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ABSTRACT Parentage analysis is an important method that is used widely in zoological and ecological studies. Current mathematical
models of parentage analyses usually assume that a population has a uniform genetic structure and that mating is panmictic. In a
natural population, the geographic or social structure of a population, and/or nonrandom mating, usually leads to a genetic structure
and results in genotypic frequencies deviating from those expected under the Hardy-Weinberg equilibrium (HWE). In addition, in the
presence of null alleles, an observed genotype represents one of several possible true genotypes. The true father of a given offspring
may thus be erroneously excluded in parentage analyses, or may have a low or negative LOD score. Here, we present a new
mathematical model to estimate parentage that includes simultaneously the effects of inbreeding, null alleles, and negative
amplification. The influences of these three factors on previous model are evaluated by Monte-Carlo simulations and empirical data,
and the performance of our new model is compared under controlled conditions. We found that, for both simulated and empirical
data, our new model outperformed other methods in many situations. We make available our methods in a new, free software
package entitled PARENTAGE. This can be downloaded via http://github.com/huangkang1987/parentage.
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THE use of genetic markers to investigate the relationships
between individuals is common in studies of animal pop-

ulations (Goodnight andQueller 1999), and variousmethods
have provided much insight into animal reproductive biology
and population structure that would be difficult or impossible
to obtain from observation alone (Kalinowski et al. 2007).
The most common of these techniques, parentage analyses,
enables researchers to obtain data onmating systems (Monteiro
et al. 2017), social organization (Garber et al. 2016), reproduc-
tive success (Gerzabek et al. 2017), multi-generational survival
(Cremona et al. 2017), sexual selection (Johannesson et al.
2016), and kin selection (Dias et al. 2017).

Current parentage analysis methods assume that pop-
ulation genotypic frequencies accord with those of the
Hardy-Weinberg equilibrium (HWE) (Marshall et al. 1998;

Kalinowski et al. 2007). Such an assumption implies the ab-
sence of both close inbreeding (due to mating between rela-
tives, such as siblings) and pervasive inbreeding (due to
genetic drift in a finite population or population subdivision)
(Wang 2011). Therefore, current methods only allow the
frequency of a genotype, or the transitional probability from
a parental genotype to an offspring’s genotype, to be calcu-
lated based on the HWE and basicMendelian inheritance, but
do not allow for the inclusion of both inbreeding factors.

Both artificial and natural populations are finite and are
usually genetically structured.Mating is also usually confined
to a subset of individuals within a population (Wang 2011).
Thus, both types of inbreeding (close and pervasive) may
exist, and more extreme forms of close inbreeding, such as
back-crossing, may also be present. Depending on the mating
system and other ecological factors, a false father may be a
potential mate of the true mother. For close inbreeding, the
false father may be related to the true mother. For pervasive
inbreeding, the false father may come from the same popu-
lation as the true mother. Hence, a false parent may share
identical-by-descent (IBD) alleles with the offspring, andmay
thus be mistakenly identified as the true parent.
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In addition, microsatellites are the most frequently used
genetic marker for parentage analyses, but null alleles are
pervasive in microsatellite markers (Kalinowski et al. 2006;
Ravinet et al. 2016). Such alleles cause two types of genotyp-
ing problems: (i) a homozygote AyAy fails to be amplified,
where Ay is a null allele; (ii) a heterozygote AiAy is mistyped
as a homozygote AiAi; where Ai is a visible allele (Wagner
et al. 2006). These incorrect genotypes can be problematic for
parentage analyses, because such genotyping errors can mis-
takenly reject a true parent due to an observed lack of the
shared alleles with the offspring (Blouin 2003). Moreover,
negative amplification reduces the accuracy of parentage
analysis because of the loss of genotypic data. When the ge-
notype of an individual fails to be amplified, all genotypes at
this locus in a duo or a trio will be discarded from the analysis.

In this paper, we consider the effects of inbreeding, null
alleles, andnegative amplification in aparentage analysis.We
will first extend the model of Kalinowski et al. (2007) to an
alternative model, so as to accommodate the effects of these
three factors. Second, we use a simulated dataset to evalu-
ate the influences of these three factors on the model of
Kalinowski et al. (2007), and the performance is also com-
pared with those of our alternative model and another
model presented by Wang (2016). Finally, we use a real
microsatellite genotyping dataset to test and compare
four applications using the models of Kalinowski et al.
(2007), Wang (2016), and our new model in natural situa-
tions. Our model can be applied to any codominant markers
that may be affected by inbreeding and/or null alleles. We
make available a free software package entitled PARENTAGE

v1.0, which can be downloaded via http://github.com/
huangkang1987/parentage.

Theory and Modeling

Genotypic frequencies

Under the HWE, alleles appear randomly within a genotype
according to their frequencies. The frequency of a genotype G
can be expressed as a piecewise function:

PrðGÞ ¼
�
p2i if G ¼ AiAi;
2pipj if G ¼ AiAj;

(1)

where Ai and Aj denote the ith and jth alleles, respectively,
which are different identical-by-state (IBS) alleles, and pi
and pj are their frequencies.

If the inbreeding in a population is more frequent than
random, the homozygosity of a population is increased. We
use the inbreeding coefficient f (also known asWright’s FIS) to
measure the degree of inbreeding, which is defined as the
correlation between the frequencies of two alleles within an
individual. According to Equation 1, the frequency of G in the
presence of inbreeding is given by

PrðGj f Þ ¼
�
fpi þ ð12 fÞp2i if G ¼ AiAi;
2ð12 f Þpipj if G ¼ AiAj:

(2)

In thepresenceofnull alleles, foranobservedgenotype(denoted
byO)AiAi; the actual genotypemay be a heterozygote AiAy or a
homozygote AiAi; where Ay is a null allele. If an observed ge-
notype has no any detected alleles, it is termed negative,
denoted by ∅: Let py be the frequency of the null allele Ay:

According to Equation 2, the frequency of an observed genotype
O in the presence of both inbreeding and null alleles is

Pr
�
Oj f ; py

�
¼

8><
>:

fpi þ ð12 f Þ�2pipy þ p2i
�

if  O ¼ AiAi;
2ð12 f Þpipj if  O ¼ AiAj;

fpy þ ð12 f Þp2y if  O ¼ ∅:

(3)

Furthermore, in the presence of null alleles and negative ampli-
fication, a negative observed genotype∅may arise from either a
null allele homozygote AyAy or a negative amplification
(Kalinowski et al. 2006). Letb be the negative amplification rate.
Then, under the three factors: inbreeding, null alleles, and neg-
ative amplification, Equation 3 should be modified as follows:

Pr
�
Oj f ; py ;b

�
¼

8><
>:

ð12bÞ� fpi þ ð12 f Þ�2pipy þ p2i
�i

if  O ¼ AiAi;

2ð12bÞð12 fÞpipj if  O ¼ AiAj;

bþ ð12bÞ� fpy þ ð12 fÞp2y
�

if  O ¼ ∅:

(4)

Procedures of parentage analysis

There are three typical categories of parentage analysis:
(i) identifying the father when the mother is unknown; (ii)
identifying the father when the mother is known; and (iii)
identifying the father and mother jointly. The procedures of a
parentage analysis are roughly as follows:

For each of the first two categories, two hypotheses are estab-
lished:thefirsthypothesis isthattheallegedfatheristhetruefather,
denotedbyH1; the alternativehypothesis is that the alleged father
is not the true father, denoted by H2: For the third category,
“father” needs to be altered to “parents” in hypothesesH1 andH2:

