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Abstract: Fungal diversity is one of the most important indicators of overall forest biodiversity
and its health. However, scarce information exists on the state of macrofungal communities of
mountain forests in Serbia, making it one of the countries with the least-published mycological
data in the Mediterranean and Balkan region of Europe. This paper presents the results of the
first comprehensive, long-term study of macrofungal communities in some of the most important
mountain forest ecosystems in Serbia (Tara, Kopaonik and Vidlič). In the course of three consecutive
years, the sampling of five permanent experimental plots resulted in 245 species of macrofungi,
classified into three functional groups (terricolous saprothrophs, lignicolous, and mycorrhizal fungi).
Special attention was given to protected and indicator species, which point out the great value of
studied forest habitats and the importance of their conservation. It was found that precipitation,
habitat humidity, and temperature significantly influence the occurrence and distribution, primarily
of mycorrhizal and lignicolous group of fungi. Thus, the continuation of long-term monitoring is
crucial in order to more precisely determine which groups/species of macrofungi would, and to what
extent they would, adapt to a rapidly changing climate.
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1. Introduction

Forests are ecosystems with exceptional biodiversity. Nowadays, they are also among
the most threatened ecosystems due to unsustainable management, pollution and climate
change. Fungi play a very important role in the ecological balance of forest ecosystems.
They represent crucial decomposers of organic matter, members of mycorrhizal communi-
ties necessary for the normal development of trees, as well as accumulators and degraders
of harmful materials. Due to this, fungal diversity is one of the most important indicators
of forests health [1]. Monitoring the state of fungal communities, their abundance, their
dynamics of occurrence, and their interrelationships can serve as an early, extremely sen-
sitive indicator of changes in a given environment (such as drought and eutrophication,
soil acidification, pollution with harmful substances, and habitat changes in the form of
deforestation) that can have a negative impact on plants species and especially on the trees
that make up the main biomass of forest ecosystems [2–4].

Due to the exceptional ecological importance of macrofungi, research on their synecol-
ogy, biogeography, and conservation status is becoming more and more plentiful [5–13].
Nevertheless, papers related to mycological research on forest habitats most often deal with
the issue of only certain ecological groups of macrofungi: exclusively mycorrhizal [4–18]
or lignicolous [8,19–23]. In contrast, studies covering the overall diversity of all ecological
and taxonomic groups of macrofungi are considerably less frequent [24–28]. Thus, the
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importance of diverse data (concerning various aspects of mycopopulations) for under-
standing the vitality of the entire community of fungi and, consequently, forest habitats
may be neglected.

Previous studies [29–31] indicate that increasingly frequent changes in climatic factors
lead to specific changes within macrofungal communities, which relate to the dynamics of
fructification, the number of recorded species, and the different contributions of individual
functional groups (mycorrhizal, parasitic, and saprotrophic). The mentioned influences are
also observed on a wider level, in terms of changes in the distribution range of individual
species [32]. The literature data on the influence of abiotic factors on macrofungal diversity
is very heterogeneous and inconsistent for several reasons. In the first place, there is a
great variety of studied factors (various macro and microclimatic factors, edaphic factors);
hence, it is difficult to perform a comparison with the literature data. The majority of
studies address the effects of a single or just a few factors such as drought, precipitation, air
temperature, CO2 level, or soil pH [33–37], while some studies deal with only one specific
group of factors, most commonly edaphic [38–40], climatic [32,41] or habitat factors [42–44].
In addition, there is a difference in terms of analyzed data as well as examined mycocenoses.
The fewest number of research papers deal with the influence of abiotic factors on the
complete mycodiversity of an area, more precisely on the total number of fungi, the presence
of different functional groups within the community, and the composition of species within
communities [10,25,31,45–47]. Most studies have examined the influence of climatic factors
on the production of fruiting bodies and the phenology of macrofungi [32,48,49], and the
diversity of exclusively mycorrhizal or lignocolous fungi [14,30,50–54]. Concerning the
mycorrhizal group, in most cases the influence of edaphic factors is examined, primarily
the pH value, structure, content of mineral, and organic matter in the soil [55–59]. The
ecological research of the lignicolous group was mostly related to habitat factors and
characteristics of the wood substrate [34,42,60–65].

Compared with many other European countries, studies on the fungal diversity,
ecology, and community dynamics in the specific forest habitats are still scarce in the
region of the Mediterranean and Balkans, with Serbia representing one of the countries
with the fewest published data. Therefore, the aim of this paper was to present the first
results of the long-term monitoring of macrofungi in some of the most important mountain
forest ecosystems in Serbia and to provide insight into their relationship with some of
the abiotic factors (air temperature, air humidity, soil humidity, and precipitation) that
are rapidly changing as a consequence of accelerated climate change and may lead to
significant changes in fungal communities.

