechnology, Inc., Dallas,
TX, USA), the insulin receptor β-subunit (1:1000, Santa Cruz Biotechnology, Inc., Dallas, TX, USA),
phosphorylated AKT (Ser 473, 1:1000, Cell Signaling Technology, Inc, Danvers, MA, USA), AKT
(1:1000, Cell Signaling Technology, Inc, Danvers, MA, USA), phosphorylated GSK-3β (Ser 9, 1:1000, Cell
Signaling Technology, Inc, Danvers, MA, USA), GSK-3β (1:1000, Cell Signaling Technology, Inc, Danvers,
MA, USA), Amyloid precursor protein (N-terminus, 1:1000, Merck Millipore, Burlington, MA, USA),
Amyloid β (1:1000, Abcam, Cambridge, UK), phosphorylated tau (Ser 396, 1:1000, Invitrogen, Carlsbad,
CA, USA), Tau5 (1:1000, Calbiochem, city, CA, USA), Bax (1:1000, Santa Cruz Biotechnology, Inc.,
Dallas, TX, USA), Bcl-2 (1:1000, Cell Signaling Technology, Inc, Danvers, MA, USA), and β-actin (1:1000,
Santa Cruz Biotechnology, Inc., Dallas, TX, USA) at 4 ◦C overnight, followed by incubation with
horseradish peroxidase-conjugated anti-rabbit IgG (1:2000, Santa Cruz Biotechnology, Inc., TX, USA).
The protein bands were visualized by ECL Western blotting detection reagent and quantitated using
Image J software.

4.8. Data Analysis

All data were expressed as mean ± standard error of mean (SEM). The Kruskal–Wallis Test,
followed by Dunn’s post-hoc analysis, was used to determine the differences between groups. p < 0.05
was considered statistically significant. All experiments shown were performed with at least 3
individual experiments (n = 3).
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Abbreviations

AD Alzheimer’s disease
GLP-1 Glucagon-like peptide-1
Aβ Amyloid-beta
T2 DM Diabetes mellitus type 2
IRs Insulin receptors
IRS-1 Insulin receptor substrate 1
GSK-3β Glycogen synthase kinase-3 beta
BACE-1 Beta secretase 1 or β-site amyloid precursor protein cleaving enzyme 1
PKB Protein kinase B
APP Amyloid Precursor Protein
NFTs Neurofibrillary tangles
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