Given a hypothesisH, the likelihood is defined as the prob-
ability of some observed data givenH, written asLðHÞ: Return-
ing to H1 and H2 in the previous paragraph, we refer to the
logarithm of the ratio of LðH1Þ to LðH2Þ as the LOD score
(abbreviated to LOD); symbolically LOD ¼ ln  LðH1Þ=LðH2Þ;
in other words, LOD ¼ ln  LðH1Þ2 ln  LðH2Þ: Moreover, a pos-
itive LOD score means that the first hypothesisH1 is more likely
to be true than the second hypothesis H2: Similarly, a negative
LOD score means that H2 is more likely to be true than H1:

Marshall et al. (1998) provided a statistic D for resolving pa-
ternity. Let LOD1 and LOD2 be the LOD scores of the most-likely
and the next most-likely alleged fathers, respectively, and let n be
the number of all alleged fathers. Then, D is defined as follows:

D ¼
8<
:

LOD1 2 LOD2 if n$ 2;
LOD1 if   n ¼ 1;
undefined if n ¼ 0:

A separate statistic D has to be calculated for each individual
offspring.
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Monte-Carlo simulations are subsequently used to assess
the confidence level of each value of D. The symbol D0.99

represents the threshold of D to reach the correct assignment
rate of 99%, in the sense that, if D$D0:99; it implies up to a
confidence level of 99%. In other words, the proportion 99%
of assignments is correct if D$D0:99:

The Ka-model

Kalinowski et al. (2007) developed a model of parentage
analyses, called the Ka-model for short, which accommodates
the effect of genotyping errors. This model consists of two
likelihood formulas (see Equation 5 below), together with
the rules and methods for a general parentage analysis.

As stated in the previous section, the procedures of using
Ka-model to conduct a parentage analysis are as follows:
(i) calculating LðH1Þ and LðH2Þ; (ii) calculating LOD and
D, (iii) finding the thresholds of D, and (iv) using the values
obtained in the previous three steps to determine the signif-
icance of the parentage analysis.

We will here use the first category in a parentage analysis
(i.e., identifying the father when the mother is unknown) as
an example to show how to calculate the likelihoods LðH1Þ
and LðH2Þ with the consideration of genotyping errors. The
two likelihoods in Ka-model are expressed as the following
formulas:

LðH1Þ ¼ PrðOAÞ
�ð12eÞ2TðOOjOAÞ

þ2eð12 eÞPrðOOÞ þ e2PrðOOÞ
�
;

LðH2Þ ¼ PrðOAÞ
�ð12eÞ2PrðOOÞ

þ2eð12 eÞPrðOOÞ þ e2PrðOOÞ
�
;

(5)

where e is the genotyping error rate, OO and OA are respec-
tively the observed genotypes of the offspring and the alleged
father, PrðOOÞ and PrðOAÞ are their frequencies, and
TðOOjOAÞ is the transitional probability from OA to OO.

Denote GO, GA; and GF for the genotypes of the offspring,
the alleged father and the true father, respectively. For the
term ð12eÞ2TðOOjOAÞ; both genotypes of the offspring and
the alleged father are assumed to be correctly genotyped,
then OO ¼ GO and OA ¼ GA: Therefore, the expression
TðOOjOAÞ can be rewritten as TðGOjGFÞ when H1 holds.

Under the assumption of the HWE, for the genotype GO;

one allele is randomly inherited from the parent, and the
other is randomly sampled from the population according
to the allele frequencies. Then, the transitional probability
TðGOjGFÞ can be expressed as

TðGOjGFÞ ¼

8>>>>>>>><
>>>>>>>>:

pi if   GO ¼ AiAi and GF ¼ AiAi;

pj if GO ¼ AiAj and GF ¼ AiAi;�
pi þ pj

�
/2 if GO ¼ AiAj and GF ¼ AiAj;

1
2
pk if   GO ¼ AiAk and GF ¼ AiAj;

0 otherwise;

where Ai; Aj; and Ak are non-IBS alleles, pi; pj; and pk are their
frequencies. According to the above analyses, the final formula
can be used to calculate the value of TðOO  j OAÞ in Equation 5.

The genotyping error can be considered as the replace-
ment of the true genotype with a random genotype at a
probability of e. The conditional probability of an observed
genotype O given a genotype G is given by

PrðOjGÞ ¼
� ð12 eÞ þ ePrðOÞ if G ¼ O;
ePrðOÞ if   G 6¼ O:

(6)

Thus, the genotyping error does not change the observed
genotypic frequencies; in other words, PrðOÞ ¼ PrðG ¼ OÞ:
Because any null alleles, negative amplification and inbreed-
ing are not considered in the Ka-model, PrðGÞ can be directly
calculated by Equation 1, and so the values of PrðOAÞ and
PrðOOÞ in Equation 5 can be obtained.

Alternative forms of likelihoods

The likelihoods LðH1Þ and LðH2Þ in Equation 5 can be
obtained by taking the weighted sum of products of the corre-
sponding frequencies ofOO andOA conditional on their geno-
types, with their genotypic frequencies as the weights. Then,
Equation 5 can be rewritten to the following alternative forms:

LðH1Þ ¼
X
OFM

PrðGF ;GMÞTðGOjGF ;GMÞPrðOOjGOÞPrðOAjGFÞ;

LðH2Þ ¼
X
OA

PrðGOÞPrðGAÞPrðOOjGOÞPrðOAjGAÞ; (7)

where GO; GF ; GM ; and GA are, respectively, taken from all
possible genotypes of the offspring, the true father, the true
mother, and the false father; PrðGF ;GMÞ is the joint distribu-
tion of GF and GM; and TðGOjGF ;GMÞ is the transitional prob-
ability from GF and GM to GO: Additionally, the three
conditional probabilities in Equation 7 can be calculated by
Equation 6.

In theabsenceof inbreeding, ifmatingsare random, thenthe
genotypes GF and GM will be independent to each other. Thus

PrðGF;GMÞ ¼ PrðGFÞPrðGMÞ:

Additionally, if the genotypes of both parents are known, then
the distribution of the genotype of offspring can be derived by
Mendelian segregation in the sense that eachparent randomly
contributes one allele to the genotype of an offspring. Thus,

TðGOjGF ;GMÞ ¼ 1
4

X2
i¼1

X2
j¼1

KGO;aiaj; (8)

where aiaj is a possible offspring’s genotype, in which ai is the
ith allele copy in GF and aj is the jth allele copy in GM; and
KGO;aiaj is a Kronecker operator, such that KGO;aiaj ¼ 1 if
GO ¼ aiaj; and KGO;aiaj ¼ 0 if GO 6¼ aiaj:
Schemes of our model

Our model will be established by giving several likelihood
formulas based on Equation 7. We use the first category in a
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parentage analysis as an example to describe the scheme of
establishing our model. For the second and third categories,
the schemes are presented in Appendices A and B.

