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Abstract: Gut-microbiota-targeted nutrition intervention has achieved success in the management
of obesity, but its underlying mechanism still needs extended exploration. An obese Prader–Willi
syndrome boy lost 25.8 kg after receiving a high-fiber dietary intervention for 105 days. The fecal
microbiome sequencing data taken from the boy on intervention days 0, 15, 30, 45, 60, 75, and 105,
along with clinical indexes, were used to construct a metagenome-scale metabolic network. Firstly,
the abundances of the microbial strains were obtained by mapping the sequencing reads onto the
assembly of gut organisms through use of reconstruction and analysis (AGORA) genomes. The
nutritional components of the diet were obtained through the Virtual Metabolic Human database.
Then, a community model was simulated using the Microbiome Modeling Toolbox. Finally, the
significant Spearman correlations among the metabolites and the clinical indexes were screened and
the strains that were producing these metabolites were identified. The high-fiber diet reduced the
overall amount of metabolite secretions, but the secretions of folic acid derivatives by Bifidobacterium
longum strains were increased and were significantly relevant to the observed weight loss. Reduced
metabolites might also have directly contributed to the weight loss or indirectly contribute by enhanc-
ing leptin and decreasing adiponectin. Metagenome-scale metabolic network technology provides a
cost-efficient solution for screening the functional microbial strains and metabolic pathways that are
responding to nutrition therapy.
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1. Introduction

Diverse dietary approaches have been developed in order to curb the worldwide
epidemic of obesity [1]. Food intake influences not only the human body but also the
microbiota that are colonizing the digestive tract. Estimated to be the same in number
as human cells, these large quantities of microbiota rapidly respond to the diet and the
metabolites that they produce after food fermentation can impact the host tissues, resulting
in beneficial or detrimental effects on human health [2,3]. In recent decades, gut-microbiota-
targeted nutrition intervention has received attention for use in the management of obesity
and other consequent diseases, such as diabetes, cancer, and hyperlipidemia [4–6]. The
success of this treatment has mainly been attributed to its modulation of microbial dysbiosis,
which is usually deduced from partial evidence [6]; for instance, the observed shift in the
microbial structure after intervention, functional demonstration of a few selected strains,
etc. Generally, these approaches cannot provide enough detailed information in order to
systematically explain the underlying mechanism [7].

Determining the metabolites that are produced by the gut microbiota is important
in understanding how the gut microbiota changes in response to the diet and how the
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microbiota influence the host afterward. However, this is challenging since current ex-
perimental technology is not able to fully profile the metabolites, due to the complexity
of the gut microbiota and the interactions among the microbiota communities [8]. With
the development of sequencing technology and the quickly increasing knowledge about
microbiota, inferring the function of gut microbiota through metagenome data has become
feasible. A widely used approach is to infer the metabolites and functional information
by mapping microbial sequencing reads or contigs to functional databases. However, the
results from these mappings lack precision since the presence of a particular gene does
not guarantee the expression of a functional enzyme [9]. Metabolic network simulation
provides an alternative method that can be used to simulate metabolite production, based
on metagenome data and the previously verified metabolic knowledge of the microbes [10].
A metabolic network contains nodes indicating metabolites and edges indicating biological
processes such as conversions, uptake, and secretion [8]. Compartments are used to sim-
ulate how different cells metabolically interact with each other [8]. Several methods are
available to complete metabolic network simulation, such as flux balance analysis (FBA)
and dynamic FBA (DFBA). FBA works at a steady-state, whereas DFBA works for dynamic
changes so it can only be used in small communities, due to the dramatically increased
time and costs of simulation [11–14]. In FBA, the reactions in the network are represented
by a set of linear equations, constraints are used to limit the flow of metabolites through
the network, and the distribution of metabolic fluxes in the metabolic network is calculated
for a given objective function. FBA is usually used to estimate the metabolic viability of
a microbial community under different conditions, as well as the effect of adding new
species to a bacterial community on host health [15].