2. Materials and Methods
2.1. Study Sites and Experimental Plots

This research was carried out in three protected mountain areas in Serbia (Figure 1):
Mitrovac, Mt. Tara (2 study sites); Metod̄e, Mt. Kopaonik (1 study site); and Vzganica, Mt.
Vidlič (2 study sites). For long-term monitoring purposes, permanent experimental areas
were specifically designed according to the standards set for the analysis of mycodiversity
in forest ecosystems [66]. In each of the five examined forest sites, one rectangular or square
experimental plot (1000 m2 in size) was marked. Each plot was chosen as a representative,
homogeneous sample of the studied forest community.

Vidlič is predominantly positioned in the southeastern part of Serbia. The locality of
Vzganica is located on the northeastern side of the Vidlič Mountain, at an altitude of 900
to 1200 m. It is characterized by a limestone substrate from the Jurassic period, which is
covered with brown soil. Two experimental plots (“Plot 1” and “Plot 2”, Figure 1) were
established in different forest types, both in an area under the III degree of protection,
which belongs to the protected zone of the Stara Planina Nature Park [67]. Plot 1 was set
in the stand of autochthonous beech, which regenerated independently after the fire in
1962 (Fagus moesiaca (K. Maly) Czecz.; central point 43◦10′42.27′′ N, 22◦42′54.01′′ E; altitude
1015 m above sea level; NE exposure; 6–15◦ slope). Plot 2 was set in the stand of a non-
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native species-Douglas fir, planted in the natural beech habitat after the aforementioned fire
(Pseudotsuga menziesii (Mirb.) Franco; central point 43◦10′51.17′′ N, 22◦42′31.05′′ E; altitude
1015 m a.s.l.; NE exposure; ~10◦ slope).
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Figure 1. Map of Serbia, with locations of the study areas and representative forest plots.

Kopaonik represents the largest mountain range in the central part of Serbia, with the
highest peak at 2017 m. The Metod̄e locality is a Nature Reserve, under the 1st degree of
protection, within the Kopaonik National Park [67]. The specific geological base is in the
form of granite, metamorphic rocks, and serpentine. On the specific part of the locality,
where this research was carried out, there is a forest type of spruce with a beak-Luzula
sylvatica (Picetum-excelsea serbicum luzuletosom). The experimental area, “plot 3”, is located
on the northern slope of one of the high ridges that surround the valley of the stream that
flows through Metod̄e (Figure 1). This forest stand is dominated by spruce trees of differ-
ent ages (Picea abies (L.), with a smaller number of beech trees (Fagus sylvatica L.) mostly
present in the young developmental stages (GPS coordinates: 43◦18′18.1′′ N, 20◦50′38.4′′ E;
1450 m a.s.l.; NE exposure; 30% slope).

Mountain Tara represents a part of the Dinaric Alps, located in western Serbia (the
highest point-1591 m). Tara is one of the most important refugial habitats in Europe, with
many rare, relict, and endemic species. Site Mitrovac is a large plateau located in the central
part of Tara Mountain, at about 1080 m above sea level. It is characterized by the presence
of a forest association of spruce, fir, and beech-Piceo-Abietetum Čol. 1965 (syn. Piceo-Abieti-
Fagetum moesiacum Mišić et al., 1978), which is the most represented phytocenosis on Mt.
Tara. Leaching from the surrounding higher areas and the accumulation of organic material
in the Mitrovac valley resulted in a deeper, weakly acidic to basic soil, which represents
a deposit of humus and undecayed parts of the forest litter. Two experimental areas in
Mitrovac—“plot 4” and “plot 5”—represent stands of spruce (Picea abies (L.) Karsten),
fir (Abies alba Mill.), and beech (Fagus moesiaca (K. Maly) Czecz) (Figure 1). Plot 4 is
placed within the area under the II degree of protection (GPS coordinates: 43◦55′06.1′′

N, 19◦25′33.6′′ E; 1080 m a.s.l.; NE exposure; 3–5◦ slope). It is located on a flat plateau,
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bordered by streams and sinkholes on two adjacent sides, while the other two sides are
bordered by parts of the forest that have been thinned by sanitary logging. Plot 5 (GPS
coordinates: 43◦55′00.18′′ N, 19◦25′11.61′′ E; 1080 m a.s.l.; NE exposure; 3–5◦ slope) belongs
to the peripheral part of the Nature Reserve “Crveni potok” (I degree of protection). There
was no intensive exploitation of wood here, so thanks to this, the rainforest type of forest
was preserved.