In order to simultaneously accommodate the effects
of both inbreeding and null alleles together with nega-
tive amplification, Equation 7 needs to be modified by
replacing the probabilities with those under these effects,
including the genotypic frequencies (e.g., Pr(GO)), the
transitional probability TðGOjGF;GMÞ; and the conditional
probabilities (e.g., Pr(OOjGO)). It is noteworthy that the
alternative hypothesis H2 should be modified if inbreeding
is involved. For close inbreeding, a false father may be a
relative of the true mother; for pervasive inbreeding, a
false father may be sampled from a same population as
the true mother. The genotype of a false father may there-
fore be either dependent or independent of the true
mother in both of these inbreeding scenarios. For identify-
ing an alleged father, the hypothesis H2 will thus imply two
possibilities: (i) he is unrelated to the true parents and to
the offspring, denoted by H2;1; (ii) he is a relative of the
true mother, denoted by H2;2:

Because we lack a priori information (e.g., information
about the pedigree, mating system, population origin, or al-
lele frequency of each population), we cannot determine
which of the alternatives H2;1 and H2;2 is most likely. We thus
define the likelihood ofH2 as the geometrical mean ofLðH2;1Þ
and LðH2;2Þ: Then, using Equation 7, the likelihoods of H1

and H2 can be calculated by the following formulas:

LðH1Þ ¼
X
OFM

PrðGF ;GM j fÞTðGOjGF;GMÞ

Pr
�
OOjGO; f ; py;b; e

�
Pr
�
OAjGF ; f ; py;b; e

�
;

LðH2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�H2;1

�L�H2;2
�q
;

L�H2;1
� ¼ X

OA
PrðGOj f ÞPrðGAj f Þ

Pr
�
OOjGO; f ; py;b; e

�
Pr
�
OAjGA; f ; py;b; e

�
;

L�H2;2
� ¼ X

OMA
PrðGA;GM j fÞTðGOjGM ; fÞ

Pr
�
OOjGO; f ; py;b; e

�
Pr
�
OAjGA; f ; py;b; e

�
;

(9)

where PrðGF ;GM j f Þ and PrðGA;GM j f Þ are the joint distribu-
tions of genotypes of mates, and TðGOjGM ; f Þ is the transi-
tional probability from GM to GO and is conditional on an
inbreeding coefficient of f. These joint distributions and the
transitional probability will be derived in the next section.
Moreover, we can calculate TðGOjGF ;GMÞ by Equation 8,
and PrðGOj f Þ and PrðGAj f Þ by Equation 2. Additionally, the
values of PrðOOjGO; f ; py;b; eÞ; PrðOAjGF ; f ; py;b; eÞ and
PrðOAjGA; f ; py;b; eÞ can all be calculated by the following
formula:

Pr
�O

G; f ; py;b; e�¼ bKO;∅ þ ð12bÞ�KO;O*ð12 eÞ

þ ePr
�O

 f ; py��;

where KO;∅ and KO;O* are two Kronecker operators, in
which O* is the observed genotype of G accounting for
the effect of null alleles (without accounting for the effects
of genotyping error and negative amplification), whose
expression is

O* ¼
8<
:

AiAi if G ¼ AiAi or AiAy;
AiAj if G ¼ AiAj;
∅ if G ¼ AyAy:

(10)

Joint distributions of genotypes

In the presence of close inbreeding, both parents will be
related to each other. Their genotypes will thus be corre-
lated. For example, GF always shares an IBD allele with GM

in backcrossing. It is noteworthy that there are several
forms of mating, e.g., self-fertilization, and matings be-
tween parents and offspring (backcrossing), full-siblings,
half-siblings, or other relatives, such that the joint distri-
butions of genotypes of a parent pair among these forms of
mating will differ, even if their inbreeding coefficients are
equal.

Jacquard (1972) defined nine configurations of IBD al-
leles between two individuals (denoted by D1;D2;⋯;D9;

see Figure 1), and used a vector d to measure the degree of
relationship between two individuals in the presence of in-
breeding. Where d consists of nine elements, whose nth ele-
ment dn ðn ¼ 1; 2;⋯; 9Þ represents one probability that the
four alleles at a single locus in two diploid individuals share
the configuration Dn of IBD alleles (Milligan 2003). Table 1
summarizes the values of elements in d for various mating
forms. For example, if the mating form is selfing, then d

consists of the elements in the SE row (the top row) in Table
1, denoted by dSE; i.e., dSE ¼ ½ f ; 0; 0; 0; 0; 0; 12 f ; 0; 0�

Wewill use the symbols dSE; dPO; dFS;⋯; dNR to denote the
vector d consisting of the elements in the rows from the top
to bottom in Table 1, respectively. Similarly, the symbols
sSE; sPO; sFS;⋯; sNR are used to denote the proportions of off-
spring in an inbred population that are the results the

Figure 1 Configurations of IBD alleles between two diploids. For each
configuration, we denote the upper two dots for the two alleles of one
individual, and the lower two dots for those of the other individual.
Moreover, two dots connected by a line indicate that two alleles are IBD.
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corresponding mating forms. Now, the degree of relation-
ship between mates can be measured by the weighted aver-
age d:

d ¼ sSEdSE þ sPOdPO þ sFSdFS þ⋯þ sNRdNR þ⋯: (11)

Let d ¼ ½d1; d2;⋯; d9� Then, the inbreeding coefficient f 9 in
the next generation can be expressed as

f 9 ¼ d1 þ 1
2
ðd3 þ d5 þ d7Þ þ 1

4
d8: (12)

If only one inbreeding form occurs at the proportion s, then
Equation 11 can be simplified. For example, if there is only
the occurrence of selfing or backcrossing with sSE ¼ s or
sPO ¼ s; then sNR ¼ 12 s; and Equation 11 becomes
d ¼ sdSE þ ð12 sÞdNR or d ¼ sdPO þ ð12 sÞdNR: Under such
condition, Equation 12 can be written as

f 9 ¼ s
�
f þ 1

2
ð12 f Þ�or  f 9 ¼ s

�
f2 þ fð12 f Þ þ 1

4
ð12fÞ2�:

Under the equilibrium state, f 9 ¼ f ; such that the proportion s
can be solved. The solutions of s for each inbreeding form are
listed in the right-most column in Table 1.

Table 1 reveals that the elements in the five rows deter-
mined by PO, HS, FC, HFC, and SC are proportional with the
ratio 1 : 1=2 : 1=4 : 1=8 : 1=16: This shows that there are
many similarities among the five inbreeding forms: parents-
offspring, half-siblings, first-cousins, half first-cousins, and
second-cousins. We therefore chose backcrossing as the
representative form (which ensures 0# s# 1), and add
the value 1=2sHS þ 1=4sFC þ 1=4sHFC þ 1=16sSC ¼ 0 to sPO.
Hence, the last equation becomes

f ¼ 1
2
sSEð1þ f Þ þ 1

4
sPOð1þ f Þ2 þ 1

8
sFSð1þ f Þð2þ f Þ: (13)

Unfortunately, there are still three unknown inbreeding pro-
portions sSE; sPO and sFS in Equation 13, whose solutions are

not unique (f is regarded as a constant). In order to obtain a
unique solution, some constraints have to be added to this
equation according to relevant a priori knowledge of the focal
population.

If d is known, the expression of the joint distribution of GF

and GM is

PrðGF ;GM j fÞ ¼
X9
n¼1

PrðGF;GM jDnÞdn;

where, for every n, the value of PrðGF ;GMjDnÞ is listed in
Table 2.

Assuming that the false parents are relatives of the true
parents of opposite sexes, and let various joint distributions of
genotypes of parent pairs be the same as PrðGF ;GM j f Þ; then
PrðGA;GM j f Þ ¼ PrðGF ;GBj f Þ ¼ PrðGA;GBj f Þ ¼ PrðGF;GM j f Þ:

Here, GB is the genotype of the false mother.
Thus far, the joint distributions of genotypes in Equation 9

have been derived. Next, we derive the transitional probabil-
ity TðGOjGM ; f Þ in Equation 9. By the generalized product rule
of probabilities, PrðGF ;GM j f Þ can be rewritten as

PrðGF;GM j f Þ ¼ PrðGFjGM ; f ÞPrðGM j fÞ: (14)

Therefore, the conditional probability PrðGF jGM ; fÞ is made
available, and will be used to calculate the transitional
probability:

TðGOjGM ; f Þ ¼
X
F
PrðGF jGM ; f ÞTðGOjGF ;GMÞ:

Allele frequency estimator

In this section, we develop a novel estimator to estimate the
allele frequencies in the presence of inbreeding and negative
amplification, which is a modification of Summers and Amos
(1997) estimator.