Several software programs have been developed to simulate networks, such as Opt-
Com [16], BacArena [17], MiMoSa [18], FLYCOP [19], MICOM [9], Metage2Metabo [20],
and The Microbiome Modeling Toolbox [21]. The Microbiome Modeling Toolbox is based
on the constraint-based reconstruction and analysis (COBRA) approach, which provides
a molecular mechanistic framework for the integrative analysis of experimental data
and quantitative prediction of physiochemically and biochemically feasible phenotypic
states [22]. It can model microbial communities using microbial genome-scale metabolic re-
construction data by using flux variability analysis (FVA) [21,23]. Genomic-scale metabolic
models (GEMs), also known as genomic-scale metabolic reconstructions (GENREs), are
essential for metabolic network simulation. Several tools are available for constructing
GEMs [24]. As not all genes of an organism are active, the constraints of these automat-
ically generated GEMs should be manually refined. Some databases such as BiGG [25],
KBase [26], and CarveMe [27] provide GEMs. AGORA is a recently widely used, semi-
automated database that contains 818 human gut GEMs (we used 773 GEMs in this research,
v.1.03) and their gene sequences [28]. Since a wider variety of organisms is included in the
database, the GEMs can be more generally constructed, enabling the use of these GEMs in
different ways. Using the Microbiome Modeling Toolbox and AGORA, researchers found
the correlation between microbes, metabolites, and host diseases such as Clostridioides
difficile infection and inflammatory bowel disease [29–32].

In our previous trial, we found that a dietary intervention can reshape the gut micro-
biota and recover host health [3,33]. Diets that are rich in undigestible (but fermentable)
carbohydrates could significantly promote beneficial bacteria and reduce toxin producers,
which might contribute to the alleviation of metabolic deterioration in both simply and
genetically obese children, regardless of the primary forces driving the obesity [33]. From
the gut microbial analysis of the composition, single nucleotide polymorphisms (SNPs)
were found to occur, with virulence factors (VFs) being carried, indicating that the di-
etary intervention significantly changed the gut microbiota structure, genes, and genetic
properties [33–36]. Since the metabolites that are produced by the gut microbiota play
an important role in host–microbiota interactions, in this study we investigated how the
metabolites change during a dietary intervention and how these metabolites influence host
health conditions.
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An obese child with Prader–Willi syndrome (PWS) was selected as the representative
case in this study. This child’s body weight reduced from 140 to 114 kg after 105 days’
dietary intervention and both the plasma glucose and lipid homeostasis improved to within
the normal ranges [36]. Two systemic inflammation markers, C-reactive protein (CRP)
and serum amyloid A protein (SAA), also decreased. His adiponectin increased from
2.17 to 5.39 µg/mL and his leptin decreased from 63.8 to 34.5 ng/mL. In addition, the
amount of lipopolysaccharide-binding protein (LBP), a surrogate marker for the bacterial
antigen load in the blood [37], decreased. The focus of this study was to screen for the
functional microbial strains and metabolic pathways that might be important for weight
loss during a dietary intervention. We first built individual metabolic networks for each
sampling time point using the fecal metagenomic data and the nutrition information of
the given diet. Then, we focused on the systematic obesity-relevant metabolic networks
containing metabolites, microbiota, and clinical parameters. Finally, key metabolites and
their microbial producers were screened out.

2. Materials and Methods
2.1. Clinical Investigation

All the data from the PWS obese child (GD02, 14 years old, boy) that were used in
this study were obtained from a hospital-based intervention, which was performed at
Guangdong Women and Children Hospital in Guangzhou, China. In this intervention,
38 children in total (17 with PWS and 21 with simple obesity, aged from 3–16 years old)
had received a high-fiber dietary therapy in order to alleviate their obesity. The diet was
prepared in the form of ready-to-eat foods with three formulas (see the first column in
Table 1), containing whole grains, traditional Chinese medicinal foods, and prebiotics
(manufactured by Perfect (Zhongshan, China) Co., Ltd.) [38]. Additionally, the children
were provided with appropriate amounts of vegetables, fruits, and nuts according to a
dietician’s advice. The children were not asked to participate in any exercise program and
there was no limit to the amount of Formula 1 that they ate, but the provision of the other
two formulas was controlled. The intervention duration for the group of simple obesity
children was 30 days and for the PWS children it was 90 days; except in the case of GD02,
who had stayed in the hospital for a further 285 days since the point at which his BMI was
measured at 49.47 kg/m2 on day 90 and he was willing to continue the intervention. As
GD02’s compliance was good and his case had longer time point measurements available
that might be better suited for model construction, particularly with high-throughput data,
we chose this child as the representative in this metagenome-scale metabolic study. GD02’s
anthropometric and clinical indices (BMI, leptin, oral glucose tolerance test (OGTT), insulin
AUC, adiponectin, FFA, TNF-α, fasting plasma glycemia (FPG), and total cholesterol) were
measured at the hospital on the intervention days 0, 15, 30, 45, 60, 75, and 105, and fecal
microbiome sequencing data that were collected at these corresponding sampling times
were used [33].