2.2. Fungal Sampling, Identification, and Data Analysis

Investigation of macrofungal diversity was conducted during the vegetation period of
three consecutive years: 2011–2013 (four field trips during the first and last year and three
field trips during the second year). Established permanent plots were carefully examined for
the presence of fungal fruiting bodies. All macrofungal sporocarps were recorded, having
in mind a simple presence-absence evaluation. Each fungus was photographed in the field,
using a Nikon Coolpix P90 camera. A long period of transport and often unfavorable
conditions (high temperatures, sporocarps damaged before sampling) resulted in the loss
of one portion of collected samples or the possibility of identification only to the genus
level. A laboratory examination implied an analysis of the macro- and micromorphological
characteristics of fresh sporocarps, as well as specific chemical reactions. An examination
of microscopic features was carried out on Olympus BX51, Japan. The Department of
Literature’s Library, online books, keys, and specialized mycological sites were consulted
during the identification process [68–79]. The nomenclature of the species names is in
accordance with the database “Index Fungorum” (www.indexfungorum.org). Finally,
representative specimens of each species were oven-dried on 50 ◦C (Scholtes FP 955.3).
Dried material, spore prints, and microscope slides were deposited in the Fungarium
collection of the ProFungi laboratory and within BUNS Herbarium (Department of Biology
and Ecology, Faculty of Sciences, University of Novi Sad).

Species richness and composition served as the measures of macrofungal diversity. In
order to assess the functional values of investigated sites, each fungal species was assigned
to a specific functional–trophic group (lignicolus/terricolous saprotrophs/mycorrhizal)
based on their primary mode of nutrition. The group of lignicolous fungi includes sapro-
trophs and parasites, given that only one species was found to be parasitic, but it was also
found to be predominantlysaprotrophic at the same locality (Fomitopsis pinicola at the site
Mitrovac, Tara Mt., plot 5). The group of terriculous saprotrophs also includes species that
appeared within the litter, on the remains of leaves, needles, and twigs, due to the small
number of such findings.

2.3. Measurement and Analysis of Abiotic Factors

In order to monitor microclimate characteristics, several parameters were measured at
each site: temperature (T), relative air humidity (AH), and the dynamics of soil moisture
(SM). Relative air humidity and air temperature in the stands were continuosly monitored
by sensors, on hourly basis. The sensors were placed on trees, 2 m above ground. Based
on these data, an analysis of mean daily and monthly temperatures was carried out. Soil
moisture was determined at a depth of 10 cm. Samples were taken once a month from
the same stand, at approximately the same place. Data on the precipitation (P) amount
were obtained from the Republic Hydrometeorological Service of Serbia and represent the
results from the weather stations nearest to each investigated site: “Zlatibor” (nearest to
Mitrovac, Tara), “Kopaonik” (nearest to Metod̄e, Kopaonik), and “Dimitrovgrad” (nearest
to Vzganica, Vidlič).

2.4. Statistical Analysis

The Sorensen similarity index was used in order to compare the investigated forest
stands based on the species composition of their mycocenoses (i.e., the contribution of
mutually similar macrofungal taxa in the total number of taxa of specific habitat pairs).

www.indexfungorum.org
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The obtained data on the species richness, distribution, and influence of abiotic factors
were statistically processed using Microsoft Office Excel 2007 and XlStat Basic by Addinsoft
(New York, NY, USA, www.xlstat.com, accessed on: 15 July 2022.). The following statistical
analysis were applied: correlation analysis, correspondent analysis (CA), partial least
square regression (PLS), and canonical correspondence analysis (CCA).

In order to examine the preference of recorded macrofungal species for certain types of
forest habitats and their distribution, three-year data on their occurrence and representation
within the examined experimental plots were subjected to multivariate statistical processing
in the form of correspondent analysis (CA). For the purpose of the easier visualization of
a large number of data, three separate analyzes of the identified species were performed,
with one CA for each established functional group of macrofungi (mycorrhizal, lignicolous,
and terricolous saprotrophs).

The influence of abiotic factors on the number of macrofungi within the mycocenoses
of the observed forest habitats was determined by statistical processing of the obtained
three-year results using the method of partial projections of the smallest squares, i.e., PLS
(partial least square) regression.

In order to examine the redistribution of recorded macrofungal species within different
habitats, according to abiotic environmental factors, the obtained three-year results were
subjected to multivariate statistical processing through canonical correspondent analysis
(CCA). This enables the simultaneous processing of two sets of different data (variables)—
in this case, data on the frequency of species on certain plots and data on abiotic factors
measured on given plots (T, P, AH, and SM).