Suppose that there are altogether k visible alleles. Denote
Ni for the number of observed genotypes consisting of the ith

visible allele Ai ði ¼ 1; 2;⋯; kÞ; and Nvis for the number of

Table 1 The values of d between mates in different mating forms

Relation D1 D2 D3 D4 D5 D6 D7 D8 D9 s

SE f l3
2f
1þf

PO f 2 l1 l1 l2
4f

ð1þfÞ2

FS 1
4 f þ 1

2f
2 1

4f
2 1

2l1
1
4l1

1
2l1

1
4l1

1
4l3

1
2l2

1
4l2

8f
2þ3fþf2

HS 1
2f

2 1
2f

2 1
2l1

1
2l1

1
2l1

1
2l1

1
2l2

1
2l2

8f
ð1þfÞ2

FC 1
4f

2 3
4f

2 1
4l1

3
4l1

1
4l1

3
4l1

1
4l2

3
4l2

16f
ð1þfÞ2

HFC 1
8f

2 7
8f

2 1
8l1

7
8l1

1
8l1

7
8l1

1
8l2

7
8l2

32f
ð1þfÞ2

SC 1
16f

2 15
16f

2 1
16l1

15
16l1

1
16l1

15
16l1

1
16l2

15
16l2

64f
ð1þfÞ2

NR f2 l1 l1 l2

Where l1 = f (12f ), l2 = (12f )2, l3 = 12f and s are the proportion of offspring
produced by the corresponding inbreeding form under the equilibrium state (as-
suming that only the outcrossing can happen except for this inbreeding form). SE:
self; PO: parent-offspring; FS: full-sibs; HS: half-sibs; FC: first-cousins; HFC: half first-
cousins; SC: second-cousins; NR: nonrelatives.

Table 2 Joint distribution of genotypes under different IBD
configurations

IBD configuration Genotypic template PrðGF ;GM   j DnÞ
D1 AiAi ;AiAi pi
D2 AiAi ;AjAj pipj
D3 AiAi ;AiAj pipj
D4 AiAi ;AjAk ð22Kj;kÞpipjpk
D5 AiAj ;AiAi pipj
D6 AiAj ;AkAk ð22Ki;jÞpipjpk
D7 AiAj ;AiAj ð22Ki;jÞpipj
D8 AiAj ;AiAk pipjpk
D9 AiAj ;AkAl ð22Ki;jÞð22Kk;lÞpipjpkpl
For each genotypic template, if the alleles are with the same subscript, then they are
IBD alleles, otherwise they are IBS or non-IBS alleles. If Ai and Aj are IBS alleles, then
Ki,j = 1, otherwise Ki,j = 0.
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visible observed genotypes. Because Ni and Nvis can be
obtained directly from the observed genotypic data, their
ratio Ni=Nvis is a constant. Also, according to Equation 3,
and assuming that the rate of negative amplification is in-
dependent of the genotype, this ratio can be expressed as

Ni

Nvis
¼ fpi þ ð12 f Þp2i þ 2ð12 f Þpið12 piÞ

12 fpy 2 ð12 f Þp2y
; (15)

where f and py are known, inwhich the inbreeding coefficient f
is an a priori value, these are obtained by the average estimate
of the inbreeding coefficients from Nei (1977) estimator from
all polymorphic loci. Then, Equation 15 is a quadratic equa-
tion, with pi as the unknown, whose solution is

pi ¼ 1
2

�
f 2 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f22Þ2 þ 4cið f 2 1Þ

q �
  or;  

pi ¼ 1
2

�
f 2 22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f22Þ2 þ 4cið f 2 1Þ

q �

where ci ¼ Ni=Nvis½12 fpy 2 ð12 f Þp2y � The latter solution
should be excluded because it is outside of the range ½0; 1�:

A half-interval search algorithm is used to estimate the
allele frequencies, the procedure of which is described as
follows.

1. Set the initial minimum and maximum values of py at
py;min ¼ 0; and py;max ¼ 1; respectively.

2. Substitute p̂y with ðpy;min þ py;maxÞ=2 in the former solu-
tion to Equation 15 (where py and pi in this solutionwill be
regarded as p̂y and p̂i), and then find the value of p̂i;
i ¼ 1; 2;⋯; k:

3. Test the value of 12
Pk

i¼1p̂i 2 p̂y: If this is greater than, or
equal to, zero, then update py;min with p̂y; otherwise up-
date py;max with p̂y:

4. Repeat steps (ii) and (iii) until the difference
py;max 2 py;min is less than a threshold, e.g., 10212.

The final values of p̂y; p̂1; p̂2;⋯; p̂k in the above procedures
are the estimates of allele frequencies.

We now consider the estimation of the negative amplifi-
cation rate b. Denote Ntrue for the true sample size (i.e., the
number of observed genotypes excluding those with negative
amplification). By Equation 3, the ratio of Nvis to Ntrue is
Nvis=Ntrue ¼ 12 fpy 2 ð12 fÞp2y ; then

Ntrue ¼ Nvis

12 fpy 2 ð12 f Þp2y
:

Thus, the estimate N̂true can be obtained by substituting p̂y
for py in the final expression. The estimate of b can therefore
be calculated by b̂ ¼ maxð0; 12 N̂true=NtotÞ where Ntot is the
total number of individuals.

Data availability

Genotyping data used to test the model’s efficiency may be
found at doi: 10.5061/dryad.689v4.

The software PARENTAGE V1.0, user manual and example
dataset are available on GitHub (http://github.com/huang-
kang1987/parentage). Supplemental material available at
Figshare: https://doi.org/10.25386/genetics.7221965.

Results

Evaluation

In this study, we use Monte-Carlo simulations to generate the
observed genotypic data and to perform parentage analyses
for four typical applications. The influences of the following
three factors on the Ka-model are evaluated: inbreeding and
null alleles either each singly or in unison. The performance of
both our model and an additional model, named the
Wa-model (Wang 2016), under the same conditions are com-
pared with that of the Ka-model. We also use the empirical
data published by Nietlisbach et al. (2015) to test and com-
pare the accuracy of all three models under natural
conditions.

Simulated data

In order to evaluate the influences of the three factors under
scrutiny (inbreeding, null alleles, andnegative amplification),
we first set some levels for the inbreeding coefficient f or for
the null allele frequency py: For null alleles, we set f ¼ 0 and
py ¼ 0; 0.05, 0.15, or 0.3, where the four values of py repre-
sent the minimum, low, medium, and high levels, respec-
tively. For inbreeding, we set py ¼ 0 and f ¼ 0; 0.05, 0.15,
or 0.3. For inbreeding and null alleles jointly, we set
py ¼ f ¼ 0; 0.05, 0.15, or 0.3.

For the first two categories in a parentage analysis (i.e.,
identifying the father when the mother is either unknown or
known), each is designated its own application [named Ap-
plication (i) or (ii)], with 100 alleged fathers randomly gen-
erated for each offspring. For the third category (i.e.,
identifying the father and mother jointly), we also designate
two applications [named Applications (iii) and (iv)]. For Ap-
plication (iii), the sexes of the alleged parents are known, and
100 alleged fathers and 100 alleged mothers are randomly
generated for each offspring; for Application (iv), the sexes of
the alleged parents are unknown, and 100 alleged parents
with the predefined sex ratio of 1 : 1 are generated for each
offspring.