The hospital-based intervention was performed under the approval of the Ethics
Committee of the School of Life Sciences and Biotechnology, Shanghai Jiao Tong University
(No.2012-016). The clinical trial was registered with the Chinese Clinical Trial Registry
(ChiCTR-ONC-12002646). Written informed consent was obtained from the guardians of
all the participants.
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Table 1. Food intakes on different sampling days (g/day).

Food Name Day 0, 15, 30 Day 45, 60 Day 75, 105

Formula 1
Adlay 222 128 123

Hyacinth beans 111 64.3 61.8
Buckwheat 111 64.3 61.8

Oats 166 96.5 92.7
Yam 111 64.3 61.8

Soybean 55.6 32.2 30.9
Red bean 55.6 32.2 30.9

Peanut 55.6 32.2 30.9
Goji berries 55.6 32.2 30.9
Yellow corn 55.6 32.2 30.9
Lotus seed 55.6 32.2 30.9
Big jujube 55.6 32.2 30.9
Olive oil 16.2 14.8 14.6

Formula 2
Bitter gourd 36.6 43.1 43.1

Fibersol-2 2.44 2.87 2.87
Oligosaccharides 0.61 0.72 0.72

Isomaltose 1.02 1.20 1.20
Formula 3
Fibersol-2 16.1 16.1 53.6

Oligosaccharides 4.02 4.02 13.4
Isomaltose 6.70 6.70 22.3

2.2. Metagenomic Sequencing and Data Preprocessing

The fecal samples that were taken from GD02 on intervention days 0, 15, 30, 45, 60,
75, and 105 were frozen on dry ice immediately after collection and stored at −80 ◦C until
further analysis was undertaken. The DNA was extracted as previously described [39]
and metagenomic sequencing was performed using an Illumina HiSeq 2000 platform at
Genergy Biotechnology (Shanghai, China) Co., Ltd. The DNA library preparation, cluster
generation, template hybridization, isothermal amplification, linearization, blocking, and
denaturing and hybridization of the sequencing primers were all performed according to
the workflow that was indicated by the manufacturer. Paired-end reads with 151 bp in
both the forward and reverse directions were obtained. These original sequencing data can
be accessed at the NCBI SRA database with accession number SRP045211.

Trimmomatic (v.0.39) was used to trim the adapters and to control the quality of the
sequencing reads, including (i) trimming the reads from 3’ and 5’ until the first nucleotide
with a quality threshold of 6 was reached, (ii) removing the reads that were scanned in
a 4-base sliding window with an average quality per base below 20, and (iii) removing
the read pairs that were less than 60 bases long. The remaining reads that were able to be
aligned to the human genome (Homo sapiens, UCSC hg19) with Bowtie2 (v.2.3.5.1) were
also removed. On average, 25.2 × 106 ± 3.98 × 106 (mean ± SD) paired-end high-quality
reads for each sample were retained and used for the downstream analysis.

2.3. Quantitative Calculation of Diet Component Intakes

The details regarding the type and quantity of the nutrition components that were
contained in each food that was included in the diet were mainly obtained through the Vir-
tual Metabolic Human (VMH) database. For the foods that were not contained in the VMH
database, such as adlay, the nutrition components were searched in the literature [40,41]
and manually added as a VMH nutrition type. The total intake quantity of each dietary
component per day was summed according to the food intake records (Table 1). VMH’s
“design a diet” function [42] was used to integrate all the dietary components that were
consumed and to transform them into quantitative fluxes of metabolites in preparation for
metabolic network construction (see Tables S1–S3 in Additional File S1).
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2.4. Construction of Metagenome-Scale Metabolic Network