3. Results and Discussion
3.1. Species Diversity and Representation of Macrofungi within Studied Forest Habitats

During the three-year study of five permanent plots, in different forest habitats, a total
of 245 fungal taxa were recorded (Table S1), belonging to the phyla Basidiomycota (227 taxa,
93%) and Ascomycota (18 taxa, 7%) and further classified within 100 genera, 53 families,
16 orders, and 5 class. The most represented genera were Mycena (43) and Russula (34),
whose representatives make up 31% of the total diversity. These two genera appeared
among the most represented ones in several other mycocenological papers [80–84]. The
minority of the recorded taxa (10%) were present during each year of research. Species
with a high frequency of occurrence during all three years were: Cerioporus varius, Mycetinis
alliaceus, Ganoderma applanatum, Hymenopellis radicata, Fomitopsis pinicola, Mycena pura, and
Hypholoma fasciculare.

Among the investigated mountainous forests, stands of spruce, fir, and beech in
Mitrovac, Tara Mt. (Plot 4 and 5) stood out in terms of their macrofungal diversity (Figure 2).
These well preserved old forests with diverse composition of woody species and water-rich
substrates provide a good foundation for high fungal diversity. Several mycological studies
in Central Europe have also shown that old mixed forests of beech, spruce, and fir are
habitats of extremely diverse macrofungal communities, with a large number of rare and
endangered species [85–87]. The protected forest habitats at Tara Mt. stand out, not only
in terms of the total number of recorded species but also the presence of species that are
interesting from a conservational perspective. Among them are species specialized in
mosses as a specific substrate: Galerina hypnorum, Rickenella fibula, Rickenella swartzii, and
Entocybe nitida, which are recognized as potential indicators of wet forest habitats [88–90].
Hericium coralloides and Mycena laevigata found at plot 5 are indicator species of valuable
old forests [87,91,92] and together with the other values of this peripheral part of the
Nature Reserve Crveni potok may serve for the consideration of the expansion of a strictly
protected area.

www.xlstat.com


J. Fungi 2022, 8, 1074 6 of 18

J. Fungi 2022, 8, x FOR PEER REVIEW 6 of 19 
 

 

habitats [88–90]. Hericium coralloides and Mycena laevigata found at plot 5 are indicator 

species of valuable old forests [87,91,92] and together with the other values of this 

peripheral part of the Nature Reserve Crveni potok may serve for the consideration of the 

expansion of a strictly protected area. 

 

Figure 2. Map of Serbia, with locations of the study areas and representative forest plots. 

According to the total number of findings and the identified macrofungal taxa, the 

stand of autochthonous Moesian beech on the site Vzganica, Vidlič Mt. (P1) and the stand 

of spruce and beech at Metođe, Kopaonik Mt. (P3) follow the habitats on Tara (Figure 2). 

The dominant fungal species in the indigenous beech forest (P1) were Cerioporus varius, 

Hymenopellis radicata, Marasmius bulliardii, Megacollybia platyphylla, and Coprinellus xan-

thotrics, respectfully, as well as Phallus impudicus and Trametes versicolor as the only spe-

cies present on both experimental plots at Vzganica. These species seem to favor beech 

forests, which is in agreement with previous studies [26,80,86,93,94]. Important find-

ings—unique for the autochthonous beech habitat on Vidlič (P1)—are Flammulaster mu-

ricatus and Polyporus arcularius. F. muricatus was evaluated as an indicator of valuable 

beech forests of special conservation importance at the European level [95], while both 

species were proposed as indicators of nature value in German forests [96]. 

The mixed forest stand on Kopaonik (P3) was also dominated by C. varius as the 

only species present during each month of research and always with a large number of 

sporocarps. This high frequency of sporocarps, covering a large area of examined sites, 

was also noted in the work of Simmel [90]. The other dominant species in this habitat, 

present several times during the three-year research, was Amanita battarrae, which was 

also recorded on P4 at Mitrovac (Tara). This mycorrhizal species is indigenous to Europe 

and is considered relatively rare [78,79]. 

Planted Douglas fir stand on Vzganica, Vidlič (P2) was singled out as the poorest 

macrofungal habitat (Figure 2), which was expected considering its altered nature. 

Among the investigated sites, this is the only planted forest stand with an introduced tree 

species—Pseudotsuga menziesii (Mirb.) Franco, originating from North America. Some of 

the studies in Europe determined that the number of macrofungi in the protected parts of 

forest reserves is up to 2 × higher in relation to the number of species in forests with ac-

tive forest management, as well as in coniferous plantations in a beech habitat [26,87]. 

Other studies have also showed the decline of macrofungal species related to the con-

version of forest habitats [81,97]. Among the macrofungi observed at allochthonous co-

niferous forest in Vzganica (P2), only the species Amanita fulva, Amanita rubescens, Hyd-

num repandum, Cantharellus cibarius, Mycena galopus, Phallus impudicus, Laccaria laccata, and 

Figure 2. Map of Serbia, with locations of the study areas and representative forest plots.