For each application, 1000 offspring and their true and
alleged parents are simulated. The observed genotypes of all
individuals are generated at 4–16 unlinked loci. Based on
these observed genotypes, parentage analyses are performed
by either the Ka-model or by our model with three different
thresholds (0, D0:80; and D0:99) of D, or by theWa-model with
three different thresholds (0, 0.80, and 0.99) of posterior
probability. The performance of each of these three models
are presented in two graphical formats. For the Ka-model, the
graphs of the correct assignment rate as a function of the
number of loci under four applications and under different
levels of py and/or f are shown in Figure 2. For these three

1472 K. Huang et al.

https://doi.org/10.5061/dryad.689v4
http://github.com/huangkang1987/parentage
http://github.com/huangkang1987/parentage
https://doi.org/10.25386/genetics.7221965


models, each correct assignment rate is shown by a part of the
overlapped bar charts (see Figure 3 in detail, and Supplemen-
tal Material, Figures S1 and S2 shows the results with the
thresholdsD0:80 andD0:99). Here, a correct assignmentmeans
that the true parents have been assigned correctly and there
is either a D value or a posterior probability above the corre-
sponding threshold.

The procedures used to generate the observed genotypes
are as follows. First, L unlinked loci are created, and the allele
frequencies at all loci are equal. In order to accelerate the
simulation, we reduce the number of alleles at a locus and
modify their frequencies used in Kalinowski et al. (2007). We
then use the loci with six visible alleles to perform our simu-
lation, and the vector of visible allele frequencies is set as
½0:25; 0:25; 0:2; 0:15; 0:10; 0:05�: In the presence of null al-
leles, each frequency of visible alleles is multiplied by 12 py
to unify the allele frequencies.

In order to simulate inbreeding, the true parents should be
regarded as relatives, so their genotypes are not independent.
Hence the genotypes of true parents are generated via Equation
12. Thereafter, the genotypes of offspring are generated by
Equation 8. The false parents may be related to the true parents
of the opposite sex, and their genotypes are generated by Equa-
tion 14. The three proportions sSE, sPO; and sFS are assumed to
be equal, i.e., their ratio is sSE : sPO : sFS ¼ 1 : 1 : 1: When our
model is applied to perform parentage analysis, we will also use
this ratio as the relative ratio among the corresponding three
mating forms. In other words, we will use this ratio as a con-
straint for Equation 13, then there is a unique solution of Equa-
tion 13 as follows:

sSE ¼ sPO ¼ sFS ¼ 8f
8þ 11f þ 3f2

: (16)

Finally, the generated genotypes are converted into observed
genotypes. Each generated genotype is randomly replaced

with a false genotype according to Equation 2 at a probability
e to simulate the genotyping error. Next, to account for the
presence of null alleles, the genotype obtained after the pre-
vious step is converted to an observed genotype according to
Equation 10. Furthermore, this observed genotype is ran-
domly set as ∅ at a probability b to simulate the effect of
negative amplification. The negative amplification rate b

and the genotyping error rate e are set as 0.05 and 0.01,
respectively. All alleged parents are sampled in our
simulation.

The generated observed genotypes are used to perform
parentage analysis. Unfortunately, because the false parents
are assumed to be relatives of the true parents, the alleles
carried by the true parents will appear at a higher frequency
than their true frequencies, which will bias the allele fre-
quencyestimation. Inorder toavoid thisbias,100nonrelatives
are generated according to Equation 2, and their observed
genotypes are converted by using the samemethod described
above, and are used to estimate the allele frequencies.

For both the Ka-model and the Wa-model, the allele fre-
quencies are estimated by counting the numbers of alleles
without considering the effects of both null alleles and neg-
ative amplification. For our model, these frequencies are
estimated by our new allele frequency estimator, and the
three proportions ŝSE; ŝPO; and ŝFS are estimated from the
inbreeding coefficient f according to Equation 16. Because
we do not develop an estimator to estimate the inbreeding
coefficient f under null alleles and negative amplification, f is
estimated by the Nei (1977) estimator. Additionally, the true
values of both genotyping error rate e and sampling rate of
true parents are used in all models.

For the Wa-model, we write the individual observed ge-
notypesand theallele frequencyestimates togetherwithother
necessary parameters into a file, named *.dat, according
to the input file format of COLONY V2.0.6.4. After calling
colony2p.exe by a command-line mode, we read the results

Figure 2 The influence of inbreeding and
null alleles on the Ka-model in each of four
applications. Each column denotes one ap-
plication. The top (or middle) row shows the
effect of null alleles (or inbreeding). Each
factor has four levels (i.e., py or f ¼ 0;
0.05, 0.15, or 0.3) and the corresponding
results are shown by solid, dashed, dash-dot-
ted, and dotted lines, respectively. Each line
is a graph of the correct assignment rate as a
function of the number L of loci. The bottom
row shows the influence of the effect of
both null alleles and inbreeding acting simul-
taneously. Each factor also has four levels (py
and f are set as equal, i.e., py ¼ f ¼ 0; 0.05,
0.15, or 0.3), with the line styles of different
levels the same as for the previous rows.
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from the output files. COLONY uses a different algorithm to
perform parentage analysis: by evaluating the likelihood of
pedigrees, it searches the optimal full- and half-sibs families
(Wang 2016). This algorithm neither performs a simulation to
obtain the thresholds of D, nor calculates the LOD scores. In-
stead, it uses the posterior probability as an indicator of confi-
dence. Therefore, three thresholds (0, 0.8, and 0.99) of the
posterior probability are used to denote three levels of confi-
dence, where a threshold of posterior probability equal to
0 means that the alleged parent(s) with the highest posterior
probability is chosen. The mating system for both sexes is
assumed to be polygamous, and allele frequencies are not
updated during iteration. The rates of two genotyping errors
(allelic dropout, and all other errors involved in genotyping)
are both assumed to be equal to the true value of 0.01.

In addition, to evaluate the performance of the Nei (1977)
estimator relative to our allele frequency estimator, an extra
100,000 simulations are performed. In each simulation, the
observed genotypes at 10 loci of 100 nonrelatives are gener-
ated by Equation 2. These observed genotypes are used to
estimate the inbreeding coefficient, the negative amplifica-
tion rate, and the null allele frequency. We use bias and SD to
evaluate the accuracy of each inbreeding coefficient, negative
amplification rate and null allele frequency.

The estimation of allele frequency uses the estimate of the
inbreeding coefficient, which may introduce some errors. To
account for possible effects of the inbreeding coefficient esti-
mator on the accuracy of the estimated parameters, and to
explore the potential of our allele frequency estimator,we also
use the true value of f to perform simulation. The correspond-
ing results are used for comparison.

Simulated results

The influences of both inbreeding andnull alleles onKa-model in
the four applicationswith aD. 0are shown inFigure2. Because
the distribution of genotypes of the alleged parents are deviated
from the HWE, the threshold of D0:80 or D0:99 cannot ensure a
confidence level of 80 or 99%. Therefore, we do not show the
results involving these thresholds in Figure 2. Although these
results are shown in Figure 3 for reference, these are not ana-
lyzed nor discussed. It is clear that both inbreeding and null
alleles significantly affect the accuracy of our parentage analysis.

In the presence of null alleles, the curves inside each
subfigure are nearly equally spaced. Application (i) is rela-
tively less affected, the values of correct assignment rate
(denoted by c) are decreased at most 0.2 when py ¼ 0:3;
while those values are decreased at most 0.3 for Application
(ii), and at most 0.4 for Applications (iii) and (iv).

In the presence of inbreeding, Application (ii) is barely
affected, although the values of the correct assignment rate c
are slightly increased (at most 0.03) when f ¼ 0:05: For the
remaining applications, the values of c are slightly decreased
when f ¼ 0:05; but they are greatly reduced when f increases
from 0.15 to 0.3.