For each sample that was taken at the different time points, an individual metagenome-
scale metabolic network was constructed using the quantitatively calculated fluxes and the
high-quality sequencing reads that were obtained previously. First, the high-quality reads
of a sample were mapped onto the reference set of 773 AGORA genomes with CoverM
(v.0.6.1) [43] in order to obtain the abundances of the microbes. Then, in the MATLAB
environment (v.R2019b, MathWorks (Natick, MA 01760 USA), Inc.) using Gurobi as the
linear and quadratic programming solver, the metabolic simulations were completed with
functions that were implemented in the Microbiome Modeling Toolbox [21]. Briefly, the
microbial community models for each sample were constructed with AGORA (v.1.03),
based on their abundances. Only the microbes with a relative level of abundance above
0.1% were used in the metabolite simulation. Each community model was then simulated
under a given diet using FVA to simulate the maximal and minimal abundance of each
metabolite’s uptake and secretion. The net uptake was obtained by summing the maximal
uptake and minimal secretion, whereas the net secretion was calculated as the sum of
maximal secretion and minimal uptake. Finally, for each metabolite at each sampling time
point, the contributions from the corresponding microbes were identified and calculated.
In this section, unless otherwise stated, for all of the calculations we used the default
parameters that were set by the software.

2.5. Statistical Analysis

The Spearman correlations among the metabolites, microbes, and host’s clinical pa-
rameters were calculated in R (v.4.0.3) using the corr.test function. The p-value was post-
adjusted by using the FDR method [44].

2.6. Data Visualization

The contributions of the microbial species to the amounts of the metabolites were
plotted using the online implementation of Circos [45,46]. Cytoscape software (v.3.8.2)
was used in order to construct a correlation network among the metabolites, microbes and
host’s clinical parameters. All of the other data were visualized in R (v.4.0.3), including
the following packages: corrplot, ggplot2, pheatmap, psych, reshape2, dplyr, NbClust,
VennDiagram, and scico.

3. Results
3.1. Persistent Variation in Gut Microbiota during Dietary Intervention

The relative abundances of the gut microbiota at the different dietary intervention
timepoints were obtained by mapping the high-quality reads to the AGORA reference
genomes [28]. The mapping rates of these reads at the strain level ranged from 55.5%
to 71.3%, without an obvious link to the alpha diversity of the fecal microbiota samples
(Figure 1A). The number of the mapped strains was 154 and the minimal abundance of
these mapped strains was 0.0039. When compared with intervention day 0, the Shannon
indices taken after intervention had all decreased, which indicated that the implemented
high-fiber diet had reduced the alpha diversity of the community. Although the applied
diet components remained relatively stable during the intervention, the structure of the
gut microbiota persistently varied with time. The dominant strains that were increased
by the diet mainly included Bifidobacterium pseudocatenulatum DSM 20438, Faecalibacterium
prausnitzii L2_6, and Clostridium sp. SS2_1. These strains did not continuously increase,
but instead fluctuated after being raised, which indicated a continuous balance among the
community members.
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Figure 1. Results of metagenome-scale metabolic network simulation. (A) The relative abundance of gut strains at different
dietary intervention timepoints. Data were obtained by mapping high-quality reads to the AGORA reference genomes.
For the mapped strains, only the most abundant 19 strains are shown and the remaining strains are summed and labeled
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as “others”. The unmapped reads are assigned as “unmapped”. (B) The summed abundances (mmol/day) of potential
metabolite secretion in metabolism subsystems at different dietary intervention timepoints. (C) Correlations among host
clinical parameters and the simulated metabolites of gut microbiota. Each row represents a metabolite and each column
represents a clinical parameter. Correlations were calculated with Spearman correlation and post-adjusted with FDR.
‘*’: R > 0.7, p-value < 0.1, ‘**’: R > 0.7, p-value < 0.05. color of each rectangle in each cell represents p-value while size
represent R. (D) Network diagram among the key metabolites and their contributing strains related to the obese child’s
BMI, leptin, and adiponectin. The BMI, leptin and adiponectin are expressed in red triangles, the correlated metabolites are
expressed in ellipses and the strains are expressed in diamonds. Different metabolisms are distinguished with colors. Only
correlations with R > 0.7 and p-value < 0.1 are shown. Red lines indicate positive correlation while blue lines represent
negative correlation. Metabolites and their producing strains are linked with black lines. FPG: Fasting Glycaemia, OGTT:
oral glucose tolerance test, abbreviation for metabolites is from VMH database, 3mop: 3-methyl-2-oxopentanoate, 5mthf:
5-Methyltetrahydrofolate, adn: Adenosine, ca2: calcium, cl: Chloride, cobalt2: Co2+, cu2: Cu2+, fe2: Fe2+, fe3: Fe3+,
fol: folate, k: potassium, Lcystin: L-cystine, met_L: L-methionine, mg2: magnesium, mn2: Mn2+, nac: nicotinate, ocdca:
octadecenoate, so4: sulfate, thf: 5,6,7,8-Tetrahydrofolate, thr_L: L-threonine, urea: Urea, zn2: Zinc.