According to the total number of findings and the identified macrofungal taxa, the
stand of autochthonous Moesian beech on the site Vzganica, Vidlič Mt. (P1) and the
stand of spruce and beech at Metod̄e, Kopaonik Mt. (P3) follow the habitats on Tara
(Figure 2). The dominant fungal species in the indigenous beech forest (P1) were Cerioporus
varius, Hymenopellis radicata, Marasmius bulliardii, Megacollybia platyphylla, and Coprinellus
xanthotrics, respectfully, as well as Phallus impudicus and Trametes versicolor as the only
species present on both experimental plots at Vzganica. These species seem to favor beech
forests, which is in agreement with previous studies [26,80,86,93,94]. Important findings—
unique for the autochthonous beech habitat on Vidlič (P1)—are Flammulaster muricatus and
Polyporus arcularius. F. muricatus was evaluated as an indicator of valuable beech forests
of special conservation importance at the European level [95], while both species were
proposed as indicators of nature value in German forests [96].

The mixed forest stand on Kopaonik (P3) was also dominated by C. varius as the
only species present during each month of research and always with a large number of
sporocarps. This high frequency of sporocarps, covering a large area of examined sites,
was also noted in the work of Simmel [90]. The other dominant species in this habitat,
present several times during the three-year research, was Amanita battarrae, which was also
recorded on P4 at Mitrovac (Tara). This mycorrhizal species is indigenous to Europe and is
considered relatively rare [78,79].

Planted Douglas fir stand on Vzganica, Vidlič (P2) was singled out as the poorest
macrofungal habitat (Figure 2), which was expected considering its altered nature. Among
the investigated sites, this is the only planted forest stand with an introduced tree species—
Pseudotsuga menziesii (Mirb.) Franco, originating from North America. Some of the studies
in Europe determined that the number of macrofungi in the protected parts of forest re-
serves is up to 2 × higher in relation to the number of species in forests with active forest
management, as well as in coniferous plantations in a beech habitat [26,87]. Other studies
have also showed the decline of macrofungal species related to the conversion of forest
habitats [81,97]. Among the macrofungi observed at allochthonous coniferous forest in
Vzganica (P2), only the species Amanita fulva, Amanita rubescens, Hydnum repandum, Can-
tharellus cibarius, Mycena galopus, Phallus impudicus, Laccaria laccata, and Hypholoma capnoides
were previously found to occur with Douglas fir [23,98,99]. Other species, recorded only at
this forest stand (35 species, 73%), are not specific for Douglas fir as a partner or host.
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3.2. Functional Diversity of Macrofungi

Fungal taxa identified in this study were recognized as the members of the following
functional groups: lignicolous (104 species, 43%) > mycorrhizal (79 species, 32%) > terri-
colous saprotrophs (62 species, 25%). A similar representation of these functional groups
was documented in other studies of forest macrofungal diversity [84,100].

The mycocenosis of spruce and beech forest at Metod̄e, Kopaonik Mt. (P3) had a similar
representation of species within all three functional groups (Figure 3): 19 mycorrhizal
species (32%), 22 lignicolous (37%), and 18 tericolous (31%). A similar result was noted
within allochthonous Douglas fir stand at Vidlič (P2).
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Figure 3. Functional diversity of macrofungi within different forest habitats.

In terms of the number of species, the lignicolous group predominates among all of
the studied plots, except the Douglas firs stand on Vzganica, Vidlič—plot P2. Mixed forests
of spruce, beech, and fir on Mitrovac, Tara Mt. had the highest number of lignicolous fungi
among the observed habitats (61 on P4, 35 on P5). Experimental areas on Tara are located
in protected parts of the National Park with minimal interventions (the felling of trees, the
extraction of fallen logs and stumps), which resulted in higher amount of wood residues
suitable for the development of lignicolous fungi. Other studies of lignicolous fungi also
showed higher species richness in study sites with a higher number of tree species and less
human intervention [42,43,87,97,101–103].