When null alleles and inbreeding are both present, the
influences of both factors are cumulated, and theperformance

are greatly affected. The curves in all applications become
increasingly flat as f and py also increase.

The results of the Ka-model, theWa-model and ourmodel for
the four applications are presented in Figure 3. In order to com-
pare the performance of all models, we consolidate the results of
each of the threemodels under the same conditions, and we use
bar charts to show the various correct assignment rates.

In the absenceofboth inbreedingandnull alleles, ourmodel
and the Ka-model perform similarly, although some small
changes in the estimated allele frequencies result in small
differences between their correct assignment rates. The
Wa-model performswell in all applicationswhen L$ 14:How-
ever, when L is small, the Wa-model performs a little worse
than our model and the Ka-model in Applications (i) and (ii),
with the highest differences between the correct assignment
rates being 0.03 and 0.06, respectively. The Wa-model per-
forms even worse in Applications (iii) and (iv), with the high-
est differences increasing to 0.12 and 0.14, respectively.

In the presence of null alleles, our model outperforms the
Ka-model, especially when py ¼ 0:3 and for Applications (iii)
and (iv), which resulted in maximum differences between
correct assignment rates of up to 0.15. In Applications (i)
and (ii), bothWa- and Ka-models perform similarly. However,
the Wa-model performs worse than the Ka-model in Applica-
tions (iii) and (iv), with differences being �0.1–0.2.

In the presence of inbreeding, ourmodel and the Ka-model
perform similarly if f ¼ 0:05: Our model performs a little
worse than the Ka-model in Application (ii), but more or less
better in Applications (i) and (iv) if f $ 0:15; or in Application
(iii) if f ¼ 0:3: The Wa- and Ka-models perform similarly in
Applications (i) and (ii). However, the Wa-model performs
worse than Ka-model in Applications (iii) and (iv), for exam-
ple, if f ¼ 0:3; the maximum differences between the correct
assignment rates being �0.35 and 0.5, respectively.

In the presence of null alleles and inbreeding, our model
outperforms the other twomodels in most cases, with the Ka-
and Wa-models performing similarly in Applications (i) and
(ii). However, both Ka- and Wa-models are strongly nega-
tively affected in Application (iii) and (iv). For instance, if
py ¼ f ¼ 0:3; the correct assignment rates for both models
are �75 and 35% of those for our model, respectively.

The evaluation results of our allele frequency estimator are
shown in Table S1. The presence of null alleles introduces an
overestimation of the inbreeding coefficient using Nei (1977) es-
timator. The SD of f̂ ; b̂ and p̂y are slightly increased as both f and
py also increase, respectively. The bias of p̂y becomes extremely
large aspy increases, and reaches 0.25when py ¼ 0:3: Thebias of
b̂ is also affected by py; and reaches 0.1 at f ¼ py ¼ 0:3: If the
true value of the inbreeding coefficient is used in simulation, these
biases are considerably reduced (at most 0.02, Table S1).

Empirical data

We used microsatellite genotyping data for a population of
song sparrows (Melospiza melodia) on Mandarte Island, Can-
ada (Nietlisbach et al. 2015), to test the efficiency of our
model. These data are available at doi: 10.5061/dryad.689v4.
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The song sparrow is a medium-sized passerine bird, native
to North America. The past breeding density of this popula-
tion has fluctuated 18-fold due to two major population
crashes (Keller et al. 1994). In 1988–1989, only four adult
females and seven adult males were present (Keller et al.

1994). This resulted in inbreeding in this population due to
a bottle-neck effect, and across the 2364 birds whose all four
grandparents were genetically verified during 1993–2013,
the mean inbreeding coefficient was 0.087 (Nietlisbach
et al. 2015).

Figure 3 The correct assignment rates of our model, the Ka-model and the Wa-model as a function of number L of loci under 10 different levels of null
allele and inbreeding. Each column denotes an application. Each row shows all correct assignment rates with the same level (the value representing this
level is listed in the subfigure located in the rightmost column). Every correct assignment rate is shown by a part of the overlapped bar charts. The results
of the Ka-model are shown by the red bars, and those of both the Wa-model and our model by the green and blue bars, respectively. The bars with
light, medium, and bright colors denote the correct assignment rates with the thresholds 0, D0:80; and D0:99 for our model and the Ka-model, or with the
thresholds 0, 0.8, and 0.99 for the Wa-model, respectively.
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The dataset of Nietlisbach et al. (2015) contains the geno-
types of 3301 individuals at 209 microsatellite loci. There
were 3186 individuals whose father or mother was geno-
typed, and these were used as offspring in the parentage
analysis. The fathers and mothers of these individuals were
recorded from long-term pedigree data, but the sexes of the
offspring are not given. The average inbreeding coefficient
estimated by the Nei (1977) estimator based on 199 autoso-
mal loci is 0.074, which is used as an a priori inbreeding
coefficient in our model.

Because the microsatellites used by Nietlisbach et al.
(2015) were less polymorphic than those used in the simu-
lation, and because their genotyping ratios were also lower,
we used more loci to perform the parentage analysis. We
scanned the 199 autosomal microsatellites and chose two
subsets of loci. Subset one consisted of the loci with the
highest estimated null allele frequencies. Subset two con-
sisted of haphazardly selected loci, that were chosen by first
ranking all loci alphabetically, and then selecting the top
40 name-ranked loci. The indices of the genetic diversity
of the selected loci are shown in Tables S2 and S3. The
average numbers of visible alleles are 8.175 and 8.725, re-
spectively, the average genotyping ratios are 68.28 and
72.98%, respectively, the average estimated inbreeding co-
efficients are 0.333 and 0.097, respectively, and the average
estimated null allele frequencies are 0.200 and 0.053,
respectively.

Following the definition of the above applications for the
simulated data, four similar applications are considered as
follows: (I)–(II) identifying one parent when the other is un-
known (6284 cases, including 3162 for identifying father and
3122 for identifying mother), or when the other parent is
known (6196 cases); (III)–(IV) identifying jointly the father
and mother in which the sexes of the candidate parents are
both known (3098 cases), or unknown (also 3098 cases).
Here, the hypotheses H1 and H2 in Applications (I) and (II)
need to be modified as follows: the alleged parent is the true
parent ðH1Þ; or is not the true parent ðH2Þ:

In Applications (I)–(IV), all males or females are included
as either the alleged fathers or the alleged mothers, whereas
an offspring itself is excluded from the pool of alleged parents
in each case. The average numbers of candidate parents for
each case are 290 in Applications (I) and (II), and 581 in
Application (IV). For Application (III), the average numbers
of candidate fathers and mothers in each case are 297 and
284, respectively.

We use 5–40 loci to perform our parentage analysis and
use the correct assignment rate to measure the efficiencies of
each of the three models. For Applications (III) and (IV), the
identification is considered as correct when both parents are
correctly identified.

For the Ka- and Wa-models, the allele frequencies are
estimated by counting the numbers of alleles without consid-
ering the effects of both null alleles and negative amplifica-
tion. For our model, an a priori inbreeding coefficient is set as
0.074, and the allele frequencies (including the null allele

frequency) and the negative amplification rate are both esti-
mated simultaneously.