3.2. Metabolites Simulated from the Reconstructed Microbial Metabolic Network

For each of the samples from the different timepoints, a metagenomic-scale metabolic
network was individually and quantitively constructed using the calculated diet and the
known abundances of the mapped strains. A total of 88 strains had a relative abundance
above 0.1% and they were involved in 2908 reactions, resulting in 338 metabolites in total.
These metabolites can be secreted/co-secreted by single or multiple microbes and many
of them can then be taken up by other microbes. Only 185 of the 338 metabolites were
overall net secreted; of which, 64 can both be taken up and secreted, while the remaining
121 can only be secreted. In addition, another 11 metabolites can only be taken up by the
microbiome. The net secreted metabolites mainly belonged to the amino acid metabolism
and central metabolism (Figure 1B). In comparison to the beginning of the intervention,
nearly all secretions in the subsystems decreased, particularly those in the vitamin and
cofactor metabolism subsystems, which decreased from 262.3 on day 0 to 63.6 on day 105.
These systematic decreases might be partially due to the reduced intake of the main food
(Formula 1) during the intervention. An explanation for this hypothesis is that, although the
provided indigestible (but fermentable) carbohydrates were added, the total carbohydrate
metabolism did not change much. Furthermore, different changing modes within the
same metabolism subsystem were observed; for instance, though the overall vitamin and
cofactor metabolism subsystem reduced, the internal secretion of folate increased.

3.3. Key Metabolites Associated with Obesity-Relevant Clinical Parameters

The obese child who was tracked in this study lost weight, progressing from 140.1 kg
on day 0 to 114.3 kg on day 105 after the fiber-rich dietary intervention. As the focus of this
study was to construct a systematic obesity-relevant metabolic network, we first checked
the child’s clinical and biological parameters (leptin, OGTT insulin AUC, adiponectin,
FFA, TNF-α, FPG, and total cholesterol) that are thought to be related to a change in
BMI. Only leptin and adiponectin showed significant correlations with the BMI. The
former was positive (r = 0.89, p = 0.0068, without FDR adjustment) and the latter was
negative (r = −0.86, p = 0.013, without FDR adjustment) (Figure 1C). Notably, the decreased
leptin and the increased adiponectin occurred not only in this boy, but also in all of the
other obese children who received the same dietary intervention [33]. Furthermore, the
leptin/adiponectin ratio showed more significant correlations with BMI (r = 0.93, p = 0.0025,
with FDR adjustment). These results are consistent with previous reports stating that leptin
and adiponectin levels are obesity-relevant [47,48].

From the reconstructed microbial metabolic network covering all microbial metabo-
lites and host measurements, 36 metabolites in total were related to at least one clinical
measurement of the host (Spearman correlation r > 0.7 and FDR post-adjusted p < 0.1),
and 22 of these were linked to BMI, leptin, and adiponectin (Figure 1C). Among these
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22 metabolites, 4 (fol: folate, thf: 5,6,7,8-Tetrahydrofolate, 5mthf: 5-Methyltetrahydrofolate,
and nac: nicotinate) were from the vitamin and cofactor metabolism, 10 (fe2: Fe2+, fe3:
Fe3+, mg2: magnesium, cl: Chloride, ca2: calcium, cobalt2: Co2+, cu2: Cu2+, mn2: Mn2+,
zn2: Zinc, and so4: sulfate) were from inorganic metabolites, and 6 (k: potassium, Lcystin:
L-cystine, 3mop: 3-methyl-2-oxopentanoate, thr_L: L-threonine, met_L: L-methionine, and
urea: Urea) were from the amino acid metabolism. For the remaining two metabolites,
octadecenoate (ocdca) is derived from the lipid metabolism and Adenosine (adn) is derived
from the nucleotide metabolism.