Forest stands in Mitrovac, Tara Mt stood out with the highest number of mycorrhizal
species (30 species on P4 and 21 species on P5), while the fungal community in Metod̄e,
Kopaonik Mt. had the biggest share of this functional group. The smallest share of
mycorrhizal macrofungi was observed in the stand of beech, P1, on Vidlič (6 species, 11%).
These results are in agreement with the literature data showing that diversity of mycorrhizal
species is positively associated with tree species diversity [104,105]. Additionally, based
on the observations of several authors [93,106], the thickness of the litter and humus in
Beech forests can affect the weaker development of mycorrhizal species. On the contrary,
a relatively high share of the mycorrhizal group was found in the allochthonous forest
habitat on Vidlič (P2-13 species, 27%). However, the mycorrhizal species found on P2 is
typical for autochthonous deciduous and coniferous forests of this region. Among those,
Russula grisea and Lactarius vellereus often prefer beech as a partner [107–109]. Similarly,
Lactarius volemus and Amanita fulva were often reported within forest habitats of beech and
spruce [78,107]. Thus, it may be questioned if the mycelium of the mycorrhizal species
within the Douglas fir stand may originate from the surrounding indigenous beech forest
or from spruces that also appear on the peripheral parts of Douglas fir plantation. A study
by Jonsson et al. [110] showed that ectomycorrhizal communities of macrofungi have a
high degree of continuity along a number of plots within a particular forest habitat.
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Despite differences in the representation of the terricolous saprotrophs within each
individual forest habitat, the number of recorded species of this functional group was
uniform among different experimental plots. In the work of Dvořák et al. [87], a uniform
diversity of terricolous saprotrophs in mixed stands with different management practices
(without or with different degrees of forestry interventions) was found.

3.3. Distribution of Macrofungi across Studied Forest Habitats

Concerning species assemblages of studied forest habitats, the greatest similarity
(Table 1) was observed amongst macrofungal communities of autochthonous mixed, pre-
dominantly coniferous, forest habitats (experimental plots P3, P4 and P5 (Si: 0.21–0.34)),
while the broadleaf forest stand had lowest similarity with most of the other investigated
plots (Si: 0.18–0.23; Sisr (P1): 0.22). These data confirm the existence of differences in the
composition of mycocenoses of deciduous and coniferous forest habitats, which has been
noted in studies by other authors [80,111–113]. It was important to observe that beech
forest stand on Vzganica, Vidlič Mt. (P1) showed the highest number of similar fungal
species with the Douglas fir stand (P2) on the same locality.

Table 1. Sorensen similarity index (Si).

P1 P2 P3 P4 P5 Siav

P1 0.26 0.20 0.18 0.23 0.22

P2 13 0.24 0.17 0.30 0.24

P3 11 13 0.21 0.30 0.24

P4 15 13 18 0.34 0.23

P5 15 19 21 32 0.29
Siav—average index value for each experimental plot; values in italic-number of macrofungi common to different
forest habitats.

Each of the three CA diagrams (Figure 4) represents a distribution biplot of identified
species within a specific functional group and corresponding experimental plots. The
group of mycorrhizal macrofungi had the largest share (90%) of species unique for only
one of the investigated plots (presented as “Groups P1–P5” in the centrioles that overlap
with the points of the plots where they were found), which is partly related to their
host specificity [83,100,114]. Only eight mycorrhizal species (10%) were recorded within
several investigated forest habitats, being mostly shared by coniferous and/or mixed forest
stands: Hydnum repandum (P2, P5), Amanita rubescens (P2, P5), Laccaria laccata (P2, P3),
Boletus luridus (P4, P5), Porphyrellus porphyrosporus (P3, P5), Amanita battarrae (P3, P4),
and Russula cyanoxantha (P1, P4, and P5). Among these, only Cantharellus cibarius was
found in four out of five experimental plots, being absent only from the purely deciduous
habitat P1 at Vzganica, Vidlič Mt. These results confirm the findings of other authors,
which demonstrated that aforementioned species have a broad prevalence and a wide host
range [76,79,100,112,115].

Similar to the group of mycorrhizal species, among the recorded lignocolous macro-
fungi most species (76%) were found only in one of the examined forest habitats. This
coincides with the results of the research on lignicolous macrofungi at the European level,
which showed distinct differentiation in species composition among study sites (even
those with the same tree species), which was linked with variations in wood decay stage,
climatic conditions, and management history [100,102,116]. Among lignocolous species
that demonstrated the widest distribution across study sites were Bjerkandera adusta (P1,
P3, P4, and P5), Calocera viscosa (P2, P3, P4, and P5), Cerioporus varius (P1, P2, P3, and P5),
Hymenopellis radicata (P1, P2, P3, and P4), Pluteus cervinus (P1, P3, P4, and P5), and Xylaria
hypoxylon (P1, P2, P4, and P5). Only two lignicolous species were present in all of the
investigated forest communities and experimental plots—Hypholoma fasciculare and Mycena
galericulata. These lignicolous species, which are present within multiple forest stands, are



J. Fungi 2022, 8, 1074 9 of 18

known as species that are not strictly substrate-specific and are often present in beech and
spruce forests in Europe [70,100].