Three thresholds (0, D0:80; and D0:99) of D are obtained by
using a Monte-Carlo simulation (Marshall et al. 1998). In
each application, 100,000 offspring are generated, and the
number of alleged parents for each offspring is taken from
the average number of alleged parents. For the Ka-model, the
false parents are nonrelatives of the true parents. For our
model, inbreeding is assumed to be present due to backcross-
ing (because this mating form represents many inbreeding
forms with reduced relatedness between mates, it is probably
the common form of inbreeding), the false parents are re-
lated to the true parents of the opposite sex, the genotyping
rate is equal to the average genotyping rate among the loci
currently being used, the sampling rate is equal to one, and
the genotyping error rate is assumed to be 0.01. For the
Wa-model, the configuration of COLONY is identical to that of
the simulated data.

Empirical results

In the four applications, the results of theparentageanalysis of
all threemodels for subset 1 are shown in Figure 4 (Figures S3
and S4 show the results with the thresholds D0:80 and D0:99),
and those for subset 2 are shown in Figure S5 (Figures S6 and
S7 show the results with the thresholds D0:80 and D0:99).
Because some individuals are typed at only a few loci (e.g.,
783 individuals are typed at four loci), the true parents can-
not easily be identified. Therefore, each curve for the correct
assignment rates in the range from 0.5 to 0.7 reaches near to
an asymptote.

Figure 4 also shows that our model outperforms both the
Ka- and Wa-models in all four applications, especially in Ap-
plications (III) and (IV). In Applications (I) and (II), for�65–
80% of loci, our model achieves similar levels of accuracy as
the Ka-model. Similarly, according to the simulation results,
Applications (III) and (IV) aremore sensitive to the presences
of both inbreeding and null alleles, and, for �55–70% of
loci, our model achieves similar levels of accuracy as the
Ka-model.

For subset 2, the average estimated null allele frequency
(0.053) and the average estimated inbreeding coefficient
(0.097) are both low (Table S3). Therefore, the performance
of our model for subset 2 is not so good as that for subset 1,
which is consistent with our simulated data. However, our
model still a little outperforms both the Ka- and the
Wa-models. For example, the correct assignment rates in
Applications (I) and (IV) for our model are at most 3.2 and
7.4% higher than for the Ka-model (Figure S5), respectively.

Discussion

Impacts of inbreeding and null alleles

Both inbreeding and null alleles can cause serious problems
in parentage analyses (Wagner et al. 2006; Wang 2011). In
the presence of null alleles, the genotypes of parents and
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offspring may be mismatched (Brookfield 1996). In addition,
a null allele homozygote may also be treated as a negative
observed genotype, and hence it is omitted from any likeli-
hood calculations (Marshall et al. 1998; Kalinowski et al.
2007). In the presence of inbreeding, genotypic frequencies
become deviated from the HWE and the genotypes of both
parents are not independent. Moreover, the false parents may
also be potential mates and relatives of the true parents of
the opposite sex, who may also share IBD alleles with the
offspring.

With our computer simulations, we found that even a
small inbreeding coefficient (e.g., 0.05) or a small null allele
frequency can result in a large reduction in the correct as-
signment rate (up to 0.15; Figure 2). In the presence of
inbreeding and/or null alleles, the information given by
the genotyping data are reduced, and so more loci should
be used in order to reach the same level of accuracy. For
example, 180% additional loci are required to reach the
correct assignment rate of 50% for the Ka-model if the in-
breeding coefficient and null allele frequency are both 0.3
(Figure 2).

Corrections for inbreeding and null alleles

In the process of establishing our model, we made several
modifications to the Ka-model. These included the actual
genotypic and observed genotypic frequencies, joint distribu-
tion of parental genotypes, conditional probability of parental
genotypes, alternative hypotheses, alternative forms of likeli-
hood calculation, and allele frequency estimations.

The performance of our model using both computer gen-
erated and empirical datawere also evaluated under the same
conditions as the Ka-model. The results showed almost ubiq-
uitous improvement except for some situations with only few
alleles. Although our model is still affected negatively by
either the presence of inbreeding and/or null alleles, it is still
able to recover much information. Importantly, our new
method requires at least 55% of all loci to attain an equal
degree of accuracy as the Ka-model (Figure 3).

Compared with the effects of inbreeding, our model per-
forms better in the presence of null alleles. In the Ka-model,
negative amplification is not considered so any negative
observed genotypes are ignored in the calculation of the
likelihoods. For example, in Application (i), if the observed
genotype of either the offspring or the alleged father at a locus
is negative, and if such an observed genotype is ignored, then
the likelihood at this locus is omitted. This omission is equiv-
alent to the likelihoods of H1 and H2 at this locus being set to
one, which will result in the overestimation of both likeli-
hoods and a bias of the LOD score.

A negative observed genotype is similar to a visible allele
homozygote, representing one of several possible genotypes.
In our model, negative amplification is considered and each
negative observed genotype is treated as a normal observed
genotype. In our alternative forms of likelihoods, each possi-
ble genotype is weighted according to its probability (either
conditional, prior or joint), such that the likelihoods consid-
ering any negative amplification and any negative observed
genotypes can be calculated.

Figure 4 Results of the parentage analysis using the dataset of Nietlisbach et al. (2015), in which the loci chosen are with the highest estimated null
allele frequency. Each row denotes an application. The definitions of bars together with their colors are as for Figure 3.
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Alternative hypothesis

Among the four applications used to test the efficiency of the
Ka-model, the first two (identifying the father when the
mother is either known or unknown) are both affected to a
relatively lesser degree (Figure 2). The latter two (identifying
jointly the two parents when the sexes of the candidate par-
ents are either known or unknown) are more sensitive to the
effects of inbreeding and/or null alleles (Figure 2).

The scheme of the Ka-model also contributes to the rela-
tively poor performance for Applications (iii) and (iv) [or (III)
and (IV)]. Here, the hypothesis H1 that the alleged parents
are the true parents, is evaluated relative to the alternative
hypothesis H2 that the alleged parents are unrelated to the
offspring. However, in this scheme, the scenario that one
alleged parent is a true parent while the other is not is not
considered.

We give two additional events to this scheme, and use the
geometrical mean of the corresponding likelihoods as the
likelihood of H2: From the validation of both simulations
(Figure 3) and the empirical data (Figure 4), the perfor-
mances after the scheme hasmade the appropriate correction
are significantly improved.

Allele frequency estimator

In this paper, we develop a novel estimator to estimate the
allele frequencies in the presence of both inbreeding and
negative amplification, which is a modification of Summers
and Amos (1997) estimator. This estimator estimates the al-
lele frequency and negative amplification rate separately. The
allele frequencies are first estimated, with only the visible
observed genotypes being used. This approach can eliminate
the impact of negative amplification, because the ratio
Ni=Nvis has nothing to do with b under the assumption that
the negative amplification is independent of the genotypes.
The negative amplification rate is subsequently estimated
from the estimates of these allele frequencies.

Our allele frequency estimator assumes that the inbreeding
coefficient has an a priori value, and we thus use the Nei
(1977) estimator to estimate f; however, this estimator does
not consider either negative amplification or null alleles, the
errors are accumulated during allele frequency estimation.
Therefore, the biases of b̂ and p̂y are high when f and py
are also high (0.102 and 20:251; respectively, Table S1).
However, our model still works well and outperforms both
the Ka- and Wa-models in many cases. If the true value of the
inbreeding coefficient is used in simulation, these biases will
be largely reduced (at most 0.02, Table S1) which suggests
that our allele frequency estimator has considerable potential
to improve estimations of both allele frequencies and parent-
age analysis.

Pervasive inbreeding

Although we only consider close inbreeding, pervasive in-
breeding will also have a similar influence on the parentage
analysis in two ways: (i) the genotypic frequencies deviate

from theHWE,whichwill bias the likelihood estimate; (ii) the
candidate parents may be sampled from the same population
as the true parents, whomay share the same IBD alleles as the
true parents and the offspring, which will result in an over-
estimation of the LOD score of the false parents and interfere
with our analysis.