As the metabolic network was constructed without prior hypothesis or bias, it was an
interesting surprise to find that three folic acid derivatives (fol, thf, and 5mthf) from the
vitamin and cofactor metabolism were directly negatively correlated with the BMI. Folates
are essential cofactors in the metabolic pathways that facilitate biological methylation and
nucleotide synthesis and, therefore, they are known to have widespread effects on health
and diseases. A literature search indicated that obesity was positively correlated with
red blood cell folate, but negatively correlated with serum folate and folate intake [49].
In addition, a low folate intake and low serum levels were found to be associated with
a higher BMI and greater abdominal fat accumulation [50]. Hence, we suggest that the
negative correlation between folate and BMI shown here could be supported by this
evidence to a certain degree. Another metabolite that is also derived from the vitamin and
cofactor metabolism, nac, was positively correlated with BMI and we were not able to find
obesity-relevant evidence.

The inorganic metabolites, such as ca2 and cu2, were also negatively correlated with
BMI and leptin. Some research has indicated that there is a negative correlation of Fe [51]
and ca2 [52] to BMI, but a positive correlation between BMI and Zinc has also been
found [53]. Until now, how these inorganic metabolites impact on the BMI still remains
elusive and further exploration is needed. Notably, k was classified into the amino acids
metabolism as based on previous research [31], but in our simulation, it acted more like a
member of the group of inorganic metabolites.

The five metabolites from the amino acids metabolism (3mop, Lcystin, thr_L, met_L,
and urea) were all either positively correlated with BMI and leptin, or negatively cor-
related with adiponectin (except for k, which was positively correlated). Among these,
3-methyl-2-oxovaleric acid (3mop), an abnormal metabolite that arises from the incom-
plete breakdown of branched-chain amino acids, had the most connections; including
BMI, leptin, adiponectin, and metabolites such as Lcystin, met_L, and adn, indicating its
importance in the regulation of BMI. The detrimental role of 3mop has been reported: it can
cause damage to nerve cells and nerve tissues; induce acidosis, which has multiple adverse
effects on many organ systems; and may cause adverse health effects at chronically high
levels [54]. L-cystine (Lcystin), an oxidized dimeric form of cysteine, also had multiple links
to BMI, leptin, 3mop, and nac, suggesting its direct and indirect adverse impacts on BMI.
Cystine has been found in high concentrations in the cells of the immune system, skeleton,
connective tissues, skin, digestive enzymes, and in hair. Reports have indicated that cystine
is associated with risk factors for cardiovascular disease (CVD) including ageing, smoking,
obesity, and alcohol abuse [55]. Methionine (Met_L) and urea (the principal product of
protein catabolism), along with octadecanoic acid (ocdca) from the lipid metabolism, were
negatively correlated with adiponectin. Few reports have linked these metabolites with
obesity. L-threonine (Thr_L) was positively correlated with BMI, a finding which also lacks
further evidence to prove this correlation.

Similar to 3mop, adenosine (adn) from the nucleotide metabolism was also positively
correlated with BMI and leptin and negatively correlated with adiponectin. Due to the
existence of multiple receptors, adn performs a broad range of activities in organisms. The
concentration of adn affects the functions of the receptors and proteins that evolved in adn
synthesis, degradation, and transport. All adenosine receptors were reported to be involved
in glucose homeostasis, inflammation, adipogenesis, insulin resistance, and thermogenesis,
indicating that adenosine participates in the process of obesity [56]. It was reported that
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the level of nucleoside adenosine is higher in individuals with obesity and that the specific
activation of adenosine receptors could aid in the prevention of obesity [56,57]. Positively
linked with the detrimental 3mop and negatively with met_L, adn also behaved as a
negative metabolite in our study.