1 
 

 

 
  

Figure 4. CA analysis of species distribution across studied forest habitats: (A) within the mycorrhizal
group, (B) within the lignocolous group, and (C) within the group of terricolous saprotrophs. Legend:
dots labeled as Group P1, P2, P3, P4, and P5 represent all the species found only within one specific
plot (they are grouped in centrioles that overlap with the points of the corresponding plots).

Compared to the previous functional groups, terricolous saprotrophs have a smaller
share of species unique for only one of the studied plots (71%). Unlike mycorrhizal and
lignocolous fungi, they are lower substrate or habitat management preferences [83,100]. A
recent study in China also reported that the saprotrophic group had the highest number
of co-occurring genera within six different forest regions [84]. In our work, terricolous
species distinguished for their high degree of distribution were Lycoperdon perlatum (P2,
P3, and P5), Gymnopus dryophilus (P1, P2, P3, and P5), Gymnopus androsaceus (P2, P3, P4,
and P5), and Mycena sanguinolenta (P2, P3, P4, and P5). Only Mycena pura and Mycena
galericulata were noted in all five experimental plots and had the widest distribution among
all terricolous saprotrophs.

3.4. Influence of Abiotic Factors on Macrofungal Species Richness

The results of the PLS analysis (Figure 5) are depicting the variability between overall
data related to the number of macrofungal species (the total number of registered species
and the number of species within different ecological groups) and measured abiotic factors
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across all of the study sites. Several groups of data can be observed, influenced by a
different combination of abiotic factors.
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Figure 5. PLS analysis of the dependence of the macrofungal species richness on abiotic factors.
Legend: independent variables (axis X): T−air temperature, P−mean monthly precipitation, AH−air
humidity, SM−soil moisture; dependent variables (axis Y): TNS−total number of identified species,
NoMik−number of mycorrhizal species, NoLig−number of lignicolous species, and NoTer−number
of terricolous saprotrophs.

The first group, consisting of the total number of identified species (TNS) and the
number of lignicolous species (NoLig), was positively influenced by air humidity, precipi-
tation, and soil moisture. It has already been recorded that the total number of registered
macrofungal species in forests increases with increasing precipitation and air humid-
ity [36,84,101,117]. Studies conducted in tropical forests in Costa Rica and Peninsular
Malaysia [24,97] found that the number of lignicolous macrofungi increases with the in-
crease in precipitation, air humidity, and soil moisture, which is in accordance with our
results. Similarly, studies in European forests [35,101,118] found that macroclimatic factors
(air temperature, precipitation, air humidity, and soil humidity) significantly affect the
number of lignicolous fungi.

Data on the number of mycorrhizal macrofungi (NoMyc) and terricolous saprotrophs
(NoTer) were isolated on opposite sides of the PLS diagram. The number of mycorrhizal
macrofungi depended almost entirely on precipitation, but it also showed a positive
correlation with air humidity. This confirms the observations of Lagan et al. [45], which
also showed a significant dependence of the mycorrhizal macrofungi species richness in
relation to precipitation. The number of terricolous saprotrophs in our research was mostly
influenced by soil moisture and to a lesser extent by the air temperature, while precipitation
and air humidity did not have a significant impact. Contrary to our findings, the abundance
of terricolous saprotrophic fungi in the tropical forests of Malaysia was determined mainly
by relative air humidity, next to habitat type and substrate richness [97].

3.5. Influence of Abiotic Factors on the Composition and Distribution of Macrofungal Communities
across Studied Forest Habitats

The results of the CCA analysis are presented in “triplot” diagrams (Figures 6 and 7).
The only CCA analysis that did not provide results refers to the group of terricolous
saprotrophs, indicating that their composition and distribution across the investigated plots
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cannot be explained by the influence of the examined abiotic factors. This is in agreement
with the results of a group of authors [46] who examined the influence of environmental
factors on the distribution and composition of macrofungi in coniferous pine forests in
China. Their research (NMDS analysis) did not establish a significant relationship between
saprotrophic macrofungi and analyzed abiotic factors (air temperature, humidity, and
soil temperature).
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Figure 6. CCA analysis of the influence of abiotic factors on the composition of mycorrhizal group
of macrofungi.