These problems are solved by a two-step process: (i)
estimating the allele frequency for each population, and then
(ii) using the local allele frequencies to calculate the likeli-
hoods. Unfortunately, due todispersal amongpopulations, for
an individual, the natal populationmay not be the same as the
sampled population. Although the natal population can be
calculated by Bayesian clustering (Pritchard et al. 2000) or by
population assignment (Peakall and Smouse 2012), the re-
sults may be unreliable in cases in which the population
structure is weak (e.g., Wright’s FST , 0:05). Moreover, the
estimation of local allele frequencies will also be inaccurate
due to the limited sample size. Hence, this two-step process
can result in an accumulation of errors.

The level of pervasive inbreeding can be measured by
Wright’s FST (Wang 2011). An alternative approach is to con-
solidate both FST and FIS into a single parameter. Using the
formula FIT ¼ 12 ð12 FISÞð12 FSTÞ; the effects of pervasive
inbreeding can be incorporated into our model. The geno-
typic frequency PrðGÞ in the total population and by incorpo-
rating both types of inbreeding can be expressed as

PrðGÞ ¼
�
FITpi þ ð12 FITÞp2i if G ¼ AiAi;
2ð12 FITÞpipj if G ¼ AiAj:

(17)

Wright’s FIT is a measure of the correlation of gene frequen-
cies among all individuals in the total population. Comparing
Equation 17 with Equation 2, both have the same form, but
the applied range of Equation 17 is wider.

Similar to the method for applying Equation 2, the joint
distribution of parental genotypes or the conditional probability
of the alleged parental genotypes in the total population, can
now be derived. This alternative method only makes a slight
change to our model, but it can be applied without involving
both an estimation of the local allele frequencies and an identi-
fication of the natal population of each individual. This will thus
prevent the accumulation of errors. However, when the popu-
lation structure is strong (i.e., FST is large), Equation 17 cannot
accurately predict the genotypic frequency. Meanwhile, if the
sample size is large, the natal population of each individual can
be accurately obtained and the initial approach will perform
better than the alternative approach.
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Appendix

A Identifying the Father when the Mother is Known

For the second category of parentage analyses (i.e. identifying the fatherwhen themother is known), the hypothesesH1 andH2

are as in the first category, and the likelihoods for which can be calculated by modifying Equation 7 and Equation 9 with the
consideration of mother’s observed genotypes. The expressions are as follows:

LðH1Þ ¼
X
OFM

PrðGF ;GM j f ÞTðGOjGF ;GMÞ

Pr
�
OOjGO; f ; py;b; e

�
Pr
�
OM jGM ; f ; py;b; e

�
Pr
�
OAjGF ; f ; py;b; e

�
;

LðH2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�LðH2;1

�L�H2;2
�q
;

L�H2;1
� ¼ X

OFMA
PrðGF;GM j f ÞTðGOjGF;GMÞPrðGAj f Þ

Pr
�
OOjGO; f ; py;b; e

�
Pr
�
OM jGM ; f ; py;b; e

�
Pr
�
OAjGA; f ; py;b; e

�
;

L�H2;2
� ¼ X

OFMA
PrðGF;GM j f ÞPrðGAjGM ; fÞTðGOjGF;GMÞ

Pr
�
OOjGO; f ; py;b; e

�
Pr
�
OM jGM ; f ; py;b; e

�
Pr
�
OAjGA; f ; py;b; e

�
:

The definitions of GF ;GM ;GO;GA; and so on are as in Equation 7 and Equation 9.
The subsequent procedures are the same as for the first category.

B Identifying Parents Jointly

For the third categoryof a parentageanalysis (i.e. identifying the trueandmother jointly), thefirst hypothesisH1 is that the alleged
parents are the true parents, and the alternative hypothesisH2 is that the alleged parents are not the true parents. In this case,H2

implies three possibilities: thefirst is that both of the allegedparents are not the true parents, and the second and third are that the
alleged mother (or father) is a true parent whereas the alleged father (or mother) is not a true parent. Note that each possibility
represents two scenarios that the alleged parents are either nonrelatives or are relatives of each of the true parents of the opposite
sex. There are thus six scenarios for the hypothesis H2, denoted by H2;1;H2;2;⋯;H2;6: Similarly, the geometrical mean of the
likelihoods of all six scenarios is used as LðH2Þ: The likelihoods of these hypotheses are given as follows:

LðH1Þ ¼
X
OFM

PrðGF ;GM j f ÞTðGOjGF ;GMÞPr
�
OO




GO; f ; py;b; e
�

Pr
�
OA



GF; f ; py;b; e
�
Pr
�
OAM



GM ; f ; py;b; e
�
;

LðH2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�H2;1

�L�H2;2
�L�H2;3

�L�H2;4
�L�H2;5

�L�H2;6
�

6
q

;

L�H2;1
� ¼ X

OAB
PrðGOj f ÞPrðGAj fÞPrðGBj f Þ

Pr
�
OO



GO; f ; py;b; e
�
Pr
�
OA



GA; f ; py;b; e
�
Pr
�
OAM



GB; f ; py;b; e
�
;

L�H2;2
� � X

OFMAB

1
2
PrðGF;GM j fÞTðGOjGF;GMÞ

½PrðGAjGM ; fÞPrðGBjGA; f Þ þ PrðGBjGF; f ÞPrðGAjGB; fÞ�
Pr
�
OO



GO; f ; py;b; e
�
Pr
�
OA



GA; f ; py;b; e
�
Pr
�
OAM



GB; f ; py;b; e
�
;

L�H2;3
� ¼ X

OFMA
PrðGF;GM j fÞTðGOjGF;GMÞPrðGAj f Þ

Pr
�
OO



GO; f ; py;b; e
�
Pr
�
OAM



GM ; f ; py;b; e
�
Pr
�
OA



GA; f ; py;b; e
�
;
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L�H2;4
� ¼ X

OFMA
PrðGF ;GM j f ÞTðGOjGF ;GMÞPrðGAjGM ; f Þ

Pr
�
OO



GO; f ; py;b; e
�
Pr
�
OAM



GM ; f ; py;b; e
�
Pr
�
OA



GA; f ; py;b; e
�
;

L�H2;5
� ¼ X

OFMB
PrðGF;GM j fÞTðGOjGF;GMÞPrðGBj f Þ

Pr
�
OO



GO; f ; py;b; e
�
Pr
�
OA



GF; f ; py;b; e
�
Pr
�
OAM



GB; f ; py;b; e
�
;

L�H2;6
� ¼ X

OFMB
PrðGF ;GM j f ÞTðGOjGF ;GMÞPrðGBjGF ; f Þ

Pr
�
OO



GO; f ; py;b; e
�
Pr
�
OA



GF; f ; py;b; e
�
Pr
�
OAM



GB; f ; py;b; e
�
;

where OAM is the observed genotype of the alleged mother, GB is the genotype of the false mother, with the meanings of the
remaining symbols as for the previous section.

For the hypothesis H2;2, the genotypes of both the true and the false parents are correlated, because the false mother (or
father) is a relative of both the true and the false fathers (or mothers). Therefore, the distribution of their genotypes accords
with the joint distribution PrðGF ;GM ;GA;GB



f ; py;b; eÞ: However, because of the computational difficulties, we use the follow-
ing expression to approximate this joint distribution:

1
2
PrðGF ;GM j f Þ½PrðGAjGM ; f ÞPrðGBjGA; f Þ þ PrðGBjGF ; fÞPrðGAjGB; f Þ�:

The subsequent procedures are the same as for the first category.
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