3.4. Microbes Contributing to Key Obesity-Related Metabolites

Based on the reconstructed microbial metabolic network, the strain contributions to
each metabolite were calculated. A scheme network indicating the correlations among
the key metabolites, the strain contributors to the key metabolites, and the three obesity-
relevant clinical parameters (BMI, leptin, and adiponectin) was then drawn, as shown in
Figure 1D. As shown, the three folates, folate (fol), tetrahydrofolate (thf), and 5 methyl-
tetrahydrofolic acid (5mthf), that negatively correlated with BMI are mainly produced
by strains of Bifidobacterium longum, a category of well-established and multifunctional
probiotics (Figure 1D). These strains increased during the dietary intervention. Notably,
the strains that were contributing to folate varied with time (Figure 2). On day 0, only a
few microbes in the gut could produce folate and the other microbes which had the ability
to produce folate were considered not to contribute due to their abundances being below
the cutoff. During the intervention, the abundance of Bifidobacterium longum increased and
more microbes began to contribute folate, resulting in increased secretions. On day 105,
more than 30% of the folate was produced by Bifidobacterium breve UCC2003.

Figure 2. The contribution of strains to metabolites (A) fol (B) thf (C) 5mthf (D) 3mop (E) adn, and
(F) Lcystin at different dietary intervention timepoints. Each circle represents a metabolite with
its top 10 contributing strains (left part of the circle). The right part of each circle represents the
7 different timepoints.

Nearly every microbiome was able to produce the inorganic metabolites that were also
negatively correlated with BMI and leptin, but their total abundances were much lower
than those of the other metabolites.
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For the rest of the key metabolites that positively correlated with BMI and leptin or
negatively correlated with adiponectin, 3mop was mainly produced by Bacillus timonensis
10403023, Faecalibacterium prausnitzii M21_2, and Faecalibacterium prausnitzii SL3_3. The
dietary intervention reduced the abundance of these bacteria and thus reduced the abun-
dance of 3mop, which might therefore have lessened the influences on the host. Lcystin
was mainly produced by Faecalibacterium prausnitzii L2_6, Ruminococcus torques L2_14, and
Faecalibacterium prausnitzii M21_2. In our simulation, the decreased secretion of Lcystin
was mainly caused by the reduced abundance of Faecalibacterium prausnitzii L2_6 and
Ruminococcus torques L2_14. The metabolite adn was mainly produced by Bacillus timonensis
10403023, Dorea longicatena DSM 13814, and Klebsiella pneumoniae pneumoniae MGH78578.
Particularly, on day 0, Bacillus timonensis 10403023 produced more than 80% of the 3mop
and 65% of the adn and the reduction in this strain was primarily responsible for the
decrease in these two metabolites in the following intervention days.

4. Discussion

In this case study, a metagenome-scale metabolic network was reconstructed with
a focus on screening the microbial metabolic pathways that were involved in reducing
the body weight of an obese PWS child under an effective high-fiber dietary intervention.
This systematic investigation suggested that, in this child, the weight loss effect might
have mainly been achieved through increasing folic acid derivatives’ (fol, thf, and 5mthf)
secretion via the vitamin and cofactor metabolism by Bifidobacterium longum strains, as well
as reducing the metabolites (3mop, Lcystin, and adn) from the amino acid metabolism or
nucleotide metabolism that were produced by multiple microbes such as Bacillus timonensis
10403023 and Faecalibacterium prausnitzii strains. These reduced metabolites might also be
related to the increase in leptin and the decrease in adiponectin, further contributing to the
weight loss of the child. In addition, the overall reduced microbial metabolisms in the gut
under the high-fiber diet might have contributed to the weight loss that was observed.