Comparing the results of CCA (Figure 6) and PLS (Figure 5) analysis, it can be seen
that the examined abiotic factors affect the species richness of the mycorrhizal group of
macrofungi, as well as the specific redistribution of mycorrhizal species between different
forest habitats, in a similar way. Such observations have so far not been recorded in the
available mycocenological studies [31,33,35,46]. Based on the length of the vectors repre-
senting the gradients of abiotic factors, the variability of the observed data (distribution
of species) is mostly contributed by the average monthly precipitation. Soil moisture and
air humidity are somewhat less important, while the contribution of temperature is very
small in relation to other environmental factors. These results are in line with the results
of research on the variability of mycorrhizal communities of Scots pine, which showed
that precipitation and soil moisture significantly affect the composition of ectomycorrhizal
communities [119]. Studies of changes in mycorrhizal communities along the experimen-
tal hydrological gradient have shown that different soil moisture can significantly affect
changes in the composition of mycorrhizal communities [120]. Studies based on experi-
mental heat treatments have shown that an elevated temperature can also affect changes in
mycorrhizal macrofungal communities [121,122].
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Figure 7. Partial CCA analysis of the influence of abiotic factors on the composition of lignocolous
group of macrofungi.

By projecting the points that denote different species of mycorrhizal macrofungi on the
corresponding vectors of the CCA diagram, we obtain information on what abiotic factors
favored their appearance on certain experimental plots. The species concentrated in the
center of the diagram are omitted in the interpretation of the results as they correspond to
the mean values of the examined factors. R. cyanescens (observed at P1, P4, and P5), as well
as all the species marked in blue on the diagram, which are unique for the plots P4 and P5
(Tara Mt.), stood out as species prone to wet, colder habitats. Their fructification was mostly
affected by high SM, as well as high AH and higher amounts of P. The species grouped
in the second quadrant (+ part of the F1 axis and − part of the F2 axis) corresponded
to moderate air temperature and moderate amounts of precipitation. Species Amanita
rubescens and Cantharellus cibarius, which are positioned closest to the center of the diagram,
stood out as species that prefer moderate values of all examined parameters. In the works
of other authors, they were also recognized as mesophilic species [31,123,124]. The same
was concluded for several other species: Hydnum repandum, Russula foetens, and Lactarius
vellereus, which were, on the contrary, in our research singled out as distinctly thermophilic
macrofungi. Together with other species from the third quadrant (part of the F1 axis and
part of the F2 axis), they were recorded in dry periods, with higher T. All species distributed
in the negative part of the vertical axis were detected in the period of low humidity, among
which only Cortinarius croceus is already listed in the literature as a common species in dry
habitats [125].

According to CCA analysis for the lignicolous species, precipitation does not contribute
to their distribution and representation within different plots, which was expected for this
often xerophilous group of fungi. In order to obtain an appropriate model of variability
depending on the remaining three examined abiotic factors (T, AH, and SM), the influence
of precipitation was excluded from the analysis using the partial CCA statistical method
(Figure 7). The pCCA triplot data for lignicolous species of macrofungi explains the overall
100% variability in species distribution of this functional group. The horizontal−F1 axis
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carries as much as 97.89% of the total variability, with the greatest contribution of AH and
T, respectively, including SM, which was inversely correlated with them. The occurrence
of species grouped in the first, positive quadrant (+part of the F1 axis, +part of the F2
axis) correlated with high AH and T. Species grouped in the second quadrant (+part of
the F1 axis, negative part of the F2 axis) were observed in periods with moderate values
of the examined abiotic parameters, while the appearance of lignicolous species from the
third, negative quadrant coincides with the periods of low AH and T and high SM. As in
the case of the analysis of mycorrhizal macrofungi, the species concentrated in the center
of the diagram were omitted in the interpretation of the results, which means that they
preferred moderate (mean) values of the examined factors. The influence of analyzed
abiotic factors on the community structure of wood-inhabiting fungi is rarely documented
in the literature. Lignicolous fungi are known to differ significantly in terms of their
microclimatic preferences [61,126–128]. The results of some authors [30,51] showed that the
specific structuring of lignicolous fungal communities is influenced to a greater extent by
habitat and substrate characteristics (sun exposure, quantity, type, diameter, and the degree
of the decomposition of the available wood material) than climatic factors. The importance
of T and AH for the community composition of this fungal group, obtained in our research,
is in agreement with two other studies [118]. Although usually neglected in the diversity
analysis of lignicolous fungi, SM might play an important role in terms of maintaining the
humidity of wood substrates that are in contact with the soil [65,101].

4. Conclusions

Species richness, arising in the order P2 < P3 < P1 < P5, together with all the important
indicator species are pointing to the great importance of these forest habitats and the need to
further improve their conservation. All of the obtained results indicate that the diversity of
macrofungi reflects the state of the forest habitat and that analyzed abiotic factors strongly
affect not only their species richness but also their community structure and distribution,
which can also influence the overall balance of forest ecosystems. Thus, the continuation of
long-term monitoring is crucial in order to more precisely determine which groups/species
of mycrofungi, and to what extent, will adapt to a rapidly changing climate.
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