Compared with the association studies that are popularly used in gut microbiota
research, the application of a metagenome-scale metabolic network reconstruction displays
an advantage in linking the metabolites with their microbial contributors based on verified
biological and biochemical knowledge, which helps to elucidate underlying biological
mechanisms in detail, and, more importantly, to identify the key functional microbes. Our
previous study that was based on the co-abundance gene groups (CAG) analysis [33] and
whole-genome comparative analysis of isolated strains [36] showed that obesity might
be mainly alleviated by Bifidobacterium pseudocatenulatum strains, which were predomi-
nantly increased under the high-fiber environment due to their outperforming ability in
using complex carbohydrates and their SCFA-producing abilities. Although Bifidobacterium
longum was positively linked to Bifidobacterium pseudocatenulatum in the present study,
it was not considered to be the most important functional microbe, due to its relatively
low abundance. The relative abundance of Bifidobacterium longum was below 3% in our
intervention process, while that of Bifidobacterium pseudocatenulatum was in the range of
20–40%. However, our findings suggest that obesity might be heavily associated with the
microbial production of folate and decreases in 3mop, Lystin, and adn. The folate was
mainly produced by Bifidobacterium longum strains, instead of Bifidobacterium pseudocatenu-
latum. In addition, among the top ten most abundant bacteria in this study, only the most
abundant strain, Bifidobacterium pseudocatenulatum DSM 20438, could produce little folate
and its production was not correlated with BMI. Due to the complexity of the human gut
microbiome, non-infectious disease studies tend to pay more attention to microbes with
higher abundance. Our results imply that the bacteria of medium abundance should not be
ignored. The identification of the importance of Bifidobacterium longum in obesity treatment
through folate production in this study is of note. As a beneficial probiotic, Bifidobacterium
longum’s functioning has been extensively studied. The effects of folate production by
Bifidobacteria on human health indicate its potential as a probiotic [58] and different strains
are known to produce different amounts of folate [59]. Folate was reported to be important
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for reducing obesity; acquired folate deficiency is quite common and is associated with poor
diet and malabsorption, alcohol consumption, obesity, and kidney failure [60]. Though we
could not provide experiment verification due to inapplicability, this evidence supports
our findings that high-fiber-induced folate secretion by Bifidobacterium longum strains is
important in this kind of nutrition therapy that is used for treating obesity.

Our metabolites simulation showed that the mathematical relationship analysis be-
tween the concentration of metabolites and the abundance of microbes was not always
trustworthy. For instance, some metabolites might be well-correlated with some microbes
without real producing ability and some microbes may not be related to their metabo-
lites when they are only a member within the relevant reaction chains. In real ecology,
these situations are hard to identify. Metabolic network simulation is a suitable technol-
ogy for use in assisting us in identifying the real mechanism and screening for potential
functional microbes.

Some limitations were found in this study. The metagenome-scale metabolic network
was restricted to the limited number of strains (773) that have been listed by the AGORA
database and the manually curated metabolic models based on prior knowledge. In our
case, the mapping rate of our high-quality reads to the AGORA database ranged from
55.5% to 71.3%, so many strains might not have been included in the network. Furthermore,
some functions were also excluded from our calculation due to the incompleteness of the
models. Additionally, similar to some recent works [29,31], we did not add the human
metabolic model to the metabolic network. Although there are some studies of human
metabolic models [61], it is still difficult to merge human metabolic models with micro-
biota community metabolic networks. Some efforts to this end are underway. Jun et al.
tried another method in order to estimate the spatiotemporal resolution of the microbial
variations in species-level abundance profiles across site-specific colon regions and in
feces [62], but many fewer species were employed in the current format of that framework
than in AGORA. Finding functional dietary components is important to improve thera-
peutic design. However, the present modeling system is not able to perform nutritional
source-tracing due to the multiple and complex pathways of food digestion. Tracible and
quantitative metabolite modeling needs to be developed in the future. Nevertheless, with
the rapid development in the field of microbiology, we believe that knowledge of microbial
strains and their functions will increase quickly, which will improve the integrity and the
precision of metabolic networks.

As it is becoming clear that the gut microbiota at the strain-level is specific to the
individual and that strains from the same species might vary widely in their functions
and in response to the same diet, metagenome-scale metabolic network technology has
a unique advantage in grasping the individual’s overall metabolisms and in obtaining
generalized information from the population. We think that the methodology that was
used in this study provides a powerful aid in guiding or evaluating personalized nutrition.

5. Conclusions

In the current study, we reconstructed a metagenome-scale metabolic network screen-
ing the microbial metabolic pathways that are involved in reducing the body weight of
an obese PWS child under an effective high-fiber dietary intervention. This systematic
investigation suggested that the weight loss effect in this child might have been predomi-
nantly achieved through the increasing folic acid derivatives (fol, thf, and 5mthf) that were
secreted via the vitamin and cofactor metabolism by Bifidobacterium longum strains, and
the reduction of the number of metabolites (3mop, Lcystin, and adn) from the amino acid
metabolism or nucleotide metabolism, produced by multiple microbes such as Bacillus
timonensis 10403023 and Faecalibacterium prausnitzii strains. This study’s findings show
that metagenome-scale metabolic network technology provides a cost-efficient solution for
screening for the functional microbial strains and metabolic pathways that are responding
to a nutrition therapy.
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